New news-based measure of geopolitical risk. Macroeconomic effects and the role of sentiment

Karol Szafranek ^a Joscha Beckmann ^{b,c} Michael Murach ^b Michał Rubaszek ^a

^aSGH Warsaw School of Economics, Collegium of Economic Analysis, Warsaw, Poland

^bFernUniversität in Hagen, Faculty of Business Administration and Economics, Chair for Macroeconomics, Universitätsstr. 11, D-58097 Hagen, Germany

^cKiel Institute for the World Economy, Kiellinie 66, D-24105 Kiel, Germany.

July 11, 2025

Economic effects of shocks to the GPR index

Extensions and Sentiment Dynamics

6 Conclusion

Introduction

Introduction I

- Geopolitical risk (GPR) as a manifestation of uncertainty has been widely studied in recent years
- Caldara and Iacoviello (2022, CI) introduced an influential GPR index that is based on the occurrence of certain keywords in newspaper articles
 - Captures threats, realization of wars, terrorism, and tensions between countries
 - Covers six english-language newspapers starting 1985
- Empirical studies using the CI GPR index highlight how GPR events may influence the economy:
 - Direct channel: GPR event constitutes a supply or demand shock (e.g., disrupting trade)
 - Higher GPR leads to increased volatility and portfolio shifts
 - Higher GPR reduced consumer and business confidence, lowering spending and investment

3/35

Introduction

Introduction II

- We construct a similar index using daily, dictionary based cross-country data on media coverage for 182 countries from MarketPsych to analyze how the CI GPR index would change to:
 - Broader country coverage
 - Extended search terms
 - A distinction between different news dimensions
- We distinguish between a narrow and a broad index and compare the economic effects with the benchmark CI GPR index
- Specifically, we look at three economic outcomes:
 - The crude oil market
 - ODP growth rate
 - GDP growth distribution
- Furthermore, we explore the link between GPR and media-based sentiment

Literature Review: Uncertainty I

- Textual sentiment indicators based on media coverage have strong effects on both the real economy and financial markets (see e.g. van Binsbergen et al., 2024; Benhabib et al., 2016; Fraiberger et al., 2021) Algaba et al. (2020) provide a comprehensive overview
- Castelnuovo (2023) reviewed recent literature on measurement and effects of uncertainty, highlighting that interest in the effects of uncertainty has increased as a result of the Covid-19 pandemic
- Main findings of literature on uncertainty:
 - Identifying uncertainty shocks is complicated (e.g. Leduc and Liu, 2016; Ma and Samaniego, 2019)
 - Uncertainty is detrimental for trade (e.g. Baley et al., 2020)
 - Effects of uncertainty shocks are state-dependent (e.g. Caggiano et al., 2014, 2017; Ricco et al., 2016)

Literature Review: Uncertainty II

- Macroeconomic policies are weaker during periods of uncertainty (e.g. Bachmann and Sims, 2012; Bekaert et al., 2013), but they can also induce uncertainty themselves (e.g. Born and Pfeifer, 2014; Husted et al., 2020; Jasova et al., 2021)
- Apart from these country-level findings, studies like Carrière-Swallow and Céspedes (2013); Bhattarai et al. (2020) find that uncertainty also has effects on the global level
- We add to these studies by distinguishing between a global and a domestic component of GPR and media sentiment, and allowing for an interaction between both
- Furthermore, we broaden the scope of GPR by using different definitions of geopolitical risk, adding to literature on uncertainty measures

GPR and media sentiment indices I

• Data for GPR and media sentiment indices is taken from MarketPsych, which provides a detailed documentation and is available for different frequencies, news contents, and a broad range of countries

Data

- MarketPsych uses AI-based machine learning algorithms for natural language processing to process textual data
 - Explores global news in real time and consolidates them into a series of scores describing activity metrics (i.e. *buzz*, sentiment metrics, and emotional indicators)
 - Covers both newspapers (Reuters and internet news from Lexis-Nexis) and social media (2,000 selected sources like Twitter, Reddit, Investing.com) in separate time series dating back to (in part) 1998
 - Until Feb. 2020 it covered only English-language text, since then 12 major languages were added

7/35

GPR and media sentiment indices II

• For the GPR index, we use both narrow and broad definitions:

Data

- Narrow definition: uses the terms war and terrorism
- Broad definition: adds dimensions of political stability by including the terms violent crime, regime change, and social unrest
- Both measures are constructed as percentages of total references (rescaled to a range of 0 to 1)
- We create GPR indices based on newspapers (NSP) and social media (SOC) and a total (TOT) by weighting NSP and SOC by *buzz*
- Global GPR is calculated as a weighted average of the country indices (N=182)
- This extents the benchmark CI GPR index in three ways:
 - Wider coverage of newspapers
 - 2 Adding social media news
 - Illowing for the possibility that political stability reflects GPR

< ロ > < 同 > < 回 > < 回 >

GPR and media sentiment indices III

• We construct two additional news dimensions from the MarketPsych data:

Data

- Media sentiment towards an economy: positive and negative news coverage about the economy (difference between the two scaled to -1 to 1)
- Intensity of news coverage: the *buzz*, which reflects the sum of news coverage
- Comparing our GPR indeces to the benchmark from CI (see figures 2 and 3)
 - Narrow GPR indices are highly correlated with the CI GPR index, but broad GPR indices are not
 - Country coverage: we cover 182 economies, while CI only cover 44
 - Therefore, the broad GPR indices offer a complementary perspective compared to the benchmark

Figures: GPR I

Figure 1: Daily data on buzz geopolitical risk subcomponents for the U.S.

Data

Szafranek et al. (2025)

July 11, 2025

イロン イロン イヨン イヨン

10/35

Figures: GPR II

Figure 2: Comparison of GPR indices for the US (black is CI, red is our index)

Szafranek et al. (2025)

□ > < □ > < □ > < □ > < □ > < □ > < □ >
 July 11, 2025

Figures: GPR III

Figure 3: Comparison of global GPR indices (black is CI, red is our index)

Szafranek et al. (2025)

July 11, 2025

Economic effects of shocks to the GPR index

- Conducting three analyses to assess the economic usefulness of our GPR:
 - Structural VAR model for the global crude oil market
 - Country-by-country VAR models to measure output dynamics of global and local GPR shocks
 - Predictive panel quantile regressions to evaluate the effect of GPR shocks on the distribution of economic growth
- We report results for four measures:
 - GPR^{CI} benchmark by Caldara and Iacoviello (2022)
 - GPR^{NN} narrow definition, using newspapers
 - GPR^{BN} broad definition, using newspapers
 - GPR^{BT} broad defintion, using newspapers and social media

< ロ > < 同 > < 回 > < 回 >

Crude Oil SVAR: Setup I

- Several studies on the effect of GPR shocks on global oil markets: Caldara and lacoviello (2022) find lowered demand and real prices using SVAR models, while Mignon and Saadaoui (2024) find only insignificant effects on real oil prices; Yang et al. (2023) use SVAR and find that oil price reactions to GPR shocks are time-dependent
- We extend the global crude oil market model by Kilian (2009) (describing joint dynamics of oil production, real economic activity and real oil prices) with GPR

Crude Oil SVAR: Setup II

• We estimate the following model:

$$\mathbf{y}_t = \mathbf{A}_0 + \sum_{\rho=1}^{P} \mathbf{A}_{\rho} \mathbf{y}_{t-\rho} + \mathbf{B} \mathbf{u}_t, \ \mathbf{u}_t \sim N(\mathbf{0}, \mathbf{I})$$
(1)

- where y_t = (GPR_t, ΔOILP_t, GEA_t, WTI_t)' is the vector of endogenous variables (as defined in Kilian, 2009)
- **u**_t is the vector of structural shocks
- B represents the recursive identification matrix
- As discussed in Caldara and lacoviello (2022), the measure of GPR is considered to be the most exogenous
- Maximum lag length P is set to 12 months
- Model is estimated using monthly data for 1998:1-2024:9

< ロ > < 同 > < 回 > < 回 >

Crude Oil SVAR: Results I

Figure 4: IRFs for four models - Upper row shows GPR shock, middle row shows real oil price response, bottom row shows variance contribution

Szafranek et al. (2025)

GPR, Macroeconomic effects and sentiment

July 11, 2025

16/35

Crude Oil SVAR: Results II

- SVAR model is estimated using four GPR measures (GPR^{CI}, GPR^{NN}. $GPR^{BN}, GPR^{BT})$
- In line with Caldara and Iacoviello (2022), all models show a decline in the oil prices
- Result for our narrow definition is very close to the CI benchmark
- Using the broad definition, the oil price response becomes more pronounced
- This is also reflected in the forecast error variance decomposition (GPR) contributed 5-7% using the narrow, and 9-10% using the broad definition)
- Accounting for social media does not seem to make oil prices more responsive

Country SVARs I

- Cheng and Chiu (2018) use separate SVAR models for almost 40 economies and find that GPR shocks account for about 20% of output variation
- Our approach:
 - For each country i = 1, 2, ..., N we estimate a SVAR model similar to the one above
 - Endogenous vector: $\mathbf{y}_{it} = (GPR_t^G, \Delta GDP_t^{US}, GPR_{it}^L, \Delta GDP_{it})'$
 - Each model describes joint dynamics of global (*GPR^G*) and local (*GPR^L*) GPR, as well as GDP growth rate in the US and the *i*th country
 - Global GPR and US GDP growth are treated as block exogenous variables by imposing zero restrictions on relevant parameters
 - Model is identified using a recursive scheme; maximum lag length is 4
- Model is estimated on quarterly data for 1998:1-2024-3, now using the four different GPR measures at both global and country levels

Country SVARs II

- Country sample (N = 27) is limited by Caldara and Iacoviello (2022)
- Results:
 - For narrow GPR indices, the average contribution of GPR shocks to GDP variance is typically well below 10% (on average, it amounts to 6.4% (*GPR*^{CI}) to 7.9% (*GPR*^{NN}))
 - Using the broad definition (GPR^{BN}), the average contribution roughly triples to 23.0%
 - Results are similar for GPR^{BN} and GPR^{BT}
- To summarize:
 - Extending the GPR index with social media news does not change the dynamics of GPR and GDP growth
 - Over a new second definition allows for a better description of GDP dynamics within the SVAR model

Quantile Regressions

- Looking at the differences between our GPR indices and the benchmark GPR^{CI} using quantile regressions
- Idea: Compare how the GPR proxies predict the future GDP growth distribution
- Using a cross-country panel to estimate the following relationship:

$$\mathcal{Q}_{\tau}(\Delta GDP_{it+1}|X_{it}) = \alpha_{i\tau} + \rho_{\tau} \Delta GDP_{it} + \gamma_{\tau} GPR_{t}^{G} + \delta_{\tau} GPR_{it}^{L}.$$
 (2)

- where $\mathcal{Q}_{\tau}(Y|X)$ denotes the τ -th quantile of Y conditional on X
- i = 1, 2, ..., N represent countries and t = 1, 2, ..., T years
- Explanatory variables X_{it} include current GDP growth (to account for persistence), and both local and global GPR measures
- $\bullet\,$ Model is estimated for our four GPR indices by minimizing the loss function ${\cal L}$
- Sample covers 1998-2022 and N = 43 countries (limited by Caldara and Iacoviello, 2022)

イロト 不得 トイヨト イヨト

Quantile Regressions: Results I

Table 1: Quantile predictive regressions for GDP growth

	Dependent variable: ΔGDP_{it}						
GPR measure	GPR ^{CI}	GPR ^{NN}	GPR ^{NB}	GPR ^{TB}			
	$\tau = 0.1$						
ΔGDP_{it}	0.446	0.386	0.291	0.275			
	(0.092)	(0.110)	(0.045)	(0.056)			
6							
GPR ^G	0.749	0.135	-1.093	-1.127			
	(0.186)	(0.214)	(0.170)	(0.215)			
GPR	-0.386	0.540	-0.020	-0.070			
	(1.339)	(0.349)	(0.226)	(0.381)			
	. ,	. ,	. ,	. ,			
Loss function \mathcal{L}	638.3	648.4	600.1	602.7			
	au= 0.5						
ΔGDP_{it}	0.107	0.094	0.091	0.095			
	(0.027)	(0.029)	(0.023)	(0.026)			
6							
GPR ^G	0.151	0.086	-0.391	-0.366			
	(0.035)	(0.046)	(0.050)	(0.053)			
GPR	-0.077	-0.233	-0.134	-0.189			
	(0.109)	(0.114)	(0.108)	(0.101)			
Loss function \mathcal{L}	1105.2	1107.0	1087.1	1088.5			
(a)	1000	1066	1066	1066			
Obs.	1066	1000	1000	1000			

Table 2: Quantile predictive regressions for GDP growth (cont.)

	Dependent variable: ΔGDP_{it}						
GPR measure	GPR ^{CI}	GPR ^{NN}	GPR ^{NB}	GPR ^{TB}			
	au=0.9						
ΔGDP_{it}	-0.079	-0.065	-0.076	-0.080			
	(0.035)	(0.038)	(0.030)	(0.035)			
C							
GPR ^G	-0.092	-0.253	-0.370	-0.342			
-	(0.063)	(0.089)	(0.049)	(0.069)			
GPR ^L	-0.602	-0.463	-0.512	-0.531			
it	(0.095)	(0.138)	(0.126)	(0.120)			
Loss function \mathcal{L}	441.1	434.4	428.8	430.4			
Obs.	1066	1066	1066	1066			
Countries	43	43	43	43			

Notes: Standard errors are reported in parentheses.

Szafranek et al. (2025)

GPR, Macroeconomic effects and sentiment

< □ > < □ > < □ > < ⊇ > < ⊇ >
 July 11, 2025

21/35

Quantile Regressions: Results II

Figure 5: The impact of GPR^{BN} on GDP growth quantiles. Shaded areas represent the 68% confidence interval. The numbers on the x-axis refers to quantiles.

- Results for global GPR:
 - Link between global GPR and future GDP growth depends on the GPR proxy
 - GPR shocks in both broad indices shift downward the entire distribution of future GDP growth

Quantile Regressions: Results III

- This effect is strongest for the lowest quantiles
- For narrow GPR indices, effects of global GPR are insignificant or of unexpected sign
- Results for local GPR:
 - Impact of *GPR^L* is insignificant for lowest quantiles and significantly negative for higher quantiles
 - Therefore, spikes in GPR decrease the probability of economic expansions
- The width of future GDP growth distribution is negatively related to the current-year GDP dynamics
- Loss functions indicate that broad GPR definitions provide a better fit to the data than narrow ones a broad definition results in stronger economic effects

< ロ > < 同 > < 回 > < 回 >

VAR Extension I

- Extending the analysis in two ways:
 - Assessing macroeconomic effects for the full set of 182 countries
 - Explicitly modelling the relevance of media sentiment as a propagation mechanism
- VAR analysis now includes GPR, oil production, economic activity, oil prices and *sentiment*
 - Media sentiment measure is build using the same underlying data and approach as for GPR
 - Both are related: GPR is constructed as a percentage of overall news coverage, which is reflected in the sentiment
 - Accounting for media sentiment allows to analyze whether GPR is transmitted via overall news coverage

< □ > < 同 > < 三 > < 三 >

VAR Extension: Results

Results:

- Negative effect of GPR on economic activity prevails, as before
- Positive tonality sentiment increases lead to positive effects on economic activity (in line with van Binsbergen et al., 2024)
- Sentiment effects are more pronounced than GPR effects
- Similar results for oil price as the endogenous variable
- Strong indication for an interaction between sentiment and GPR
 - Higher GPR has a negative effect on sentiment
 - This points to a sentiment channel for the transmission of GPR shocks
 - Using the CI GPR index instead gives no significant interaction effect with sentiment possibly explained by different underlying data sources

< ロ > < 同 > < 回 > < 回 >

Sentiment Effects I

- \bullet Using a panel regression model to explain GDP growth from t to t+1 with global and domestic GPR as well as global and domestic sentiment
- As controls, we add overall uncertainty, economic activity (Kilian index), real commodity prices as well as dummies indicating the global financial crisis and the Covid-19 period
- Idea: analyze effects of sentiment and GPR as well as their interaction at both the country and the global level
- Previous literature highlighted that both domestic and global sentiments can play an important role (Fraiberger et al., 2021)

< ロ > < 同 > < 回 > < 回 >

Sentiment Effects II

We estimate the following predictive regression model following van Binsbergen et al. (2024):

$$GDP_{t+1} = \rho GDP_t + \alpha_1 Sent. Dom_{it} + \alpha_2 Sent. Glob_t + \alpha_3 GPR. Dom_{it} + \alpha_4 d_{it} GPR. Dom_{it} + \alpha_5 GPR. Glob_t + \alpha_6 d_t GPR. Glob_t + \alpha_7 VIX_t$$
(3)
+ $\alpha_8 COM_t + \alpha_9 IGREA_t + \alpha_{10} d_{2009} + \alpha_{11} d_{2020} + u_i + \epsilon_{it}$

- Where *GDP*_t is the current GDP growth
- Sent.Dom_{it} and Sent.Glob_t are sentiment at the country and global (standardized) level
- GPR.Dom_{it} and GPR.Glob_t are geopolitical risk at the country and global level
- VIX_t, COM_t and economic activity IGREA_t are control variables, while d₂₀₀₉ and d₂₀₂₀ are dummies

イロト イポト イヨト イヨト

Sentiment Effects: Results I

	ALL	HGH	EME	LOW	EUN
	(1)	(2)	(3)	(4)	(5)
GDP	0.134	0.135	0.128	0.135	0.327
	(0.093)	(0.123)	(0.147)	(0.070)	(0.071)
Sent.Dom	0.091	-0.011	0.129	0.053	-0.033
	(0.125)	(0.170)	(0.166)	(0.346)	(0.160)
Sent.Glob	0.522	0.921	0.472	-0.149	0.660
	(0.155)	(0.259)	(0.209)	(0.428)	(0.185)
GPR.Dom	0.104	-0.181	0.266	-0.069	-0.198
	(0.126)	(0.242)	(0.156)	(0.312)	(0.104)
NEG.GPR.Dom	-0.121	-0.192	-0.057	-0.272	-0.269
	(0.076)	(0.100)	(0.093)	(0.347)	(0.110)
GPR.Glob	-0.714	-0.624	-0.759	-0.639	-0.630
	(0.117)	(0.196)	(0.172)	(0.375)	(0.122)
NEG.GPR.Glob	0.063	0.059	0.057	0.076	0.070
	(0.040)	(0.044)	(0.058)	(0.139)	(0.050)

Table 3: Results across country groups

Szafranek et al. (2025)

July 11, 2025

Sentiment Effects: Results II

Figure 6: Impulse response functions from model with sentiment. Shaded areas represent the 68% bootstrapped confidence interval.

Szafranek et al. (2025)

GPR, Macroeconomic effects and sentiment

July 11, 2025

29/35

Sentiment Effects: Results I

Results for our broad measure (newspaper and social media coverage):

- We distinguish between country groups: HGH (high income), low (low income), EU (EUN), and OECD (OEC)
- Effects of controls in line with expectations: Uncertainty and commodity prices lead to lower growth while the Kilian index tends to increase GDP; dummies enter with a positive sign
- Effects of both sentiment and GPR are mainly transmitted via global measures these are much more significant
- As expected, higher sentiment increases GDP, while higher GPR lowers it
- Differences across country groups:
 - Global sentiment has strong effects for all groups except low income countries, while domestic sentiment adds no effect

Sentiment Effects: Results II

- For GPR, effects at global level are clearly negative for all groups, but only weakly significant for low income countries
- At country level, additional negative GPR effect is observed for EU countries, and weakly significant positive effects for emerging markets
- Looking at magnitudes, global sentiment has stronger effects in high-income countries while GPR has slightly stronger effects in emerging economies, as one might expect
- No interaction between global sentiment and global GPR
- At the country level, negative sentiment propagates GPR effects for high-income and EU countries

イロト イボト イヨト イヨト

Conclusion

- Using a novel cross-country dataset on media coverage for 182 countries, we provide a new measure of geopolitical risk that can distinguish between news and social media coverage
- GPR has substantial macroeconomic effects, which are more pronounced when using a broad definition of GPR
- GPR effects at the country level are robust when taking overall media sentiment into account
- While media sentiment is mostly characterized by global dynamics, GPR materialized when using both global and domestic measures

References

References I

- Algaba, A., Ardia, D., Bluteau, K., Borms, S., and Boudt, K. (2020). Econometrics meets sentiment: An overview of methodology and applications. *Journal of Economic Surveys*, 34(3):512–547.
- Bachmann, R. and Sims, E. R. (2012). Confidence and the transmission of government spending shocks. *Journal of Monetary Economics*, 59(3):235–249.
- Baley, I., Veldkamp, L., and Waugh, M. (2020). Can global uncertainty promote international trade? *Journal of International Economics*, 126:103347.
- Bekaert, G., Hoerova, M., and Lo Duca, M. (2013). Risk, uncertainty and monetary policy. Journal of Monetary Economics, 60(7):771–788.
- Benhabib, J., Liu, X., and Wang, P. (2016). Sentiments, financial markets, and macroeconomic fluctuations. *Journal of Financial Economics*, 120(2):420–443.
- Bhattarai, S., Chatterjee, A., and Park, W. Y. (2020). Global spillover effects of US uncertainty. Journal of Monetary Economics, 114:71–89.
- Born, B. and Pfeifer, J. (2014). Policy risk and the business cycle. *Journal of Monetary Economics*, 68:68–85.
- Caggiano, G., Castelnuovo, E., and Groshenny, N. (2014). Uncertainty shocks and unemployment dynamics in U.S. recessions. *Journal of Monetary Economics*, 67:78–92.

イロト 不得 トイヨト イヨト

3

References

References II

- Caggiano, G., Castelnuovo, E., and Pellegrino, G. (2017). Estimating the real effects of uncertainty shocks at the Zero Lower Bound. *European Economic Review*, 100:257–272.
- Caldara, D. and Iacoviello, M. (2022). Measuring geopolitical risk. *American Economic Review*, 112(4):1194–1225.
- Carrière-Swallow, Y. and Céspedes, L. F. (2013). The impact of uncertainty shocks in emerging economies. *Journal of International Economics*, 90(2):316–325.
- Castelnuovo, E. (2023). Uncertainty before and during COVID-19: A survey. *Journal of Economic Surveys*, 37(3):821–864.
- Cheng, C. H. J. and Chiu, C.-W. (2018). How important are global geopolitical risks to emerging countries? *International Economics*, 156:305–325.
- Fraiberger, S. P., Lee, D., Puy, D., and Ranciere, R. (2021). Media sentiment and international asset prices. *Journal of International Economics*, 133:103526.
- Husted, L., Rogers, J., and Sun, B. (2020). Monetary policy uncertainty. *Journal of Monetary Economics*, 115:20–36.
- Jasova, M., Mendicino, C., and Supera, D. (2021). Policy uncertainty, lender of last resort and the real economy. *Journal of Monetary Economics*, 118:381–398.
- Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crudeoil market. *American Economic Review*, 99(3):1053–1069.

イロト イヨト イヨト イヨト

∃ 𝒫𝔅

References III

- Leduc, S. and Liu, Z. (2016). Uncertainty shocks are aggregate demand shocks. Journal of Monetary Economics, 82:20–35.
- Ma, X. and Samaniego, R. (2019). Deconstructing uncertainty. *European Economic Review*, 119:22–41.
- Mignon, V. and Saadaoui, J. (2024). How do political tensions and geopolitical risks impact oil prices? *Energy Economics*, 129:107219.
- Ricco, G., Callegari, G., and Cimadomo, J. (2016). Signals from the government: Policy disagreement and the transmission of fiscal shocks. *Journal of Monetary Economics*, 82:107–118.
- van Binsbergen, J. H., Bryzgalova, S., Mukhopadhyay, M., and Sharma, V. (2024). (Almost) 200 Years of News-Based Economic Sentiment. *NBER Working Papers*, No. 32026.
- Yang, T., Dong, Q., Du, M., and Du, Q. (2023). Geopolitical risks, oil price shocks and inflation: Evidence from a TVP-SV-VAR approach. *Energy Economics*, 127:107099.

3