Econometrics - Doctoral School

T0: Introduction to R

M ichał Rubaszek SGH Warsaw School of Economics

Content of R codes

1. Operations on vectors and matrices
2. Conditioning, loops, defining functions
3. Importing data (read.csv, Quandl, quantmod, Eurostat)
4. Converting and plotting data ($\mathrm{ts}, \mathrm{zoo}, \mathrm{xts}$)
5. Simple vs. compound interest rate

Rates of return / growth rates

Simple rate of return:

$$
Y_{t}=\left(1+R_{t}\right) Y_{t-1} \leftrightarrow R_{t}=\frac{Y_{t}-Y_{t-1}}{Y_{t-1}}
$$

Compound interest rate (m is compounding frequency):
$Y_{t}=\left(1+\frac{R_{m, t}}{m}\right)^{m} Y_{t-1}$

Continuously compound interest rate:
$Y_{t}=\lim _{m \rightarrow \infty}\left(1+\frac{R_{m, t}}{m}\right)^{m} Y_{t-1}=\exp \left(r_{t}\right) Y_{t-1}$

Logarithmic rate of return:

$Y_{t}=\exp \left(r_{t}\right) Y_{t-1} \leftrightarrow r_{t}=\ln \left(Y_{t} / Y_{t-1}\right)$

Notice: $1+R=\exp (r) \leftrightarrow r=\ln (1+R)$

Rates of return / growth rates

Simple returns:

ÿ Easy to calculate for a portfolio of assets:
$R_{p}=\sum_{k=1}^{K} w_{k} R_{k}$
ÿ Easy to communicate to non-statisticians
y Not symmetric nor additive...

Log returns:

\ddot{y} Symmetric and additive
ÿ Easy to communicate to statisticians
\ddot{y} Difficult to calculate for a portfolio of assets: $\quad r_{p} \neq \sum_{k=1}^{K} w_{k} r_{k}$

We will work with log returns

Exercises

0.1

Write an algorithm, which would allow to calculate the roots of the equation:

$$
e^{x}-(x+1)^{2}=0
$$

knowing that they are in the interval $<-3,3>$.
[Hint: make two loops with functions for and while]

0.2

Create a function invVal ($\mathrm{Y}, \mathrm{h}, \mathrm{R}, \mathrm{m}$) that will calculate the value of investment Y after h years, given that the annual interest rate is R and compound frequency m.
Use the function to calculate the value of 1000PLN after 1 year for $m=\{1,2,4, \infty\}$ and $R_{m}=10 \%$.

Exercises

0.3.

Using the eurostat package import to R the annual growth rate of real GDP in Poland (at quarterly frequency). Write a series as a zoo object and make a plot. What was the average growth rate over the last 10 years

0.4 .

Import daily data for the WIG index from the Internet to R. After converting the series to a zoo object, make a panel of figures for
ÿ historic prices
ÿ logarithmic growth rates
y ACF for levels
y $A C F$ for growth rates

