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Topic 1

Introduction

This script includes materials for the course Financial Econometrics II.

This document is accompanied by materials available at http://web.sgh.waw.pl/~mrubas/:

� Scripts in R package

� Data

Additional materials:

1. Alexander C., 2009. Market Risk Analysis, Wiley

2. Bauwens L., Laurent S., Rombouts J., 2006. Multivariate GARCH models: a survey, JAE 21, 79-109

3. Cont R., 2001. Empirical properties of asset returns, Quantitative Finance 1, 223-236

4. Danielsson J., 2011. Financial Risk Forecasting, Wiley

5. Lutkepohl H., Krätzig M. (2004). Applied Time Series Econometrics, Cambridge University Press

6. Luetkepohl H., 2011. Vector Autoregressive Models, Economics WP ECO2011/30, EUI

7. Nelsen R., 2006. An Introduction to Copulas, Springer

8. Rubaszek M., (2012). Modelowanie Polskiej Gospodarki z Pakietem R, Oficyna Wydawnicza SGH

9. Tsay R. (2002). Analysis of Financial Time Series, Wiley
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1. Operations on vectors and matrices

2. Conditioning, loops, defining functions

3. Importing data (read.csv, quantmod, OECD, restatapi)

4. Converting and plotting data (ts, zoo, xts)

5. Simple vs. compound interest rate 

Content of R codes

Simple rate of return:

  ��= 1 + �� ���	 �� =

��
��


��

Compound interest rate (� is compounding frequency):

�� = 1 +
��,�

�

�

���	

Continuously compound interest rate:

�� = lim
�→�

1 +
��,�

�

�

���	 = exp �� ���	

Logarithmic rate of return:

�� = exp (��)���	 �� = ln ��/���	

Notice: 1 + � = exp � � = ln (1 + �)

Rates of return / growth rates

Topic 1. Introduction
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Simple returns:

 Easy to calculate for a portfolio of assets: � = ∑ "#�#
$
#%	

 Easy to communicate to non-statisticians

 Not symmetric nor additive...

Log returns:

 Symmetric  and additive

 Easy to communicate to statisticians 

 Difficult to calculate for a portfolio of assets: � ≠ ∑ "#�#
$
#%	

We will work with log returns

Rates of return / growth rates

Exercises

Exercise 1.1.

Write an algorithm, which would allow to calculate the roots of the 

equation:

'( − ( + * + = ,

knowing that they are in the interval < −3,3 >. 

[Hint: make two loops with functions for and while]

Exercise 1.2.

Create a function invVal(Y,h,R,m)that will calculate the value of 

investment � after ℎ years, given that the annual interest rate is �

and compound frequency �. 

Use the function to calculate the value of 1000PLN after 1 year for 

� = {1,2,4, ∞} and �� = 10%.

Topic 1. Introduction

3



Exercises

Exercise 1.3.

Using the reststapi or OECD package import to R the annual growth 

rate of real GDP in Poland (at quarterly frequency). Write a series as a zoo
object and make a plot. What was the average growth rate over the last 10 

years

Exercise 1.4. 

Import daily data for the WIG index from the Internet to R. After converting 

the series to a zoo object, make a panel of figures for 

 historic prices

 logarithmic growth rates

 ACF for levels

 ACF for growth rates

Topic 1. Introduction

4



Topic 2

ARMA models

� Calculating impulse-response functions

� Testing for unit root

� Estimating ARMA model

� Information criteria

� Testing ARMA specification

� Forecasting with ARMA model

5



IRF – impulse response function

Impulse response function – IRF:

describes how variable �� reacts over time to exogenous impulse ��. 

Moving Average model:

�� = � + ����+ �	��
	 + ����
� +…

Formula for IRF:

��� = �� = ���
���
�

= �����
���

How to calculate IRF for a model?

Transform model to a moving average (MA) form

IRF – example

Moving Average representation: �� = � + ����+ �	��
	 + ����
� +…

Formula for IRF: ��� = �� = ���
�����

= �����
���

Example: A model for GDP growth rate at home and abroad

��∗��
= 0.25

0.50 + 0.50 0.00
0.25 0.25

��∗
��

+ 0.25 0.00
0.10 0.20

��
	∗
��
	

+ 0.125 0.00
0.005 0.10

��
�∗
��
�

+ ⋯

what is the interpretation of � and ��?

12
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Plot of IRF

13
Source: Rubaszek, Szafranek & Uddin (2020)

Calculating IRF: AR(1) model

AR model:         �� = !��
	 + ��        

MA representation:    �� = �� + !��
	 + !���
� + ⋯
Hence: �� = !� and � = 0

Lag operator:    #�� = ��
	 and      #��� = ��
�

AR model writen with lag operator: 1 − !# �� = ��

�� = 1 − !# 
	��  =   ∑ !���
�&�'� [+ lim,→&!,. ��
, ]

Exercise: Calculate MA representation for �� = 0.8��
	 + ��

Topic 2. ARMA models
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Calculating IRF: AR(1) model

AR model with a constant: 

�� = 1 + !��
	 + ��

Substitute:

2� = �� − � , where  � = 3
	
4

and think in terms of: 

2� = !2�
	 + ��

Exercise: Calculate MA representation for �� = 2 + 0.5��
	 + ��

15

Calculating IRF: AR(2) model

AR(2) model:

�� = !	��
	 + !���
� + ��

1 − 5	# 1 − 5�# �� = ��

Hence AR(2) as a multiplication of two AR(1) processes

�� = 1 − 5	# 
	2�  �� = 5	��
	 + 2�

2� = 1 − 5�# 
	��  2� = 5�2�
	 + ��

Exercise: Find roots of characteristic equation for �� = 1.3��
	 − 0.4��
� + ��

16
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Calculating IRF: AR(P) model

AR(P) model: �� = ∑ !8��
898'	 + ��

! # �� = 1 − !	# − ⋯ − !9#9 �� = Π8'	9 1 − 58# ��

! # �� = ��

�� = Π8'	9 1 − 58# 
	��

AR(P) as a multiplication of ; AR(1) processes

Exercises

Exercise 2.1.

Write the IRF <=�> with respect to ?= for the following processes:

A. �� = 0.8��
	 + ��

B. �� = 2 + 0.5��
	 + ��

C. �� = 1.3��
	 − 0.4��
� + ��

D. �� = 0.8��
	 + �� − 0.5��
	

E. �� = ��
	 + ��

Topic 2. ARMA models
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Unit root

For AR model: �� = !��
	 + ��
�� = ∑ !���
�&�'� [+ lim,→&!,. ��
, ]

If ! = 1 then

 lim,→&!,. ��
, ≠ 0
 lim,→& !, = 1
This means that the impact of a shock is not decaying and that the process is 

not returning to an equilibrium value. It is non-stationary

For ! < 1 we might calculate so-called half-life:

B# = CD �.E
CD 4  !FG = 0.5

Unit root: stationarity

Definition of weak stationarity:

A process is said to be covariance-stationary, or weakly stationary, if its first 
and second (unconditional) moments are time invariant, and for each period H
are equal to:

. I�                = � 
JKL I�           = M� = N�

OPQ I�, I�
,  = M,

Important: 

 unconditional and conditional moments might differ
. I� ≠ .(I�|I�
	 = ��
	)

 Stationarity can be interpreted as „mean reversion” , 
i.e. that a series should fluctuate around � and its volatility around  N

Topic 2. ARMA models
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Unit root: stationarity

Definition of strong stationarity:

The joint distribution of I�V, I�W,..., I�X is the same as the joint distribution of 

I�V��, I�W��,..., I�X��:

Y I�V, I�W,..., I�X = Y(I�V��, I�W��,..., I�X��)

 Is not limited to the first two moments

 Implies weak stationarity

 Not particularly useful in practical applications as it cannot be tested...

Unit root: tests

Augumented Dickey-Fuller test:

Δ�� = [1� + 1	] + [��
	 + \ M8Δ��
8
9

8'	
+ ��

B0: [ = 0, i.e. non-stationarity 

B1: [ < 0, i.e. stationarity

^�_`a = [b
cd

∼ ^� 

Note: Adding lags of Δ� is a parametric correction for possible autocorrelation 

of the error term ��

Topic 2. ARMA models
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Unit root: tests

Phillips-Perron test:

�� = [1� + 1	] + !��
	 + ��

B0: ! = 1, i.e. non-stationarity 

B1: ! < 1, i.e. stationarity

;;_`a = Mf�
Mf&

�.E (!f − 1)
c4

− g
2 Mf& − Mf�

c4
Mf&Mf�

∼ ;; 

where Mf� and Mf& are variance and long-term variance for residuals ��̂.

Note: If Mf� = Mf& then ;;_`a = ^�_`a. In other case we have non-parametric 

correction for possible autocorrelation of the error term ��

Unit root: tests

KPSS test:

�� = i� + 2�
i� = i�
	 + Q� , Q� ∼ jk(0, Nl�)
2� = 1� + 1	 + ��

B0: Nl� = 0, i.e. stationarity 

B1: Nl� > 0, i.e. non-stationarity

n;cc_`a = 1
g�

∑ c��o�'	
Mf&

∼ n;cc 

where Mf& is the long-run variance of residuals ��̂ from regression of �� on a 

constant and a trend (depending on a specification) and c� = ∑ �,̂�,'	

Topic 2. ARMA models
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Unit root: tests

Important:

For persistent processes and small sample the power of ADF and PP tests is 

low, whereas the KPSS test is subject to size distortion

[illustration in the Monte Carlo example in the R file]

Implication:

 Be careful while differentiating the data

 Economic knowledge might be better advice that the tests

Exercises

Exercise 2.2.

Import data for the US economy over the years 1860-1970 with 

commands: 

> require(urca)

> data(nporg)

For each series decide whether to use logs or not. Test for stationarity. 

What are the economic reasons of non-stationarity?

Exercise 2.3.

Import data for HICP YoY inflation for a selected EU country with the 

eurostat package. Decide on the level of integration of the 

downloaded variable using ADF, PP and KPSS tests. 

Topic 2. ARMA models
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ARMA model introduction

Specification of ARMA(P,Q) model:

�� = [1� + 1	H] + ∑ !8��
8 + ∑ Mp��
p
q
p'�98'	  

! # �� = [1� + 1	H] + M # ��

Equilibrium value for stationary ARMA model:

. �� = � = 3r
	
∑ 4stsuV

 

Specification of ARIMA(P,D,Q) model:

! # 1 − # v�� = [1� + 1	H] + M # ��

ARMA model

Why do we need ARMA models?

 For analysing the properties of univariate time series

 Seasonal adjustment

 Forecasting (see: Nelson Ch.R, 1972. The Prediction Performance of the 

FRB-MIT-PENN Model of the U.S. Economy, American Economic Review 

62(5), 902-17 - link)

Topic 2. ARMA models
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AR(1) model - estimation

Let us consider AR(1):

�� = 1 + !��
	 + ��, �� ∼ k(0, N��)

Conditional likelihood of a single observation:

w �� 1, !, ��
	 = 	
�xyzW

exp − ��
3
4���V W
�yzW

Likelihood of all observations:

w �	, ��, … , �o|1, ! = w �	|1, ! × w y� 1, !, �	 × ⋯ × w(yo|1, !, �o
	)

where w �	|1, ! = 	
W��zW
V��W

exp − ��
 �
V��

W

W�zW
V��W

 If we neglect w �	|1, ! : conditional ML estimator (=LS estimator)

 If we include w �	|1, ! : full ML estimator 

(the derivation of ML function for ARMA(P,Q) with the Kalman filter - link)

ARMA model - specification

Information criteria:

Akaike: ��O = −2 ℓ
o + 2 �

o
Schwarz: ��O = −2 ℓ

o + 2 �
o ln (g) 

Hannan-Quinn: B��O = −2 ℓ
o + 2 �

o ln (ln g) 

where n is the number of estimated parameters and ℓ = ln ℒ is the log-likelihood.

We choose the model with the lowest IC.

Notice:

 n c�O ≤ n B��O ≤ n(��O)
 IC depends on the fit (log-likelihood) and penalty on the number of params.

Topic 2. ARMA models
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ARMA model - specification

Likelihood ratio test:

H0: the fit of big ARMA (� params more) is the same as fit of small ARMA

# = −2 ℓ� − ℓ� ∼ ��(�)
where � is te number of additional parms. and ℓ is the log-likelihood for restricted 

(small) a nd unrestricted (big) models.

Autocorelation (portmanteau) Ljung-Box test:

B0: !�,� = 0 for � = 1,2, … , �

#� = g� ∑ 	
o
� !f�,���

�'	 ∼ �� � − ; + �

ARMA model - forecasting

ARMA(P,Q): �� = [1� + 1	H] + ∑ !8��
8 + ∑ Mp��
p
q
p'�98'	

MA representation:   �� = ����+ �	��
	 + ����
� +…

Point forecast (calculated recursively):

�o��
� = 1� + 1	H + ∑ !8�o��
8

� + ∑ Mp�o��
p 
�q

p'�98'	
where �o��

� = 0 for ℎ > 0

Forecast error:

�o�F − �o�F
� = ���o�F + �	�o�F
	 + ⋯ + �F
	�o�	 = ∑ ���o�F
�F
	�'�  

Forecast variance (only due to stochastic term):

JKL �o�F = ��� + �	� + ⋯ + �F
	� = ∑ ���F
	�'�  

Topic 2. ARMA models
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Exercises

Exercise 2.4.

For the ARMA(2,0) model:

y� = 1,1��
	 − 0,3��
� + �� , �� ∼  k(0,1)
 check if the model is stationary

 Knowing �o = 1 and �o
	 = 2 calculate the forecast for periods g + 1 and 
g + 2.

 Write the model in ��(∞) form. Calculate the values for the first three coefs. 

 Calculate point and 95% interval forecast for g + 2

Exercise 2.5.

For the series of your choice:

 Choose the specification of the ARMA model with the Schwarz criterion

 Convert the model to �� ∞ form

 Verify the model for autocorrelation

 Calculate point and density forecasts

Topic 2. ARMA models
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Topic 3

VAR models

� Estimating VAR model

� Structural of VAR

� Impulse-response function (IRF)

� Forecast error variance decomposition

� Historical decomposition

� Forecasting with VAR model

19



Vector autoregression model - VAR

 VAR is an extension of univariate autoregression model to multivariate 

time series data, in which all variables are treated as endogenous 

(Sims critique)

 VAR is a useful model for analysing the dynamic behaviour of economic 

and financial time series. It is also a standard tool used for forecasting  

 Structural VAR as an important „story-telling” model

VAR model

37

Source: Luetkepohl (2011)

Topic 3. VAR models
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Specification of a VAR model

VAR(p) model:

�� = � + ������ + �	���	 + ⋯ + ������ + �� , �� ∼ �(0, Σ)

where:

��  = [���  �	�   …  ���]′ vector of � endogenous variables

��  = [���  �	�   …  ���]′ vector of error terms

�  = [ �   	   …   �]′ vector of constants

�� = !"#,� �×�
matrix of parameters

Σ  = %"# �×�
covariance matrix

IRF: VAR(1) case

VAR model:

�� = ����� + ��

�� = �� + ����� + �	���	 + �&���& + ⋯

VMA representation:

�� = Ψ(�� + Ψ����� + Ψ	���	 + Ψ&���& + ⋯

Ψ) = *"#,) �×�
=

+,-

+.-/0
=

+,-10

+.-
:       � × � matrix of IRFs

Ψ) = �)

Topic 3. VAR models
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Stationarity: VAR(1) case

�� = Ψ(�� + Ψ����� + Ψ	���	 + Ψ&���& + ⋯

VAR is stationary if:  lim
)→6

Ψ) = lim
)→6

�) = 0

Spectral decomposition:     � = 7Λ7��

Λ = 9:!;(<�, <	, … , <�) eigenvalues

7 = [=� =	  … =�] eigenvectors

�� = 7Λ7������ + ��         �>�= Λ�>��� + ��̃

where �>� = 7���� and ��̃ = 7����

Stationarity: VAR(1) case

�>� = Λ�>��� + ��̃

�>��

�>	�

…
�>��

=

<� 0 … 0
0 <	 … 0
… … … …
0 0 … <�

�>����

�>	���

…
�>����

+

��̃�

�	̃�

…
�&̃�

We have � univariate AR(1) processes, hence �>� is stationary of all 
characteristic roots are lower than unity <" < 1.

�� = 7�>�:   our observables as a linear combination of � AR(1) processes

lim
)→6

Ψ) = lim
)→6

�) = lim
)→6

7Λ)7�� = 0 only if <" < 1 for :=1,2, … , �

Topic 3. VAR models
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Stationarity: VAR(P) case

VAR(P) model:

�� = ������ + �	���	 + ⋯ + �R���R + ��

Canonical form of VAR(p):

��
∗ = �∗����

∗ + ��
∗

�∗ =

�� �	 … ��

T 0 … …
0 T … 0
0 0 … 0

, ��
∗ =

��           

����     

…
����U�

, ��
∗ =

��

0
…
0

 Model is stationary if the roots of characteristic polynomial for �∗ are <"
∗ < 1

 VMA form can be calculated for canonical VAR 

��
∗ = Ψ(

∗��
∗ + Ψ�

∗����
∗ + Ψ	

∗���	
∗ + Ψ&

∗���&
∗ + ⋯

 Ψ) is the � × � upper part of Ψ)
∗

Estimating the VAR model

�� = � + ������ + �	���	 + ⋯ + ������ + �� , �� ∼ �(0, Σ)

��
V = �V + ����

V ��
V + ���	

V �	
V + ⋯ + ����

V ��
V + ��

V

��
V = W�

VX + ��
V

W� =

1
����

���	

…
����

, X =

�′
��

V

�	
V

…
��

V

Y = ZX + ℰ 

Y =

��
V

�	
V

�&
V

…
�\

V

,  Z =

W�
V

W	
V

W&
V

…
W\

V

,  ℰ =

��
V

�	
V

�&
V

…
�\

V

Topic 3. VAR models
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Estimating the VAR model

VAR(p) in matrix notation:

Y = ZX + ℰ

LS estimates

X] = ZVZ ��ZY

Residuals

ℰ̂ = Y − ZX]

Estimate of the covariance matrix

Σ] = ` − a ��(ℰ̂Vℰ̂)

Where a = 1 + �b is the number of parameters in each equations

More details: see p. 16-18 of Dieppe et al. (2016) - link

VAR model - specification

Information criteria:

Akaike: �T� = −2
ℓ

\
+ 2

d

\

Schwarz: XT� = −2
ℓ

\
+ 2

d

\
ln (`) 

Hannan-Quinn: efT� = −2
ℓ

\
+ 2

d

\
ln (ln `) 

where g = �(1 + �b) is the number of parameters and ℓ = ln ℒ is the log-likelihood.

Ljung-Box (adjusted portmonteau) autocorrelation test:

iXjkl = `	 ∑
�

\�#
no(Γ]#

VΓ](
��Γ]#Γ](

��)
q
#r� ∼ s	(�	 t − b )

where Γ]# =
�

\
∑�����#

V .

Topic 3. VAR models
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SVAR: structural VAR

VAR(P) model, in which shocks have no economic interpretation:

�� = � + ������ + �	���	 + ⋯ + ������ + �� , �� ∼ �(0, Σ)

SVAR(p) model, in which shocks have interpretation

�� = � + ������ + �	���	 + ⋯ + ������ + uv� , v� ∼ �(0, T)

[equivalent notation, by multiplying both sides by u��]

u(�� = w + u����� + u	���	 + ⋯ + u����� + v� , v� ∼ �(0, T)

SVMA representation

�� = x + *(v� + *�v���+ *	v��	 + *&v��& …

where *( = u

SVAR: identification of shocks

VAR(p) model:

�� = � + ������ + �	���	 + ⋯ + ������ + �� , �� ∼ �(0, Σ)

SVAR(p) model:

�� = � + ������ + �	���	 + ⋯ + ������ + uv� , v� ∼ �(0, T)

SVMA representation

�� = x + *(v� + *�v���+ *	v��	 + *&v��& …

How to find matrix y?

We need to impose 
� ���

	
restrictions, taking into account that uuV = Σ

Short-term restrictions / Cholesky identification:

We assume that u is lower triangular matrix

Long-run restrictions / Blanchard-Quah identification:

We impose restrictions on the matrix of long-term response * = ∑ *"
6
"r( = T − �� − ⋯ − ��

��
u

Topic 3. VAR models
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FEVD: forecast error variance decomposition

SVMA representation

�� = x + *(v� + *�v���+ *	v��	 + *&v��& …

Error of forecast for horizon z due to future shocks

��U{ − ��U{|� = *(v�U{ + *�v�U{��+⋯ + *{��v�U� 

Variance of forecast error for horizon z due to future shocks

7!o� ��U{ = *(*(
V + *�*�

V +…+ *{��*{��
V

More details: see p. 101-103 of Dieppe et al. (2016) - link

FEVD: foreast error variance decomposition

Variance of forecast error for horizon z due to future shocks

7!o\ �\U{ = *(*(
V + *�*�

V +…+ *{��*{��
V

*) =

*},�� ⋯ *},��

⋮ ⋱ ⋮
*},�� ⋯ *},��

, *}*}
V =

*},��
	 + *},�	

	 + ⋯ +*},��
	 ⋯

⋮ ⋱ ⋮
⋯ *},��

	 + *},�	
	 + ⋯ +*},��

	

Substituting yields:

%"
	 ℎ = 7!o\ �",\U{ = ∑ *},"�

	 + *},"	
	 + ⋯ +*},"�

	 = ∑ *(,"#
	 + *�,"#

	 + ⋯ +*{��,"#
	�

#r�
{��
}r(

Contribution of shocks ��,�U� to total forecast error variance:

%"#
	 ℎ = *(,"#

	 + *�,"#
	 + ⋯ +*{��,"#

	

so that:

%"
	 ℎ = ∑ %"#

	 ℎ�
#r�

Topic 3. VAR models
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Historical decomposition

SVMA representation

�� = x + *(v� + *�v���+ *	v��	 + *&v��& …

For a single variable

�"� = x" + ∑ (*(,"#v#,� + *�,"#v#,���+*	,"#v#,��	+*&,"#v#,��&… )�
#r�

Contribution of shocks ��,��� the value of ���:

�"�,# = *(,"#v#,� + *�,"#v#,���+*	,"#v#,��	+*&,"#v#,��&… 

More details: see p. 101-103 of Dieppe et al. (2016) - link

Forecesting with VAR models

VAR(p) model:

�� = � + ������ + �	���	 + ⋯ + ������ + �� , �� ∼ �(0, Σ)

Point forecast for horizon h:

��U{|� = � + ����U{��|� + �	��U{�	|� + ⋯ + ����U{��|�

VMA representation:

�� = Ψ(�� + Ψ����� + Ψ	���	 + Ψ&���& + ⋯

Error of forecast for horizon z due to future shocks

��U{ − ��U{|� = Ψ(��U{ + Ψ���U{��+⋯ + Ψ{����U� 

Variance of forecast error for horizon z due to future shocks

7!o� ��U{ = Ψ(ΣΨ(
V + Ψ�ΣΨ�

V+…+ Ψ{��ΣΨ{��
V
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Exercises

Exercise 3.1.

For the model (� and  �∗ denote output at home and abroad):

��
∗

��
=

0.25
0.50

+
0.75 0.00
0.25 0.50

����
∗

����
+

1.00 0.00
0.50 1.00

v�
∗

v�
, v� ∼ N(0, T)

 Check if the model is stationary

 Calculate the equiibrium value of �� and ��
∗

 Knowing �\
∗ = 1 and �\ = 2 calculate the forecast for periods ` + 1 and ` + 2.

 Write the model in V��(∞) form. Calculate the values for the first two lags. 

 Calculate FEVD for �\U� and �\U	

 Calculate point and 95% interval forecast for �\U�

Exercise 3.2.

For a model VAR(2)

��
∗

��
=

0.25
0.50

+
0.50 0.00
0.25 0.25

����
∗

����
+

0.25 0.00
0.00 0.25

����
∗

����
+

1.00 0.00
0.50 1.00

v�
∗

v�
, v� ∼ N(0, T)

 build a companion matrix 

 calculate [in R] if it is stationary

 compute [in R] VMA representation for the first four lags

Exercises

Exercise 3.3.

Select a variable for a domestic (��) and foreign (��
∗) economy

(inflation, GDP growth rate, unemployment rate or gov. bond 10Y yield) and:

 Estimate VAR model for Y� = [��
∗ ��]′ (select lags, check for autocorrelation) 

 Identify monetary policy shock (Cholesky decomposition)

 Plot IRF 

 Plot FEVD

 Calculate FEVD from IRF?

 Calculate historical decomposition

 Make a forecast for the next two years

Exercise 3.4.

Select an EU country and download data for changes in output Δ�� and the unemployment rate ��:

 Estimate VAR model for Y� = [Δ�� ��]′, make BQ long-term structuralization

 Plot IRF, FEVD, historical decomposition

 Calculate output gap and compare it to data from AMECO database (link)
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Topic 4

Out-of-sample forecast evaluation

� Ex-ante and ex-post forecast

� Point and density forecasts

� Forecasting competition schemes

� Bias-variance trade-off

� Efficiency of forecasts

� Sequential forecasts

� Ex-post forecasts accuracy measures (ME, MAE, RMSE)

� Diebold-Mariano test

� Machine Learning methods (NN, RF)
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About forecasting

The ultimate goal of a positive science is to develop a theory or hypothesis 

that yields valid and meaningful predictions about phenomena not yet 

observed. Theory is judged by its predictive power.

A hypothesis can't be tested by its assumptions. What is important is 

specifying the conditions under which the hypothesis works. What matters 

is its predictive power, not it's conformity to reality.

Milton Friedman, 1953. The Methodology of Positive Economics. 

in Essays in Positive Economics: University of Chicago Press.

About forecasting

 Predicting future economic outcomes is helpful in making appropriate plans, 
making investment decisions, conducting economic policies.

 We make inference about future outcome using available data 
(for time series: current and past data) and statistical models.
We call this process econometric forecasting

 Point forecast from model �, horizon ℎ and information set Ω!:

"!,#
$ = "!&#|! = (! "!&#|� = (("!&#|�, Ω!)

 Density forecast provides information on all quantiles of the distribution. We 
focus on the entire distribution (pdf):

,-,#
$ . = ,-&#|- .
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Example of forecast for inflation in Poland

Source: Narodowy Bank Polski, Inflation Report

About forecasting

Types of time series forecasts

 Qualitative     / model-based (e.g. from VAR/DSGE model)

 Quantitative  / expert based  (e.g. survey forecast, SPF)

General characteristics of time series forecasts:

 Forecasting is based on the assumption that the past predicts the future 
Think carefully if the past is related to what you expect about the future

 Forecasts are always wrong
However, some models/methods might work better or worse than the other

 Forecasts are usually more accurate for shorter time periods
But, economic theories are more informative for longer horizon
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ex-ante vs ex-post forecast

 Ex-ante forecast is a true inference about the future
It is for periods in which we don't know the realization 

 Ex-post forecast is to check model reliability

It is for periods in which we know the realization 

Ex-ante forecast: 
error in known ARMA/VAR model

 Assume we know DGP, i.e. the parameters and the specification of ARMA/VAR.
We therefore know the parameters of infinite moving average representation

"- = / + 123- + 143-54+ 163-56 + 173-57 …                  3- ∼ 9(0, ;)

 Forecast from known DGP is called optimum forecast. We cannot obtain more 
accurate forecast from another model.  

 Forecast error of optimal forecast is solely due to futures shocks (random error):

"!&# − "!&#|! = 123!&# + 143!&#54+⋯ + 1#543!&4 

 The resulting variance of forecast is:

( "!&# − "!&#|!
6 = 1212> + 1414> +⋯ + 1#541#54>
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Ex-ante forecast
error in estimated ARMA/VAR model

 Assume that we don't know the true DGP but use a model � instead

 The variance of our forecast is:

Component A: error of "optimum forecast" (see previous slide)

Component B: estimation / misspecification error 

we want to minimize this value

Component C: equals to 0 if we cannot forecast future shock

Ex-ante forecast
estimation / misspecification error

Let us focus on the estimation / misspecification error and model complexity

({ "!&#|! − "!&#|!@ 6} 

I. Large / complex models

 many parameters   = large estimation error (high variance)

 many explanatory variables = good specification (low bias)

II. Small / simple models

 few parameters   = small estimation error (low variance)

 few explanatory variables = potential misspecification (high bias)

Which effect dominates? We don't know and need to check it
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Ex-ante forecast
Illustration of the variance / bias trade-off 

Ex-ante forecast
Illustration of the variance / bias trade-off
 Let as assume that the true DGP is AR(1):

"- = / + J "- − / + K-

 We have a sample of 180 monthly observations (15 years) for "- and 
would like to decide on one of the three competing models:

RW, Random walk: /OP = 0 and JOP = 1
HL, 5-year half life model: /RS  = "T and JRS = 0.54/U2
AR, estimated AR model: /VO and JVO are estimated  

 Which model performs best? It depends on the value of J
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Ex-ante forecast
Illustration of the variance / bias trade-off

Source: Ca' Zorzi M., Mućk J., Rubaszek M., 2016. RER forecasting and PPP: This time the Random Walk loses, Open Economies Review

About ex-post forecast

 We usually work with models that performed well in the past 
 In ex-post forecast we ask a question :

how accurate forecasts the model would deliver if it was used in the past
 We evaluate ex-post forecasts to be sure about model reliability
 An important issue is the use of "real time data, RTD"
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About ex-post forecast

 We compare forecast "-,#[ from model �\ to realization "-&# to assess:
 the absolute quality of forecasts from model �\MFE, effciency/unbiasedness tests, sequential forecasts, PIT
 the relative quality of forecasts from models �\ and �̀

RMSFE/MSFE/MAFE, log predictive scores

 Various forecasting schemes
 rolling scheme
 recursive schemes
 fixed schemes

 A very important choice relates to the split of the sample into
estimation and evaluation subsamples

Forecasting schemes - illustration

Source: Barbara Rossi, 2014. Density forecasts in economics and policymaking, CREI WP 37
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Point forecasts accuracy measures

69

Source: Ca’ Zorzi M. & Kolasa M. & Rubaszek M., 2017. Exchange rate forecasting with DSGE models, Journal of International Economics 

Point forecasts accuracy measures

Mean forecasts error for horizon c: �d(#       = 4
!e

∑ ("-&# − "-,#
$ )!5#-g!h&4

Root mean squared forecast error: i�jd(#  = 4
!e

∑ "-&# − "-,#
$ 6!5#-g!h&4

where T# = k − k4 − ℎ + 1

Diebold-Mariano test for equal forecast accuracy:

Forecast errors from two competing models        l4-,# = "-&# − "4-,#
$

and l6-,# = "-&# − "6-,#
$

The quadratic loss differential                                 m-,# = l4-,#6 − l6-,#6

The null of equal forecast accuracy (RMSFE)        n2: ((m-,#) = 0

Test statistic:       o� = pTq,e
r/!e

∼ 9 0,1
where j = ∑ st(u)#54\g5 #54 is the ``long-term’’ variance
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Point fct. accuracy measures: illustration

Source: Kolasa, Rubaszek, Skrzypczynski (2012, JMBC)

Point fct. accuracy measures: efficiency

Efficiency / unbiasedness test

A relatively good forecast accuracy does not imply that they are satisfactory in the absolute 

sense! Absolute performance include ME and efficiency/unbiasedness test. For regression:

"-&# = v2 + v4"-,#
$ + K-,#

we test whether v2 = 0 and v4 = 1. 

[ the alternative specification is l-,# = v2 + v4"-,#
$ + K-,# in which we test v2 = 0 and v4 = 0 ]

Source: Kolasa, Rubaszek, Skrzypczynski (2012, JMBC)
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Point forecasts accuracy measures

Efficiency / unbiasedness test – graphical illustration

Source: M. Kolasa & M. Rubaszek & P. Skrzypczyński, 2012. Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test, 

Journal of Money, Credit and Banking 

Density forecasts accuracy: PIT

PIT – probability Integrat Transform

w;k-,# = x ,-,#
$ . m.

yqze

5{
where ,-,#

$ () is the forecast for density distribution.

For a well calibrated model the series w;k-,# should be drawn from ;;o | 0,1

Source: Kolasa, Rubaszek, Skrzypczynski (2012, JMBC)
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Density forecasts accuracy: predictive scores

LPS – log predictive score

}wj-,# = log(,-,#
$ "-&# )

where ,-,#
$ () is the forecast for density distribution.

We can compare density forecasts from two models with the Amisano and Giacomini 

(2007) test of equal forecast accuracy:

The loss differential                                 }-,# = }wj4-,# − }wj6-,#
The null of equal forecast accuracy n2: ((}-,#) = 0

Test statistic:       ~� = STq,e
r/!e

→ 9 0,1
where j is the HAC (Newey and West) estimator of the ``long-term’’ variance for }-,#

* Amisano, G., Giacomini, R., 2007. Comparing density forecasts via weighted likelihood ratio tests. Journal of Business & Economic Statistics 25, 177-190.

LPS: illustration

Source: Kolasa and Rubaszek (2018, IJF)
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Forecasting competition participants

In the forecasting competition we will include:

Models discussed during lectures:

 RW

 ARMA

 VAR

Two machine learning tools:

 Autoregressive feedforward neural network

nnetar()function in forecast package

 Random forest

randomForest() function in randomForest package

ML techniques in time series forecasting

 Most ML methods, have no awareness of time: they take observations to 

be independent and identically distributed. As time series data are 

usually characterized by serial dependence, ML methods might 

encounter difficulties to predict a trend or cycle 

 ML methods encounter difficulties to predict values that fall outside the 

range of values of the target in the training set. Hence, preparation of 

data matters (transformations – stationarity is essential, etc.)

 Training ML models usually requires stable/deterministic relationships 

and a large number of data. Macroeconomic/financial time series are 

usually short and describe unstable relations

 For the above reasons the success of ML techniques in Macroeconomic 

Time series forecasting is limited
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Autoregressive feedforward neural network

99�i(w, �) is AR NN with w lagged inputs and � neurons in the hidden layer, 

so that 99�i(w, 0) is equivalent to an �i��(,, 0)

Source: https://otexts.com/fpp3/nnetar.html

Autoregressive feedforward neural network

Inputs into each hidden neuron are combined 

linearly: 

�̀ - = �̀ + � �\`"-5�
�

\g4
Next, they are transformed with the sigmoid

function:

.̀ - = 1
1 + l5��q  

So that perdiction for output variable is:

"-|-54 = � + � ��.̀ -
�

�g4

Source: https://otexts.com/fpp3/nnetar.html

 Parameters �, �, � ��m � are “learned” (or estimated) from the data. 

 Learning proces starts with random values, which are then updated using the data. 

The number of iterations/epochs is a hyperparameter.

 There is an element of randomness in the predictions produced by a neural network 

it is usually trained several times using different random starting points and averaged.
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Autoregressive random forest

Autoregressive random forest is an ensambling

method based on averaging � autoregressive 

decision trees

To grow an autoregressive tree we need to set:

 Number of lags 

 Maximum depth  (number of nodes)

 Number of variables randomly sampled as 

candidates at each split

 Bagging method

(split based on a random „bag” of observations)

Autoregressive random forest

Growing the tree:

 The aim is to divide the entire sample into � terminal leaves to minimize: 

ijj = � � "- − "T̀ 6
!

-g4

�

`g4

 Computationally infeasible to consider every possible partition, hence we often resort to 

recursive binary splitting (into 2 new branches top-down). In this method we choose the best split 

at a given node by selecting the „split variable” and threshold to minimize ijj after the division:

ijj∗ = � "- − "T4 6 +
-∈rh

� "- − "T6 6
-∈r�

 The alternative is to look many steps ahead (a bad split early on might be followed by an excellent

split later on). In this approach we grow a large tree and prune it back

 Post estimation: we can look at importance of regressors
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Exercises

Exercise 4.1. 

Select an EU country / a variable of interest (inflation, unemployment, output 

growth) and:

 Calculate recursive point forecasts from RW, ARMA, VAR models over the last 3 

years 

 Calculate MFE and RMSFE for the 3 methods

 Compare the accuracy of forecasts from 3 models to RW with DM test

 Conduct efficiency test and draw a scatter-plot for forecasts from the VAR 

 Make a plot for sequential forecasts from VAR and BVAR models

 Discuss the results

Topic 4. Forecasting

44



Block 1 presentation

Select an EU country and a variable (e.g. inflation, GDP growth rate, unemployment rate or gov.

bond 10Y yield).

a. <1.0p> Describe the variable. To show: time series plot, ACF, UR test

b. <2.0p> Estimate the ARMA model. To show: information criteria, IRF.

c. <3.0p> Estimate the VAR model for a vector (y∗t yt)
′, where y∗t is the value of the variable

for the euro area, and perform Cholesky structuralization. To show: IRF, FEVD, historical

decomposition

d. <2.0p> Compare the accuracy of forecasts from RW, ARMA and VAR models. To show: MFE,

RMSFE, DM test, sequential forecasts graph

e. <2.0p> Plot forecast from ARMA, VAR and for the next two years and from European Comission

(to be found on the webpage). To show: A table with forecasts, a graph with three forecasts

Additionally, I attribute up to 2p for the quality of the presentation (1p. for the .pdf and 1p. for the

speech / interpretation of the results). Presentation should take around 7 minutes.
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Block 2

Forecasting investment risk 

with

GARCH, MGARCH and copula

TOPICS

5. Risk of a univariate portfolio: GARCH model

6. Risk of a multivariate portfolio: MGARCH model

7. Risk of a multivariate portfolio: Copula

8. Backtesting



Topic 5

Univariate portfolio. GARCH models

� Downloading data from stooq.pl to R

� Descriptive stats: moments, ACF, density plot, QQ plot

� Value at Risk (VaR) and Expected Shortfall (ES)

� Stylized facts for asset returns

� Normal and t-Student distribution

� Historical simulation

� Exponentially Weighted Moving Average (EWMA) model

� GARCH models

� GARCH extensions (GJR-GARCH, EGARCH, GARCH-in-mean)

� Monte Carlo simulations

� Calculating VaR/ES from GARCH models
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Rates of return: reminder

Simple returns:

 Easy to calculate for a portfolio of assets: �� = ∑ �������	
 Easy to communicate to non-statisticians

 Not symmetric nor additive...

Log returns:

 Symmetric  and additive

 Easy to communicate to statisticians 

 Difficult to calculate for a portfolio of assets: 
� ≠ ∑ ��
����	

Even though the latter, we will work with log returns

Financial series characteristics

1. No autocorrelation of returns (which is not equivalent to independence):

�
 
�, 
��� = 0
2. Fat tails:

��
���� 
� > 3
3. Volatility clustering:

�
 
��, 
���� > 0
4. Leverage effect (sometimes): 

�
 
��, 
��� < 0
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t-Student distribution ��:

 for � = ∞ equivalent to �(0,1)
 for � ≤ 2 no variance 

(which is equal to 
�

���) 
 Kurtosis: & = 3 + (

��)
 For stocks usually � ∼ 5
 One can check with 

QQ plot / density plot

Fat tails: t-Student distribution

v 1 2 3 5 10 50 ∞
t* -12.71 -4.30 -3.18 -2.57 -2.23 -2.01 -1.96

5% critical values for two-tailed t-Student ��

Fat tails: illustration

|N | 250.063| 
|mu | 7.534| 
|sig | 32.134| 
|min | -15.352| 
|max | 12.607| 
|skew | -0.197| 
|kurt | 7.577| 
|JB | 2199.87|
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Three series with ,(
) = 0 and -.
(
) = 1 (see Danielson, 2012)

Risk is not equivalent to variance!!!

VaR and ES: definitions

Value at Risk (VaR) for tolerance level p:

/ = 0 1 
 2
3456�7
8 
 ≤ -.�� = /

Expected shortfall (ES) = Conditional VaR (CVaR):

,9� = , 
 
 ≤ -.��

,9� = 1/ : 
1 
 2
3456
�7

Topic 5. GARCH models

50



VaR and ES: illustration

VaR and ES: calculation stages

1. Setting tolerance level /
2. Setting horizon ;
3. Choosing estimation sample period 1: =
4. Choosing a model

5. VaR/ES computation (for period = + 1)

+  Model validation

Basel ii/iii: VaR as a risk measure

Basel iv: plans to change into ES
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VaR: Basel II

Quantitative standards Basel II

a. 99th percentile VaR must be computed on a daily basis

b. In calculating VaR the minimum “holding period” will be ten trading days. Banks 

may use VaR numbers calculated according to shorter holding periods scaled up to 

ten days by the square root of time 

c. The choice of sample period for calculating VaR is constrained to a minimum 

length of one year.

d. banks will be free to use models based, for example, on variance-covariance 

matrices, historical simulations, or Monte Carlo simulations

e. The multiplication factor will be set by individual supervisory authorities on the 

basis of their assessment of the quality of the bank’s risk management system, 

subject to an absolute minimum of 3. Banks will be required to add to this factor a 

“plus” directly related to the ex-post performance of the model, thereby 

introducing a built in positive incentive to maintain the predictive quality of the 

model. The plus will range from 0 to 1 based on the outcome of so-called 

“backtesting.”

VaR and ES calculation methods

A. Parametric / non-parametric models

B. Analytical formula / Monte-Carlo simulations

C. Conditional / unconditional volatility
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Parametric models: normal distribution

Analytical formula for 
 ∼ �(>, ?�):

-.�� = > + ?Φ�	 /  
,9� = > −  ? B Φ�	 //

where B and Φ are normal distribution pdf and cdf.  

Numerical integral formula

,9� = > + ? 0 Φ�	 � 2��C /
Tables for 
 ∼ �(0,1):

Parametric models: t-Student distribution

Formula for VaR = quantile /:

-.�� = > + ?=��	(/) � − 2�
where =� is the cdf of t-Student with � degrees of freedom 

Numerical integral formula for ES 

,9� = > + ? 0 =��	 � 2��C � − 2�/
Notes:

 The variance of  D ∼ ��:  -.
 D = �
���

 In R functions relate to �� (e.g. rt) or scaled �� (e.g. rdist in 

rugarch)
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Non-parametric model: historical simulation

 We assume that the distribution of returns is well approximated by 

past/historical returns 

 We sort past = returns from the lowest to highest: 
�	 ≤ 
�� … ≤ 
�F and 

calculate VaR as /�G quantile. For H = 1I
(/=):

-.�� = 
�J

 ,9 is equal to the average of the worst returns lower than VaR

,9� = 1H K 
�L
J

	

VaR and ES for further horizons

 To measure risk of investment for horizons ; > 1 we need to approximate 

the distribution of: 

MN = K 
G
N

G�	

 Two kind of methods:

 analytical (square root of time, SQRT)

 numerical (Monte Carlo, bootstraping)
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Square root of time method

Let us assume that 
� ∼ �(>, ?�) and 
� are IID. Then:

MN = K 
G
N

G�	
∼ �(;>, ;?�)

In this case:

-.�N = ;> + ; × ?Φ�	(/)
,9N = ;> − ; × ? B Φ�	(/)/

For > = 0 this simplifies to:

-.�N = ; × -.� and   ,9N = ; × ,9
This is why we call this method square root of time

Note: this method applied only for IID returns with normal distribution

Monte Carlo simulations

Let us assume that returns are t-Student 
(or any other distr. for which we don’t know analytical formula for the sum of vars.)

In this case we resort to Monte Carlo simulations

MC steps to calculate VaR/ES for any horizon ;:

1. Draw a path 
	, 
�, … , 
N of returns over horizon ; and calculate MN = ∑ 
GNG�	
2. Repeat step 1  "�" Times. Save MNQ

for R = 1,2, … , � 
3. Sort cumulated returns M�N	 ≤ M�N� ≤  …
4. Set S = 1I
(/�)
5. Use formulas : -.�N = M�NT

 ,9N = 1S K M�NLT
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Bootstrap

 When we use historical simulation method, an equivalent to MC 

simulations is Bootstrap

 Bootstrap steps to calculate VaR/ES for any horizon ;:

1. Draw ; times with replacement from sample 
	:F. Use draws  
	, 
�, … , 
N to 

calculate MN = ∑ 
GNG�	
2. Repeat step 1  "�" Times. Save MNQ

for R = 1,2, … , � 
3. Sort cumulated returns M�N	 ≤ M�N� ≤  …
4. Set S = 1I
(/�)
5. Use formulas : -.�N = M�NT

 ,9N = 1S K M�NLT

	

Exercises

Exercise 5.1.

The rate of return of a portfolio is t-Student distributed, where the number of degrees of freedom is equal to 

5 (critical values are provided in table below). Moreover, it is known that the expected rate of return is 5% and 

standard deviation is 20%.

a. Select the tolerance level /
b. Calculate VaR with pen and paper for ; = 1 and ; = 4 (with SQRT) 

c. Calculate VaR and ES with R (for ; = 1 and ; = 4)

d. Compare the results from points b and c

Is SQT justified?

Exercise 5.2. 

The rate of return has an IID uniform distribution 
 ∼ V −0.05; 0.05 . 

a. Calculate VaR and ES for / = 0.05 or 0.10
b. Can you find distribution for horizon ; = 2?
c. Calculate VaR and ES for / = 0.05 or 0.10 for horizon ; = 2. Compare the results with SQRT.

/ 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

t-Student -3.36 -2.76 -2.42 -2.19 -2.02 -1.87 -1.75 -1.65 -1.56 -1.48

scaled t-Student -2.61 -2.14 -1.88 -1.70 -1.56 -1.45 -1.36 -1.28 -1.21 -1.14
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Volatility clustering

Financial series characteristics: �
 
��, 
���� > 0

This implies that conditional variance is not constant in time:

?�� = , 
�� 
��	� , 
���� , … ≠ ?�

Volatility clustering, EWMA

 Moving Average (MA):

?�� = 19 K 
��� − > �
e

��	

 Exponentially Weighted Moving Average (EWMA),

A model proposed by JP Morgan in 1993, known also as RiskMetrics

?�� = K f�
����
7

��	
 Simplified formula for EWMA model, i.e. IGARCH(1,1):

?�� = 1 − f 
��	� + f?��	�

 JP Morgan calibrate f = 0.94 for daily observations
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Volatility clustering, GARCH(1,1)

 EWMA … ?�� = 1 − f 
��	� + f?��	�

 … as a specific version of GARCH(1,1):


� = > + h�,   h� ∼ i 0, ?�� 
?�� = j + kh��	� + l?��	�
j > 0, k, l ≥ 0.

 EWMA restrictions:> = 0j = 0k = 1 − fl = f

Volatility clustering, GARCH(1,1)

 MA …

?�� = 19 K 
��� − > �
e

��	

 … as a specific version of GARCH(S,0):


� = > + h�,   h� ∼ i 0, ?�� 
?�� = j + k	h��	� + ⋯ + keh��e�
j > 0, k, l ≥ 0.

 MA restrictions: j = 0
 k�= 1/9 for s=1,2,...S
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Volatility clustering, GARCH(1,1)

 GARCH(1,1): 
� = > + h�,                            h� ∼ i 0, ?�� ?�� = j + kh��	� + l?��	�
j > 0, k, l ≥ 0.

 Other notation: ?�� = 1 − k − l  ?s� + kh��	� + l?��	�
where

?s� = j1 − k + l
is the equilibrium value of the variance. 

 If k + l < 1 then the variance is mean reverting (stationary model). 

For EWMA k + l = 1: Integrated GARCH, IGARCH model

GARCH: estimation

 The joint probability of all observations:

/ M	, M�, … , MF = / M	|ΩC × / M� Ω	 × ⋯ × /(MF|ΩF�	)
where Ω� is information set available till moment �

 If we assume that: h�|Ω��	 ∼ �(0, ?��)
then the likelihood is:

ℒ w M	:F = x 1
2y?�

F

��	
exp  − M� − >� �

2?��
where w is the vector of model parameters
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GARCH: estimation

 In many cases the conditional distribution of returns is also characterised

by excess kurtosis or skewness. 

 In this case we can assume that conditional distribution has t-Student 

distribution or skewed t-Student distribution.

 For t-Student distribution the likelihood is:

ℒ w M	:F = x Γ � + 12Γ �2 y � − 2 ?�
F

��	
 1 + M� − >� �

� − 2 ?��
� �}	�

 For skewed t-Student distribution, see rugarch vignette (link, page 19)

GARCH(P,Q): specification selection

Specification selection stages:

1. Select the specification for levels (>�), usually a constant

2. Select the specification for the variance (?��), usually GARCH(1,1)

3. Decide on the conditional distribution, usually t-Student

Criteria:

A. No autocorrelation for levels and squares of standarized residuals 

�� = h�/?�
B. Minimization of information criteria (AIC, BIC, HQ)
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Leverage effect

One of financial series characteristics: �
 
��, 
��� < 0

This implies that conditional variance depends on the sign of past returns

Asymetric GARCH models

GJR-GARCH(1,1) by Glosten-Jagannathan-Runkle (1993):


� = > + h�, ?�� = j + (k + �� (h��	 < 0))h��	� + l?��	�
j > 0, k, l, � ≥ 0.

where:

I � = �1 if � is TRUE 0 if � is FALSE 

so that:

?�� = �j + (k + �)h��	� + l?��	�  for h��	 < 0j + kh��	� + l?��	�              for h��	 ≥ 0 
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Asymetric GARCH models

E(xponential)GARCH(1,1) by Nelson (1991):


� = > + h�, ln (?��) = j + k���	 + � ���	 + lln (?��	� )
where �� = h�/?� is a standarized error term

As a result:

ln (?��) = �j + (k − �)���	 + lln (?��	� ) for h��	 < 0j + k + �)���	 + lln (?��	�  for h��	 ≥ 0 

GARCH in Mean

 If investors are risk averse then expected return of risky (volatile) assets 

should be higher than the rate of return of stable assets (e.g. eturn on 

SP500 was on average 5% higher than from 3M TB) 

 GARCH-M (GARCH in Mean, Engle, Lilien i Ronbins, 1987) :


� = > + �?� + h�, ?�� = j + kh��	� + l?��	�

 Alternative specifications


� = > + �?�� + h� 
� = > + � ln ?� + h�
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Forecasting volatility with GARCH(1,1)

Variance forecast from GARCH model:
� = > + h� ,  h� ∼ i(0, ?��)?�� = j + kh��	� + l?��	�

Given information set ΩF, i.e. h	:F and ?	:F� , we can compute that:?F}	|F� = j + khF� + l?F�

For futher horizons we need to notice that:, hF}G� = ?F}G|F�
Hence: ?F}�|F� = j + k + l ?F}	|F�

Notice that for k + l < 1 the forecast converges towards:

limN→7 ?F}N|F� = j1 − k + l

Simulating future returns form a GARCH

Steps to simulate a single path of returns over horizon ; from GARCH model:


� = > + h�,  h� ∼ i(0, ?��)?�� = j + kh��	� + l?��	�

1. Given information set ΩF calculate ?F}	�
2. Draw hF}	 from distribution i(0, ?F}	� )
3. Calculate 
F}	
4. Conditional on the draw for hF}	 calculate  ?F}��
... continue until you have the path for 
	, 
�, … , 
N
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Calculating VaR/ES with GARCH models

MC steps to calculate VaR/ES for any horizon ; from GARCH model:

1. Simulate a path 
	, 
�, … , 
N of returns over horizon ; and cumulate MN = ∑ 
GNG�	
2. Repeat step 1  "�" Times. Save MNQ

for R = 1,2, … , � 
3. Sort cumulated returns M�N	 ≤ M�N� ≤  …
4. Set S = 1I
(/�)
5. Use formulas :

-.�N = M�NT

 ,9N = 1S K M�NLT

	

Exercises

Exercise 5.3.

Let 
� be weekly log-return (expressed as %) for a portfolio. The estimates of the GARCH(1,1) 

model as as follows:


�   = 0.08 + h� ,  h� ∼ �(0, ?��)?�� = 0.025 + 0.10h��	� + 0.80?��	�  
a. What is the average annual rate of return (assume that a year is 52 weeks)?

b. Calculate the unconditional variance (and standard deviation) for weekly data

c. Knowing that hF� = 0.15 and ?F� = 0.4 calculate the forecast ?F}	|F�  
d. Select the tolerance level / and calculate VaR and ES using the values from table below
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Exercises

Exercise 5.4.

Build an equally weighted portfolio consisting of two assets.

a. Make a graph of historical time series. If the history is shorter than 5 years, select other 

stocks

b. Select the tolerance level /
c. Calculate VaR/ES for horizons ; = 1 and ; = 10using parametric models (normal, t-

Student); historical simulation; EWMA; GARCH(1,1) model 

d. Fill in the table below

VaR

H=1 H=10

ES

H=1 H=10

Normal

t-Student

Historical simulation

EWMA

GARCH

Exercises

Exercise 5.5.

Build an equally weighted protfolio consisting of two assets.

Construct the best GARCH model:

a. Specify lags P and Q of GARCH(P,Q) as well as the error term distribution with the BIC

criterion

b. Check for the autocorrelation of standardized residuals

c. Check for the leverage effect (GJR-GARCH / EGARCH)

d. Check for in-Mean effect

e. Calculate VaR/ES for horizons ; = 1 and ; = 10
f. Compare the results from point e to GARCH(1,1) – see Exercise 5.4

g. Calculate the forecast for standard deviation ?� at horizon ; = 1000 and compare it to 

sample standard deviation for portfolio returns. Are the differences sizeable?
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Topic 6

Multivariate portfolio. MGARCH models

� Direct generalizations of the univariate GARCH (VEC GARCH and BEKK)

� Linear combinations of univariate GARCH model (Factor-GARCH and GO-GARCH)

� Nonlinear combinations of univariate GARCH models (CCC-GARCH and DCC-GARCH)

� Calculating VaR and ES from MGARCH models
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MGARCH: general specification

Let �� be a vector of returns for individual assets entering the investment portfolio. 

For the joint distribution, let us assume that:

�� = �� + ��

��	(��) = ��

where: 

�� = (��, ���, … , ���)’ is the vector of returns

�� = (��, ���, … , ���)’ is the conditional mean

�� = (�� , ��� , … , ���)’  is the error term

�� = ℎ�� �×�
is the conditional covariance matrix

In MGARCH model we model the dynamics of �� as a function of:

 past values of the covariance matrix ���� for � = 1,2, … , �

 realization of the error term ��������
�  for  = 1,2, … , !

MGARCH: classification

MGARCH models can be classified depending on the specification of the 

dynamics for the covariance matrix �� into (see Bauwens et al. 2006, JAE):

1. Direct generalizations of the univariate GARCH

(VEC GARCH or BEKK)

2. Linear combinations of univariate GARCH model 

(GO-GARCH)

3. Nonlinear combinations of univariate GARCH models 

(DCC-GARCH)
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VEC-GARCH

VEC-GARCH(1,1) proposed by Bollerslev, Engle and Wooldridge (1988)

�� = �� + ��, �� ∼ # 0, ��

ℎ� = % + &'�� + (ℎ��

ℎ� = 	')ℎ ��

'� = 	')ℎ(����
�)

where 	')ℎ · denotes the operator that stacks the lower triangular portion 

of a # × # matrix as a 
�+ �

�
× 1 vector.

Problems:

 Large number of parameters: & and ( are 
�+ �

�
×

�+ �

�
matrices

 Difficulties in ensuring that H� is positive definite 

VEC-GARCH

Bivariate example of VEC GARCH:

ℎ� = % + &'�� + (ℎ��

ℎ,�

ℎ��,�

ℎ�,�

=

%

%��

%�

+

-, -,� -,.

-��, -��,� -��,.

-�, -�,� -�,.

',��

'��,��

'�,��

+

/, /,� /,.

/��, /��,� /��,.

/�, /�,� /�,.

ℎ,��

ℎ�,��

ℎ�,��

where '�� = �� × ��
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DVEC-GARCH 

To limit the number of parameters in VEC-GARCH model, Bollerslev et al 

(1988) proposed its restriction version, in which matrices & and ( from 

ℎ� = % + &'�� + (ℎ��

are assumed to be diagonal, so that equation changes into:

ℎ��,� = %�� + -����,����,�� + /��ℎ��,��

Even though the number of parameters decreases, the problem of ensuring 

that �� is positive definite remains

Important: multivariate EWMA from Riskmetrics is calibrated DVEC-GARCH:

ℎ��,� = (1 − 1)��,����,�� + 1ℎ��,��

DVEC-GARCH

Bivariate example of DVEC GARCH:

ℎ� = % + &'�� + (ℎ��

ℎ,�

ℎ��,�

ℎ�,�

=

%

%��

%�

+

- 0 0
0 -�� 0
0 0 -�

',��

'��,��

'�,��

+

/ 0 0
0 /�� 0
0 0 /�

ℎ,��

ℎ�,��

ℎ�,��

where '�� = �� × ��
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BEKK-GARCH

Engle and Kroner (1995) proposed BEKK-GARCH model, in which �� is always 

positive definite

�� = �� + ��, �� ∼ # 0, ��

�� = ΩΩ′ + &������
� &′ + (���(′

where Ω is lower triangular matrix, whereas & and ( are # × # matrices.

ℎ,� ℎ�,�

ℎ�,� ℎ��,�
=

% 0
%� %��

% %�

0 %��
+

- -�

-� -��

',�� '�,��

'�,�� '��,��

- -�

-� -��

+
/ /�

/� /��

ℎ,�� ℎ�,��

ℎ�,�� ℎ��,��

/ /�

/� /��

where '�� = �� × ��

Note: Due to a large number of params BEKK model is rarely used when # > 3

Exercises

Exercise 6.1.

The BEKK GARCH model describing the dynamics of a bivariate vector 6 = (6, 6�)′ :

6� ∼ #(0, ��)

ℎ,� ℎ�,�

ℎ�,� ℎ��,�
=

0.5 0
0.4 0.3

0.5 0.4
0 0.3

+
0.2 0.0
0.1 0.2

',�� '�,��

'�,�� '��,��

0.2 0.1
0.0 0.2

+
0.5 0.0
0.5 0.6

ℎ,�� ℎ�,��

ℎ�,�� ℎ��,��

0.5 0.5
0.0 0.6

a. Assuming that �,; = 0; ��,; = 0; ℎ,; = 3; ℎ�,; = 1; ℎ��,; = 5; make a forecast for �;+

b. Calculate the variance <;+
� of a portfolio with weights = = 0.5, 0.5 �

c. Calculate the >?@A% of a portfolio with weights = = 0.5, 0.5 � knowing that Φ� 0.05 = −1.64

d. Repeat points b and c for = = 0.25, 0.75 �
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Factor-GARCH

Engle, Ng and Rothschild (1990) proposed a factor specification of MGARCH 

model, in which the dynamics of �� is described by E factors:

�� = �� + ��,     �� ∼ # 0, ��

�� = ΛG� + H� , H� ∼ # 0, Γ , G� ∼ # 0, J� ,

Γ = diag(O
�, O�

�,..., O�
�), J� = diag(P�, P�� , … , PQ�)

�� = ΛJ�Λ� + Γ

PR� = %R + -RGR,��
� + /RPR,��

Note: This specification allows to transform the problem of finding the dynamics for 

multidimentional matrix �� into a problem of finding the dynamics of E univariate 

processes

Factor-GARCH

Bivariate Factor-GARCH(1,1,2) with no idiosyncratic term

�� = �� + ��,     �� ∼ # 0, ��

�� = ΛG� , G� ∼ # 0, J� ,

P� = % + -G,��
� + /P,��

P�� = %� + -�G�,��
� + /�P�,��

ℎ,� ℎ�,�

ℎ�,� ℎ��,�
=

1 1�

1� 1��

P,� 0

0 P�,�

1 1�

1� 1��
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Exercises

Exercise 6.2.

On the basis of the below relationship:

ℎ,� ℎ�,�

ℎ�,� ℎ��,�
=

1 1�

1� 1��

P,� 0

0 P�,�

1 1�

1� 1��

write the formula for the value of conditional correlation in Factor-GARCH model as a function 

of  P� and P��. Is the dynamic for the calculated formula transparent?

Note that: S�,� =
TUV,W

TUU,W TVV,W

GO-GARCH (Generalized Orthogonal)

Van der Weide (1990) proposed a specific verion of Factor-GARCH model, 

based on spectral decomposition of population cov. matrix, combined with 

rotation:

�     = !X!�, ! − eigenvectors matrix, X – eigenvalues matrix

Λ     = !Xc.Ad

dd� = e, d – orthonormal, rotation matrix

GO-GARCH model:

�� = �� + ��,     �� ∼ # 0, ��

�� = ΛG� , G� ∼ # 0, J� ,

J� = diag(P�, P��, … , P��)

�� = ΛJ�Λ�

P�� = %� + -�G�,��
� + /�P�,��
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CCC-GARCH (Constant Conditional Correlation)

 Bollerslev (2002) proposed the CCC GARCH of the following form:

�� = �� + ��,     �� ∼ # 0, ��

�� = Jf!J�
�

J� = diag( P�, P��, … , P��)

P�� = %� + -���,��
� + /�P�,�� for g = 1,2, … , #

where ! is the unconditional correlation matrix

 E(xtended)CCC-GARCH by Jeantheau (1998)

P�� = %� + ∑ -����,��
��

�i + ∑ /��P�,��
�
�i for g = 1,2, … , #

DCC-GARCH (Dynamic Conditional Correlation)

Engle (2002) proposed the DCC GARCH of the following form:

�� = �� + ��,     �� ∼ # 0, ��

�� = Jf!�J�
�

J� = diag( P�, P��, … , P��)

P�� = %� + -���,��
� + /�P�,�� for g = 1,2, … , #

where !� is the conditional correlation matrix with the law of motion:

j� = J�
���

�� = 1 − - − / �k + -j�� j��
� + /��� 

!� = ��⨀e �c.A�� ��⨀e �c.A

where ⨀ is the Hadamard operator (element-by-element multiplication)
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Exercises

Exercise 6.3.

The CCC GARCH model describing the dynamics of a bivariate vector 6 = (6, 6�)′ is:

6� =
0.8
1.2

+ ��;   �� ∼ #(0, ��)

�� = Jf
1 0.5

0.5 1
J�

�

P�

P��
=

0.9
1.1

+
0.1 0.0
0.0 0.1

���
�

����
� +

0.8 0.0
0.0 0.7

P,��

P�,��

a. Assuming that �;
� = 23; ��;

� = 16;  P; = 16; P�; = 9; make a forecast for �;+

b. Calculate the parameters of the distribution of returns a portfolio with weights = =
0.25, 0.75 � for the period p + 1

c. Calculate the >?@�.A% of a portfolio with weights = = 0.25, 0.75 � knowing that

Φ� 0.025 = −1.96

d. Calculate the equilibrium value of ��?

Exercises

Exercise 6.4.

For a protfolio consisting of two assets:

a. Make a graph of historical time series. If the history is shorter than 5 years, select other stocks

b. Select the tolerance level  

c. Estimate GO-GARCH(1,1) and DCC-GARCH(1,1) model. Which is better fitted to the data?

d. Make a graph of conditional std. dev. for two vars. from both models (one chart per. variable)

e. Make o graph of conditional correlation dynamics from both models (one chart)

f. Make a graph of conditional std. dev. of a portfolio from both models (one chart) 

g. Calculate VaR/ES for horizons � = 1 and � = 10 and fill in the table below

VaR

H=1 H=10

ES

H=1 H=10

GO-GARCH

DCC-GARCH
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Topic 7

Multivariate portfolio. Copulas

� Multivariate normal distribution

� Non-linear dependencies

� Copula function: an intuition

� Sklar theorem

� Empirical copula

� Elliptic copulas

� Archimedean copulas

� Kendall τ correlation

� Fitting copulas to the data

� Calculating VaR and ES using copulas

77



Multivariate normal distribution

 In many applications it is convenient to assume that multivariate returns 

have multivariate normal distribution:

�~� �, Σ

 For a portfolio of assets with weights � the rate of return:

�� = �
�~� ��, ���

where �� = �
� and ��� = �
Σw

Multivariate normal distribution

 Multivariate normal distribution implies that the relationship between 

variables � and � is linear

� = � + �� + �, � = ��� �, �
��� � , � = �� − ���

 In other words, the relationship is always the same and does not depend 

on the scale of change …

 … but at financial markets dependences tend to be stronger during 

crashes that in normal times, which leads to risk undervaluation!!!
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Non-linear dependencies: illustration

The scale of nonlinearity of dependencies between two variables can be 

illustrated by comparing a scatter plot of realized and simulated series

Copula: a general idea

 Copula as a convenient method to model non-linear dependencies 

between variables � and � (we will discuss only a bivariate case)

 A general idea is to decompose a (sophisticated) joint distribution of 

� and � into:

 Univariate marginal distributions for � and �
 Copula function, which combines both marginal distributions

Topic 7. Copulas

79



Copula function

SKLAR THEOREM:

For:

�(�, �) multivariate/bivariate joint cdf

�(�) and � � univariate marginal cdf

there exists a copula �() for which:

� �, � = � � � , � �

If � and � are continuous, then � is unique

Copula function: notation

� � ; !(�): pdf of marginal distributions

" = �(�); $ = �(�): cdf of marginal distributions 

ℎ �, � : pdf of joint distribution 

�(�, �): cdf of joint distribution 

�(", $): copula function

�(�, �) = �(�(�), �(�)) = �(", $)

ℎ(�, �) = �(�)!(�)�(�(�), �(�))

To draw from the joint distribution, we need to decide on:

 the shape of marginal distributions �(�) and �(�)
 the shape of copula function �(", $)
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Most popular copulas

Empirical copula

 Let �' and �' be the empirical distribution functions for () and *):

�' ( = #(() < ()/. and �' * = #(*) < *)/.

and /) = �'(()) and �) = �'(*)), where 0 = 1, 2, … , .

 Definition of empirical copula:

� /, � = #(/) ≤ / ∧ �) ≤ �)
.

 (discrete) probability density of empirical copula is:

� /, � = # /) = / ∧ �) = �
.

where #(6) is the number of observations 0 that fulfill condition 6
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Exercises

Exercise 7.1.

For a sample of observations:

calculate:

 The values of /) and �) for 0 = 1,2,3,4,5
 Empirical copula

 Density of empirical copula

Exercise 7.2.

Let (�, �) be the random variables describing the outcome of rolling two dices. 

 What is the marginal pdf/cdf for � and �?  

 What is the joint pdf for (�, �)
 What is the density copula for �, �
 Roll two dices 10 times to create your sample for (, * and calculate the empirical copula / 

density of empirical copula. Use function x <- sample(1:6,10,replace=TRUE)

0 1 2 3 4 5

( 1 2 3 4 6

* 7 5 1 3 4

Elliptic copulas

Normal copula:

� ", $ = Φ< Φ=> ("), Φ=> ($)

where Φ/Φ< is univariate/multivariate normal cdf and Σ is the covariance matrix

t-Student copula:

� ", $ = TQ,< TQ=> ("), TQ=> ($)

where TQ/TQ,< is univariate/multivariate t-Student cdf with � degrees of freedom
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Elliptic copulas

Archimedean copulas

The formula for copula:

� ", $ = U=>(U " + U $ )
where U is the generator 
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Archimedean copulas

Tail dependence

 Copulas are useful tool for panic/crisis scenarios, in which the 

dependencies between assets tend to be stronger

 A useful measure for these scenarios is downward:

VW = limX→Z
� [, [

[
or upward tail dependence:

V\ = limX→Z
1 − � 1 − [, 1 − [

[
 The values for copulas:

o Normal / t-Student: VW = 0               V\ = 0 if ] < 1
o Clayton: VW = 2=^

_           V\ = 0
o Gumbel: VW = 0               V\ = 2 − 2^

_

o Frank: VW = 0               V\ = 0
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Joint distribution from copulas

Joint distribution from copulas
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Fitting to the data

Kendall tau correlation

Definition:

` = P{ (c − (d *c − *d > 0} − P{ (c − (d *c − *d < 0}

Sample estimate:

`̂ = h − i
�(� − 1)/2

h – number of concordant pairs: N{ (c − (d *c − *d > 0}
i – number of discordant pairs: N{ (c − (d *c − *d < 0}
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Fitting copula to the data: method of moments

For copula �(", $|l) we are looking parameter l for which:

`m = 4∫ ∫ � ", $|l o� ", $ l − 1
is closest to `̂

Formulas:

Normal copula / t-Student: ] = sin (p
� `)

Clayton copula: l = 2` 2 − ` =>,   l > 0, ` > 0
Gumbel copula: l = 1 − ` => ,   l ≥ 0, ` ≥ 0
Frank copula: ` = 1 − r

s 1 − ∫ tu (>=)_)(>=)_)
)_v^ o0>

Z

Exercises

Exercise 7.3.

For a sample of observations:

calculate:

 Kandal tau

 Estimate of the parameter for normal copula

 Estimate of the parameter for Clayton copula

 Estimate of the parameter for Gumbel copula

0 1 2 3 4 5

( 1 2 3 4 6

* 3 5 1 6 7
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Fitting copula to the data: maximum likelihood

One-step procedure (full ML)

We are looking for parameter l which maximizes

w l �, � = x log � � ()  l , � *)  l + log �(()|l)
y

)z>
+log !(*)|l)

Two-step procedure

Step 1: Estimate marginal distribution parameters

Step 2: Estimate copula function parameters

VaR and ES from copula (over horizon H)

1. Draw (/, �) from �(", $)
2. Calculate ( = �=>(/) and * = �=> �
3. Calculate the simulate rate of return of the portfolio � = �{( + �|*
4. Repeat steps 1-3 � times to simulate a path �>, ��, … , �} of returns over horizon �

and calculate *} = ∑ ��}�z>
5. Repeat steps 1-4  � times. Save *}

�
for � = 1,2, … , � 

6. Sort cumulated returns *�}
> ≤ *�}

� ≤  …
7. Set � = �w���(��)
8. Use formulas :

$��} = *�}
�

 ��} = 1
� x *�}

c
�

>
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Exercises

Exercise 7.4.

For a protfolio consisting of 2 assets.

a. Make a graph of historical time series. If the history is shorter than 5 years, select other 

stocks

b. Select the tolerance level �
c. Estimate 5 copulas listed in the table below. Which is the best fitted to the data?

d. Calculate VaR/ES for horizons � = 1 and � = 10
e. Fill in the table below

VaR

H=1 H=10

ES

H=1 H=10

Normal

t-Student

Clayton

Gumbel

Frank
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Topic 8

Backtesting risk models

� Backtesting settings

� Binomial distribution

� Traffic lights approach

� Conditional coverage and independence of VaR exceedances

� Kupiec test

� Christoffersen tests

� McNeil-Frey test
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What is backtesting

 ”backtesting” in finance = ”out-of-sample evaluation” in economics

 backtesting allows to assess model performance if it was used in the past

 for VaR we compare the share of VaR exceedances to tolerance level

 for ES we check if the scale of exceedances is correctly calibrated

Backtesting procedure for VaR

1. Set observation for the start backtesting �∗(usually � − 250)
2. Use data until period � = �∗to calculate VaR for period � + 1: �����|�
3. Compare �����|� to realization ���� to assess if VaR was exceeded 

4. Repeat steps 2 and 3 for � = �∗ + 1, �∗ + 2, … , � − 1

Note: We used a similar procedure for out-of-sample forecast evaluation in Block 1 
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VaR exceedances

 Using the series ���|��� and �� for � = �∗ + 1, �∗ + 2, … , � we can 

construct the series of exceedances

�� = �1 if �� ≤ ���|��� 0 if �� > ���|���

 And calculate the number of exceedances (��) / no exceedances (��)

�� = ∑ ��!�"!∗���� = � − ��
where � = � − �∗ is the number of observations with which we evaluate VaR

Distribution for the number of VaR exceedances

 How many exceedances should 

we expect?

 For a well specified model ��
should be IID with:

�� ∼ $ 1, %
�� ∼ $(�, %)

where  $(�, %) is binomial 

distribution with � trials and 

probability %

% = 5% % = 1%�� pdf cdf pdf cdf

0 0.0 0.0 8.1 8.1

1 0.0 0.0 20.5 28.6

2 0.0 0.0 25.7 54.3

3 0.1 0.1 21.5 75.8

4 0.3 0.5 13.4 89.2

5 0.9 1.3 6.7 95.9

6 1.8 3.1 2.7 98.6

8 5.4 11.9 0.3 99.9

10 9.6 29.1 0.0 100.0

12 11.6 51.8 0.0 100.0

14 10.0 72.9 0.0 100.0

16 6.4 87.5 0.0 100.0

18 3.1 95.3 0.0 100.0

20 1.2 98.5 0.0 100.0

Distribution for �� if � = 250
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Basel Committee „Traffic lights” approach

Quantitative standards Basel II

e. The multiplication factor will 

be set by individual supervisory 

authorities on the basis of their 

assessment of the quality of the 

bank’s risk management system, 

subject to an absolute minimum 

of 3. Banks will be required to 

add to this factor a “plus” directly 

related to the ex-post 

performance of the model, 

thereby introducing a built in

positive incentive to maintain the 

predictive quality of the model. 

The plus will range from 0 to 1 

based on the outcome of so-

called “backtesting.”

Exercises

Exercise 8.1.

A ��( model was evaluated with a backtest using � observations. Let ) = ��/� be the share

of VaR exceedances, where �� is the number of VaR exceedances. 

Calculate the 95% interval (left tailed and centered) for �� and ) using

dbinom/pbinom/qbinom functions in R, assuming that the VaR model is well specified and 

that:

a. n = 250, p = 1%
b. n = 250, p = 5%
c. n = 100, p = 5%
d. n = 100, p = 5%
Discuss the results

Topic 8. Backtesting

94



Backtesting: what we verify?

 For a model �� = 2 + 3� we test for unconditional coverage:

4�: 2 = %
 For a model �� = 2 + 6���� + 3� we test for independence:

4�: 6 = 0
and unconditional coverage:

4�: 2 = % ∧ 6 = 0
Why shouldn't we use LS regression to test the above hypotheses?

Kupiec test: unconditional coverage

 Let �� are 889 $(2) so that the likelihood of 2 given �� exceedeances in sample� = �� + �� is:

ℒ 2 ��, �� = �� + ���� 2;< 1 − 2 ;=
 The formula for ML estimator: ) = 2> =  ��/� 
 We can test the null of unconditional coverage (Kupiec) test:

4�: 2 = % 
By calculating the likelihood ratio:

?�@A = ℒ % ��, ��ℒ ) ��, �� = %;< 1 − % ;=
);< 1 − ) ;=

and the likelihood ratio test statistic:

−2 ln ?�@A ∼ CD(1)
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Christoffersen test: independence

 Let’s assume that the distribution of �� depends on history:

�� ∼ E$ 0, 2�  if ���� = 0 $ 0, 2�  if ���� = 1
 The likelihood for F ∈ {0,1} is:

ℒJ 2J �J�, �J� = �J� + �J��J� 2J;K< 1 − 2J ;K=
where �JL = #(���� = F ∧ �� = N). 

 ML estimator of 2J: )J = 2>J =  �J�/(�J�+�J�) 

Christoffersen test: independence

 The null of independence Christofersen test:

4�:  2� = 2� = 2 
 Under the null the ML estimate for a single probability is :

) = 2> =  (���+���)/(���+��� + ��� + ���) 
 The likelihood ratio is:

?�OPQ = ℒ� ) ���, ��� × ℒ�  ) ���, ���ℒ� )� ���, ��� × ℒ� )� ���, ��� = )(;=<�;<<) 1 − ) (;==�;<=)
)�;=< 1 − )� ;== × )�;<< 1 − )� ;<=

with the likelihood ratio test statistic:

−2 ln ?�OPQ ∼ CD(1)
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Christoffersen test: conditional coverage

 Conditional coverage Christofersen test is a joint test of of unconditional coverage

and independence

 For the null of the test:

4�: 2� = 2� = % 
the likelihood ratio is:

?�AA = ℒ� % ���, ��� × ℒ�  % ���, ���ℒ� )� ���, ��� × ℒ� )� ���, ��� = %(;=<�;<<) 1 − % (;==�;<=)
)�;=< 1 − )� ;== × )�;<< 1 − )� ;<=

?�AA = ?�OPQ × ?�@A

with the likelihood ratio test statistic:

−2 ln ?�AA ∼ CD(2)

Backtesting - illustration

 Number of observations: � = 2500
 Expected number of exceedances: �% = 125
 Realized number of exceedances: �� = 124
 Kupiec UC test decission: 4�
 Christofersen CC test decission 4�

How can we improve the VaR model? 
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Backtesting ES: McNeila and Frey test

 Let T = ��, �D, … , �;< be the periods of VaR exceedances (�U < ��U|U�� ). 
Given the definition of ES:

WXU|U�� = W �U �U < ��U|U�� 
for a well specified ES model the variable:

YU = �U − WXU|U��ZU|U ��
should have 9(0,1), where ZU|U �� is the conditional standard deviation 

 The null of McNeil and Frey test:

4�: W(Y�) = 0
can be thereby verified with the standard � test (or bootstrapped version):

� = Y ̅Z>\/ �� ∼ �]";<��

Exercises

Exercise 8.2. 

Build a portfolio consisting of two assets. Backtest risk models for this portfolio in the following 

steps:

a. Make a graph of historical time series. 

b. Select tolerance level (% = 5% or % = 1%) and evaluation sample (� = 250)
c. Calculate the share of VaR exceedances for univariate models (nomal, HS, EWMA)

d. Backtest univariate models with Kupiec / Christofersen / McNnail-Frey tests

e. [Difficult] Try to perform points C and D for multivariate normal and compare with 

univariate normal. Are the results the same?

f. [Difficult] Try to perform points C and D for more sophisticated methods (GRACH, MGARCH, 

Copula)
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Block 2 presentation

Select a portfolio of two assets (stocks, exchange rates, commodities)

a. <1.0p> Describe the characteristics of returns from the portfolio. To show: time series plot,

moments, QQ plot, ACF, ACF of squares

b. <2.0p> Estimate the best univariate GARCH model. To show: parameter estimates, conditional

standard deviation, model selection methods

c. <1.0p> Estimate the best copula. To show: comparison of copulas (LL values), simulation from

copula vs realizations (scatter plots)

d. <3.0p> (Single) table with VaR/ES for H = 1 and H = 10 and p =1% and 5% using the

following methods

� Historical simulation / t-Student / Normal / EWMA / GARCH

� GO-GARCH / DCC-GARCH

� Copula Eliptic / Archimeadean

e. <3.0p> Backtesting with Kupiec / Christoffersen / Frey-McNail (a table whether model passed

the test + number of exceedances) for

� Historical simulation and EWMA

� GARCH

� Copula / MGARCH

Additionally, I attribute up to 2p for the quality of the presentation (1p. for the .pdf and 1p. for the

speech / interpretation of the results). Presentation should take around 7 minutes.
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