
Heterogeneous panel data models

Jakub Mućk
SGH Warsaw School of Economics

Jakub Mućk Econometrics of Panel Data Heterogeneous panel data models 1 / 19



Heterogeneity in the slope coefficients

Jakub Mućk Econometrics of Panel Data Heterogeneous panel data models Heterogeneity in the slope coefficients 2 / 19



Heterogeneity in the slope coefficients I

In the standard linear panel data model we control for unobserved heterogeneity:

y = β′X + u, (1)

Where u is the sum of individual-specific component (in the RE model) and the
idiosyncratic component. In the FE model, the individual-specific intercepts are
introduced while the u contains only the idiosyncratic shock.
At the same time, we have assumed that all slope coefficients (vector β) are the
same for all unit and all periods. In the above formulation, we don’t allow
for any interaction between individual effects and explanatory variable.
Consider the following formulation:

yit = β′itXit + uit, (2)

where all slope coefficients captured by βit are now time-varying and individual-
specific.
I Although the above general formulation seems to be more realistic it lacks any

explanatory power and is not useful for prediction.
I The above model is not estimable since the number of parameters exceeds the num-

ber of observations.

More applicable formulations:

yi = β′iXi + ui, (3)
yt = β′tXt + ut (4)
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Heterogeneity in the slope coefficients II

Which kind of heterogeneity in the slopes should introduce? In general, we pay
more attention to individual effects but it depends on
I T and N ,
I the research question.

To account for the individuals differences in the slope coefficients we will introduce:

I Seemingly Unrelated Regression (SUR),
I Swamy’s random coefficient model,
I Mean group estimation.
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Seemingly Unrelated Regression (SUR)
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Seemingly Unrelated Regression (SUR) I

Seemingly Unrelated Regression (SUR) is estimation method that is designed to es-
timate a system of linear equation (with potentially different set of explanatory variables)
and which accounts for the cross-equation correlation of the error term.
Consider the following set of equations:

yi = Xiβi + εi for i ∈ {1, . . . ,m} (5)

where the index i denotes the i-th equation in the considered system.
In the matrix form: y1

y2
...
ym

 =

 X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xm


 β1

β2
...
βm

+

 ε1
ε2
...
εm

 . (6)

In i-th equation, Ki parameters are estimated. It yields the total number of coefficient
K =

∑m

i=1
Ki. In addition, the Ki > Ti.

Strictly exogeneity is assumed, i.e., E(ε|X1, . . . , Xm) = 0.
In the SUR framework, it is possible to assume that the covariance matrix of the error
term is not diagonal:

Ω = E
(
εε|′X1, . . . , Xm

)
=


σ2

11I σ2
12I . . . σ2

1mI
σ2

21I σ2
22I . . . σ2

2mI

...
...

. . .
...

σ2
m1I σ2

m2I . . . σ2
mmI

 . (7)
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Seemingly Unrelated Regression (SUR) II

Given the above structure of the variance-covariance matrix of the error term, the system
of equations can be estimated with FGLS (feasible generalized least squares). Conven-
tionally, the two-step estimation includes the following steps

1. Running the OLS regression for the considered system of equations to get consistent
and unbiased estimates of the variance-covariance matrix of the error term (Ω̂).

2. Based on the estimates of the Ω̂, standard GLS estimator can be applied:

β̂
SUR =

(
X
′Ω̂−1

X
)−1

X
′Ω̂−1

y. (8)

Note that if Ω is diagonal then βSUR will be close to the OLS estimator.
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The SUR estimation and panel data

In the context of long and narrow panel data, the SUR can be applied to account
for a potential heterogeneity in the slopes.
Consider the case of long (relatively large T ) and narrow (not so large N) panel.
Then, the standard linear model can be expressed as a set of equations:

y1 = β′1X1 + ε1,

y2 = β′2X2 + ε2,

... =
...

yN = β′NXN + εN ,

where βN is the individual-specific vector of the structural parameters.
The SUR method accounts for cross-equation correlation. In the above case, this
correlation is equivalent to cross-sectional dependence.
It’s possible to test heterogeneity of slopes. The standard Wald test can be used to
verify the hypothesis about:
I homogeneity of all slopes, i.e., H0 : β1 = . . . = βN , where βi stands for vector of

parameters for i-th unit.
I homogeneity of some slopes, i.e., H0 : β1,j = . . . = βN,j , where βi,j stands for
j-th parameter for i-th unit.
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Testing cross-equation (cross-sectional) correlation of the error term

The SUR method provides more efficient estimates since it accounts for cross-
equation dependence.
Cross-equation dependence can be tested with the LM statistic (Breusch and Pagan,
1980):

LM = T

N−1∑
i=1

N∑
j=i+1

ρ̂2
i,j , (9)

where ρi,j is cross-sectional correlation coefficient:

ρ̂i,j =

∑T

t=1 ε̂itε̂jt(∑T

t=1 ε̂it

) 1
2
(∑T

t=1 ε̂jt

) 1
2
. (10)

The LM statistic is valid for fixed N as T →∞ and is asymptomatically distributed
as χ2 with N(N − 1)/2 degrees of freedom.
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Swamy’s random coefficient model
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Swamy’s random coefficient model I

Swamy (1970) proposes the random coefficient model. Consider the following model:

yi = Xiβi + εi (11)

where the individual-specific slope βi is the sum of common (β) and unit-specific
(αi) components:

βi = β + αi, (12)
where

1. E(αi) = 0,
2. E(αiα

′
i) = Σ.

Question: how to estimate β and Σ?
The dependent variable can be expressed:

yi = Xiβi + εi = Xiβ +Xiαi + εi = Xiβ + νi,

where νi = Xiαi + εi and E(νi) = 0.
The variance-covariance of the error term νi for i-th unit is the following:

E
(
νiν
′
i

)
= E
(
(Xiαi + εi)(Xiαi + εi)′

)
= E
(
εiε
′
i

)
+XiE

(
αiα
′
i

)
X′i.

If the idiosyncratic error term is spherical then:

E
(
νiν
′
i

)
= σ2

i I +XiΣX′i = Πi.
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Swamy’s random coefficient model II

The Π variance-covariance matrix for the error term will be block-diagonal.
Finally, the GLS estimator can be applied:

β̂RC =

(∑
i

X′iΠ
−1
i Xi

)−1∑
i

X′iΠ
−1
i yi =

∑
i

Wiβ̂
OLS
i . (13)

where β̂OLS
i is the unit-specific OLS estimates and Wi:

Wi =

[∑
i

(Σ + Vi)−1

]−1

(Σ + Vi)−1 (14)

where Vi is the panel-specific variance-covariance of β̂OLS
i , i.e., V̂i = σ2

i

(
X′iXi

)−1
.

The variance of β can be calculated as:

V ar(β) =
∑

i

(Σ + Vi)−1 . (15)
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Swamy’s random coefficient model III

Finally, the remainder element of the variance-covariance components which cap-
tures the variation of the slope coefficients, i.e., Σ, can be estimated based on the
variation in the panel-specific βOLS

i estimates:

Σ̂ =
1

N − 1

(∑
i

β̂OLS
i (β̂OLS

i )′ −Nβ̄OLS(β̄OLS)′
)
−

1
N

∑
i

V̂i

where β̄OLS is the average from the OLS estimates.
Swamy (1970) postulates to omit the last component because it is negligible in large
samples and it can be not positive definite.
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Testing homogeneity in slopes

To test whether the random coefficient model is statistically motivated one might
compare the panel-specific estimates with their weighted (by V −1

i ) average.
Test statistic:

χ =
N∑

i=1

(
β̂OLS

i − β̃
)′
V̂ −1

i

(
β̂OLS

i − β̃
)
, (16)

where

β̃ =

(
N∑

i=1

V̂ −1
i

)−1 N∑
i=1

V̂ −1
i β̂OLS

i .

The null hypothesis:
H0 β1 = β2 = . . . = βN .

The test statistic χ is asymptotically χ2 distributed with k × (m − 1) degrees of
freedom.
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Mean group estimation
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Mean group estimation I

The Mean Group estimator (MG) was proposed by Pesaran and Smith (1995) to
deal with dynamic random coefficient model.
The MG estimator is defined as the average of the unit-specific OLS estimators
β̂OLS

i :

β̂MG =
1
N

N∑
i=1

β̂OLS
i , (17)

where
β̂OLS

i =
(
X′iXi

)−1
X′iyi. (18)

It is assumed that all explanatory variables are strictly exogenous.
The MG estimation is possible when both T and N are sufficiently large.
The MG estimation can be applied irrespectively of the nature of heterogeneity in
the slope coefficient. It can be applied if
I the differences in slopes are random (as in the Swamy estimator),
I diversity in the slopes can be captured by the fixed effects.

The variance of the MG estimator:

V ar(β̂MG) =
1

N(N − 1)

N∑
i=1

(
β̂OLS

i − β̂MG
) (
β̂OLS

i − β̂MG
)′
. (19)
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Mean group estimation II

The MG estimator will be very close to the Swamy’s estimator if T tends to infinity
and there is some heterogeneity in the slopes:

lim
T→∞

(
β̂MG − β̂RC

)
= 0
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Pooled MG

In the pooled mean group estimation all coefficients are pooled, i.e, they are
constrained to be identical:

∀iβi = β. (20)

However, one might pooled only subset of coefficients.
To test assumption abut homogeneity of coefficients one might used the standard
Hausman test comapring mean group and pooled mean group estimates:
I Under null both estimates are consistent while under alternative only mean group

estimates are consistent.
I By pooling we increase efficiency of estimates.
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Cross-sectional dependence and CCE estimator

The cross-sectional dependence leads to endogeneity in the mean group estimation.
Recalling the least square estimator:

β̂LS
i = βi +

(
X′X

)−1
X′E(εi), (21)

one might observed that presence of common factors lead to endogeneity.
In the CCE (common correlated effects) estimation we control for multi-factor struc-
ture of the error term. To account for common factors individual-specific regressions
are extended by cross-sectional averages of dependent variable.
Given a high degree of uncertainty about the structure of the error term one might
use also cross-sectional averages of explanatory variable. In addition, the lags of
cross-sectional averages of both dependent and explanatory variables can be also
included (see Chudik and Peseran, 2015).
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