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Limited dependent variable I

In previous meetings, we have dealt with models in which the range of dependent
variable is unbounded.
The common cases when the response (dependent) variable is restricted:
I binary: y ∈ {0, 1},
I multinomial: y ∈ {0, 1, 2, . . . , k},
I integer: y ∈ {0, 1, 2, . . .},
I censored: y ∈ {y∗ if y > y∗}.
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Binary dependent variable

For binary outcome data the dependent variable y takes one of two values:

y =
{

1 with probability p
0 with probability (1− p) . (1)

The binary choice variable y is restricted and the binary outcome is Bernoulli dis-
tributed.
The probability (p) is not observed (latent variable).
Examples:
I dummy variables indicating whether some loan application is accepted (y = 1) or

not (y = 0),
I dummy variables indicating whether individual decided to work (y = 1) or not

(y = 0),
I binary variable indicating whether individual takes the second or third job (y = 1)

or not (y = 0),
I dummy variable indicating whether the birthweight was low, i.e., below 2500 g,

(y = 1) or not (y = 0).
Models for binary dependent variable
I linear probability model (LMP);
I logistic regression (logit);
I probit regression (ptobit).
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Linear Probability Model (LMP) I
Linear Probability Model (LMP) is the OLS regression of y on X that ignores
the discreteness of the dependent variable. Moreover, the LMP does not constrain
predicted probabilities to be between zero and one.
In general, it is assumed that the (conditional to a set of covariates) probability is
as follows:

Prob(y = 1|X) = F (X,β), (2)
Prob(y = 0|X) = 1− F (X,β). (3)

If the function F (X,β) is assumed to linear, i.e., F (X,β) = X′β, then

y = E(y|X,β)︸ ︷︷ ︸
Prob(y=1|X)

+ (1− E(y|X,β))︸ ︷︷ ︸
Prob(y=0|X)

= F (X,β) = X′β + ε. (4)

Finally, the LMP can be estimated by OLS:

y = X′β + ε. (5)

where ε is the error term.
Shortcomings of the LMP:

1. The predicted values of the dependent variable are not constrained to be between
zero and one.

2. It is assumed that the probability is linearly related to some continuous explanatory
variable.
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Linear Probability Model (LMP) II

3. The problem of the error heteroskedasticity. By construction, errors vary with the
explanatory variables:

V ar(ε|x) = Prob(y = 1|X)
(

1−X′β
)2

+ Prob(y = 0|X)
(
−X′β

)2

= X
′
β
(

1−X′β
)2

+
(

1−X′β
)(
−X′β

)2

= X
′
β
(

1−X′β
)
.

As a consequence, the estimated variance-covariance matrix are biased (also stan-
dard errors, t statistics, F statistic, etc.). To challenge this issue one might apply:

I robust standard errors;
I feasible GLS estimation that accounts for heteroskedastic residuals.

4. By construction, error term is also not normally distributed.
I The statistical inference in small samples is not reliable.
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Logit I

In the logit model, the conditional (to X) probability is described by the cumulative
logistic distribution (conditional to some explanatory variables X):

p = Prob(y = 1|X) =
exp (X′β)

1 + exp (X′β)
. (6)

The predicted probabilities are always between zero and one.
It can be shown that the logit (log of odds):

ln
(

p

1− p

)
= X′β. (7)

The parameters of β are estimated using the maximum likelihood (ML) method. In
general, the log likelihood for the logit model can be written as:

lnL =
N∑
i=1

[yi ln (F (X,β)) + (1− yi) ln (1− F (X,β))] , (8)

where L is the likelihood function, the index i stands for observation and F (X,β) =
exp(X′β)/(1 + exp(X′β)).
The Log Likelihood, given by (7), is maximized using some optimization methods.
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Logit II

The Likelihood test for the significance of parameters. The null hypothesis:

H0 : β1 = β2 = . . . = βk = 0, (9)

and the test statistics (LR) bases on the log-likelihood difference between the con-
sidered model (L) and the model with only intercept (L0)):

LR = 2(L − L0), (10)

where LR is χ2 distributed with k (number of explanatory variables) degrees of
freedom.
The logit model is nonlinear. The sign of the estimates informs only about the
direction of the relationship between explanatory variable and probability.
To interpret the logit estimates it is useful to introduce the odds ratio. The odds
is an exponential function of fitted F (X,β). For instance, the odds ratio for x1
variable can be described as:

OR =
exp (β0 + β1(x1 + 1) + . . .+ βkxk)

exp (β0 + β1x1 + . . .+ βkxk)
= exp(β1), (11)

so an 1-unit increase in x1 multiplies the odds ratio by exp(β1).
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Logit III

In nonlinear models, more common approach is to use marginal effects. In the logit
model, the marginal effect for the k-th explanatory variable can be written:

MFX(xk) =
∂p

∂xk
= βkp(1− p) =

exp (β0 + β1x1 + . . .+ βkxk)
[exp (β0 + β1x1 + . . .+ βkxk)]2

βk. (12)

Some remarks about the marginal effects:
I The marginal effects vary for different values of explanatory variables.

I The usual approach is to calculate the marginal effects for the average explanatory
variables, i.e., x̄1, . . . , x̄k.

I However, the marginal effects for the mean explanatory variables are not reasonable
when we are interested in the effect of some dummy variable on the probability. In
such cases, one should calculated the marginal effect when this indicator variable is
set to 0.

I Apart from the point estimates, it is essentially to analyze confidence intervals or
standard errors for the estimated marginal effects are useful.
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Probit

In the probit model, the conditional (to X) probability is described by the cu-
mulative standard normal distribution (conditional to some explanatory variables
X):

p = Prob(y = 1|X) = Φ(X′β), (13)

where Φ(X′β) is the cumulative distribution function for the standard normal.
Alternatively,

p = Prob(y = 1|X) =
∫ X′β

−∞
(2π)−

1
2 exp

(
−z2/2

)
dz, (14)

The marginal effects for the k-th explanatory variable:

MFX(xk) =
∂p

∂xk
= φ (β0 + β1x1 + . . . βkxk)βk, (15)

where φ (· · · ) denotes the density for the standard normal distribution.
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Count data

Count data is a special data when observations take only non-negative integer.
The dependent variable is a count of the number of occurrences of an event, i.e.,
y ∈ {0, 1, 2, . . .}.
In many empirical applications, the sample of such dependent variable is concen-
trated on a few small discrete values, i.e., 0, 1, 2.
Examples:
I The number of children in a household.
I The number of alcoholic drinks a college student takes in a week.
I The number of patents.
I The number of new products introduced in market.
I The number of doctor visits.

Models:
I Poisson regression model.
I Negative binomial model.
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The Poisson regression model I

The natural stochastic environment for counted variable is a Poisson point process for
occurrence of the event of interest. The probability function for a Poisson distribution:

Prob(Y = y) =
exp(−µ)µy

y!
, y = 0, 1, 2, . . . (16)

where µ denotes the intensity parameter.
It can be shown that the Poisson distribution has the equidispersion property:

E(y) = µ,

V ar(y) = µ.

In the Poisson regression, the intensity parameter captures the relationship between the
dependent variable and explanatory variables. Usually, the exponential mean parame-
terization is assumed:

µ = exp(x′β) (17)
Estimation: the pseudo maximum likelihood (PML) or quasi maximum likelihood (QML)
estimation.
Interpretation: marginal effects:

MFX(xj) =
∂E(y|X)
∂xj

= βj exp(X′β). (18)

The Poisson regression bases on the very restrictive assumption that E(y) = V ar(y).
I Very often, the variance is far from the mean.
I In many empirical application, a Poisson density underpredicts the zero count.

Jakub Mućk Econometrics of Panel Data Limited Dependent Variable Limited dependent variable 12 / 31



The Poisson regression model II

There are several test statistics designed to verify the hypothesis that mean equals vari-
ance. General idea bases on the following relationship:

V ar(y) = µ+ αg(µ), (19)

where g(·) is some known function (g(µ) = µ or g(µ) = µ2).
Having fitted values (µ̂ = exp(X′β))from the Poisson model the following OLS regression
can be run to test null (α = 0):

(y − µ̂)2 − y
µ̂

= α
g(µ̂)
µ̂

+ u (20)

where u is the error term.
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The negative binomial regression I

The negative binomial regression is an extension of the Poisson regression that
accounts for overdispersion, i.e., extra variation that is not included in the standard
Poisson process.
In the negative binomial regression, the following moments can be assumed

E(y) = µ,

V ar(y) = µ (1 + αµ) .

Where α > 0. Note that if α = 0 then it is standard Poisson regression. α is the
overdispersion parameter.
Estimation: PML or QML.
Interpretation: marginal effects:
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Censored data

Usual causes of incompletely observed data are truncation and censoring.
I truncated data =⇒ some observations on both dependent and explanatory variables

are missing;
I censored data =⇒ some observations on dependent variable are missing but infor-

mation on explanatory variables are complete.

Censoring can be perceived as a feature of data-gathering process. For instance, for
confidentiality reasons the income of high-income workers may be top-coded (higher
than 200k USD).
Examples:
I Ticket sales to some event. We want to explain (latent, unobservable) demand for

tickets to some sport events. Sometimes all tickets are sold out and (unobservable)
demand can be higher than the total number of available tickets but we observe
only the number of tickets that were sold out.

Model:
I Tobit model.
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Censoring Mechanism

When data are censored we always observe the explanatory variables.
Our dependent variable is the latent variable y∗ for which we have incomplete
observations (y).
y∗ may be censored from below/left. Then we observe:

y =
{

y∗ if y∗ > L
L if y∗ ≤ L .

y∗ may be censored from above/right. Then we observe:

y =
{

y∗ if y∗ < U
U if y∗ ≥ U .

It it possible to consider more sophisticated censoring mechanisms.
The OLS estimates in such cases are not consistent.
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Tobit model

In the censored regression, information on censoring is included.
Consider the following example:

y
∗ = X

′
β + ε, (21)

y = 0 if y∗ ≤ 0, (22)
y = y

∗ if y∗ > 0. (23)

Then the conditional expected value of y:

E(y|x) = Φ
(
X′β

σ

)(
X
′
β + σλ

)
, (24)

where Φ(·) is the probability density function of normal distribution and λ stands for the Mills
ratio, (λ = φ(X′β/σ)/Φ(X′β/σ)).
Estimation: MLE.

Interpretation: marginal effects:
I For a latent variable (y∗), marginal effects are constant:

MFX(xj) =
∂E(y∗|x)
∂xj

= βj . (25)

but y∗ in unobserved.
I For the observed variable y, the marginal effects become more sophisticated:

MFX(xj) =
∂E(y|x)
∂xj

= βjΦ
(
X′β

σ

)
. (26)
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The Binary Outcomes Models & Panel Data
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The Pooled models

We can use logit or probit binary response function:

Pr(yit = 1|xit) = G
(
x′itβ

)
, (27)

where G(·) is a known function taking on values in the open unit interval.
Note that in the (27) we assume that our model is dynamically complete. In other
words, we don’t assume that the scores (latent variable =⇒ probabilities) is serially
correlated or contains the individual-specific component. For instance,

Pr(yit = 1|xit) = Pr(yit = 1|xit, xit−1, xit−2) (28)

Some useful procedures to test dynamic completeness:
I Add the lagged dependent variable/ independent variables to considered model and

test their significance.
I Make a pooled probit/logit regression. Based on the pooled estimates make pre-

diction and include lagged fitted values (scores) in basic model. Then, test its
significance.

To account for an unobserved heterogeneity it is useful to apply robust standard
errors.
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The Binary Outcomes Models & Panel Data

The fixed effect logit model:

Pr(yit = 1) = Pr(y∗it > 0) = F (x′itβ), (29)

where F is the logistic cumulative distribution function and

y∗it = x′itβ + µi + εit, (30)

where µi is the individual-specific intercept and εit denotes the idiosyncratic error.
Natural way to estimate the parameters of the FE logit model is to include dummy
variables and perform ML estimation but ...
Incidental parameters problem. As N →∞ for the fixed T , the number of parame-
ters capturing fixed effecst increases with T. As a result, µi cannot be consistently
estimated for a fixed T .
The above problem can be overcome by using conditional likelihood function. It
is assumed that the fixed effects and explantory variables are not correlated with
error term.
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The Binary Outcomes Models & Panel Data– conditional likelihood function I

Conditional likelihood function:

LC =
N∏
i=1

Pr

(
yi1, . . . , yiT /

T∑
t=1

yit

)
. (31)

Let’s illustrate for T = 2.
I For T = 2, the sum

∑T

t=1
yit can be 0, 1 or 2.

I But if the sum
∑T

t=1
yit is 0 (or 2) then both yi1 and yi2 are 0 (or 1). These cases

are irrelevant for the lnLC because ln(1) = 0.
I Two remaining cases (when sum equals 1). Let’s start with the sum that equals

unity:

Pr(yi1 + yi2 = 1) = Pr(yi1 = 0, yi2 = 1) + Pr(yi1 = 1, yi2 = 0) (32)

I General probability:

Pr(yi1 = 1) = exp(µi + x
′
itβ)/

[
1 + exp(µi + x

′
itβ)
]

Pr(yi1 = 0) = 1− exp(µi + x
′
itβ)/

[
1 + exp(µi + x

′
itβ)
]

= 1/
[
1 + exp(µi + x

′
itβ)
]
.

Jakub Mućk Econometrics of Panel Data Limited Dependent Variable The Binary Outcomes Models & Panel Data 21 / 31



The Binary Outcomes Models & Panel Data– conditional likelihood function II
I Conditional probability in the second period:

Pr(yi1 = 1, yi2 = 0) =
exp(µi + x′i1β)

1 + exp(µi + x′
i1β)

·
1

1 + exp(µi + x′
i2β)

Pr(yi1 = 0, yi2 = 1) =
1

1 + exp(µi + x′
i1β)

·
exp(µi + x′i2β)

1 + exp(µi + x′
i2β)

As a result:

Pr(yi1 + yi2 = 1) = Pr(yi1 = 0, yi2 = 1) + Pr(yi1 = 1, yi2 = 0)

=
exp(µi + x′i1β) + exp(µi + x′i2β)(

1 + exp(µi + x′
i1β)
)(

1 + exp(µi + x′
i2β)
) ,

and

Pr(yi1 = 1, yi2 = 0|yi1 + yi2 = 1) =
Pr(yi1 = 1, yi2 = 0)
Pr(yi1 + yi2 = 1)

=

exp(µi + x′i1β)
exp(µi + x′

i1β) + exp(µi + x′
i2β)

=
exp(x′i1β)

exp(x′
i1β) + exp(x′

i2β)

Finally,

Pr(yi1 = 1, yi2 = 0|yi1 + yi2 = 1) =
1

1 + exp(xi2 − xi1)′β
(33)

and analogously for the remaining case:

Pr(yi1 = 1, yi2 = 0|yi1 + yi2 = 1) =
exp(xi2 − xi1)′β

1 + exp(xi2 − xi1)′β
. (34)
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The Binary Outcomes Models & Panel Data– conditional likelihood function III

Using the conditional likelihood we eliminate the fixed effect (individual-specific
intercept). Apart from that, all time invariant explanatory variables are also wiped
out from the estimation.
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Random Effects Binary Models I
The random effects binary outcomes models assume that the individual ef-
fects are normally distributed, i.e. µi ∼ N (0, σ2

µ).
This yields:

Pr(yit = 1|xit, β, µi) =
{

Λ(µi + x′itβ) for logit model,
Φ(µi + x′itβ) for probit model, (35)

where Λ(·) and Φ(·) is the logistic and standard normal cumulative distribution,
respectively.
The underlying parameters (β) and the variance of random unit-specific effects (σ2

µ)
can be estimated with the Maximum Likelihood estimation (MLE). The MLE of β
and σ2

µ maximizes the log-likelihood, i.e.,
∑N

i=1 ln f(yi|Xi, β, σ2
µ), where

f(yi|Xi, β, σ2
µ) =

∫
f(yi|Xi, β)

1√
2πσ2

µ

exp
(
−µi
2σ2
µ

)
dµi, (36)

where f(yi|Xi, β) is the considered probability distribution function (logistic or
standard normal).
The MLE estimates are calculated numerically using quadrature method.
We can test the presence of cross-sectional heterogeneity. The standard likelihood
test are designed to verify the following null hypothesis:

H0 : σ2
µ = 0. (37)
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Random Effects Binary Models II

Unlike the FE logit the random effects logit/probit models use variables that are
constant over time.

In analogous fashion to the linear FE models, it is assumed that individual effects
are independent of the explanatory variables.
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The RE & FE Poisson Models
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The RE & FE Poisson Models I

The Poisson individual-specific effects model assume that the dependent variable is
determined by the conditional probability function for a Poisson distribution:

Pr(Yit = yit|xit) = P(yit, x′itβ + µi), (38)

where P is the Poisson distribution.
The joint density for the i observation (unit):

f(yi|Xi, β, µi) =
T∏
i=1

exp
(
−µi exp(x′itβ)

) (
−µi exp(x′itβ)

)yit

yit!
, (39)

but the conditional mean is given as

E(yit|µi, xit) = µi exp(x′itβ). (40)

The FE estimator is consistent for small T. In the context of the count data, the
FE approach doesn’t suffer from the incidental parameters problems.
I The individual-specific effects can be eliminated by first differencing or demeaning.
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The RE & FE Poisson Models II

Denoting λit = exp(x′itβ) the Poisson log-likelihood can be written as:

lnL(β, µ) = ln

[
N∏
i=1

T∏
t=1

(exp(−µiλit)(−µiλit)yit/yit!)

]

=
N∑
i=1

[
−µi

T∑
t=1

λit + lnµi
T∑
t=1

yit +
T∑
t=1

yit lnλit −
T∑
t=1

yit!

]
,

and differentiation with respect to individual effects leas to the concentrated likeli-
hood function (lnLCNC(β)):

lnLCNC(β) ∝
N∑
i=1

T∑
t=1

[
yit lnλit − yit ln

∑
k

λik

]
. (41)

The consistent estimates of β can be obtained by maximization of the concentrated
likelihood function (lnLCNC(β)).
The RE estimator for count data assumes that random effects are gamma-distributed.
This is due to the fact that we assume that random effects are multiplicative. Sim-
ilar to linear models, it is assumed that
I random effects are not correlated with the explanatory variables.
I E(µi) = 1.
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The RE & FE Poisson Models III

Alternatively, the pooled Poisson model can be considered. However, if there is
there is a systematic (constant over time) unobserved cross-sectional heterogeneity
then the error term will be equicorrelated (as in the linear RE estimator).
I To account for the serial correlation of error term in the pooled Poisson model

panel-robust standard errors should be applied.
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The RE tobit model

Jakub Mućk Econometrics of Panel Data Limited Dependent Variable The RE tobit model 30 / 31



The RE tobit model I
A panel version of tobit model:

y∗it = µi + x′itβ + εit, (42)

where µi is the individual-specific random component, y∗it is the latent (unobserved)
variable and εit stands for the idiosyncratic error term, i.e., εit ∼ N (0, σ2

ε).
If the FE model of (42) is considered then the ML estimation leads to inconsistent
estimates of β when T is relatively small. This is due to the incidental parameters
problem.
Conventionally, in the RE tobit model it is assumed that random effects are normally
distributed, i.e. µi ∼ N (0, σ2

µ).
The latent variable y∗it is censored from left (below)/right (above). For instance,
I [Left censoring at zero] we observe yit when the latent variable is above its left-

censoring value, i.e, yit = y∗it if y∗it > 0, and the left-censoring value if the latent
variable is below this value, i.e., yit = 0 if y∗it ≤ 0.

The MLE estimates of β, σ2
µ as well as σ2

ε can be calculated by maximization the
log-likelihood, i.e,

∑N

i=1 ln f(yi|Xi, β, σ2
µ, σ

2
ε), where

f(yi|Xi, β, σ2
µ, σ

2
ε) =

∫
f(yi|Xi, β, µi, σ2

ε)
1√

2πσ2
µ

exp
(
−µi
2σ2
µ

)
dµi, (43)

where the above integral can be numerically computed using Guassian quadrature.
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