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The First-Difference (FD) estimator I

The First-Difference (FD) estimator is an alternative estimation technique that
eliminates the fixed effect as well as time invariant regressors.
Note that

yit = αi + β1x1it + . . .+ βkxkit + uit for t = 1, . . . T, (1)
yit−1 = αi + β1x1it−1 + . . .+ βkxkit−1 + uit−1 for t = 2, . . . T, (2)

and differencing both equations yields:

∆yit = β1∆x1it + . . .+ βk∆xkit + ∆uit, (3)

where ∆ is the well-known (from time series analysis) first-difference operator, i.e.
∆zt = zt − zt−1.
The parameters in (3) can be estimated with the least squares. In the matrix form:

βFD =
(
∆X′∆X

)−1
∆X′∆y. (4)

The estimates of fixed effects can be also recovered:

α̂FDi = ȳi − x̄iβ̂FD. (5)

If the error term in (3) is not correlated with independent variable (weak exogeneity)
then the least squares estimator is unbiased and consistent.
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The First-Difference (FD) estimator II

The above assumption is less restrictive than in standard FE model:

E (∆uit|∆xit) = E (uit − uit−1|xit − xit−1) = 0. (6)

The FE estimator is more efficient when the disturbances are not serially correlated
and homoskedastic.
I But If uit is driven by random walk (autocorrelation with ρ = 1) then the FD

estimator is more efficient.
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Dynamic panel data models

Jakub Mućk Econometrics of Panel Data Dynamic models Dynamic panel data models 5 / 31



Dynamic panel data models

Dynamic linear panel data model:

yit = γyit−1 + x′itβ + uit, (7)

where
I uit = µi + εit and εit ∼ N (0, σ2

ε),
I γ is the autoregressive parameter,
I yit−1 is the lagged dependent variable,
I xit is the vector of independent variables.

Remarks:
I We assume that yit is the stable (conditional on xit) process =⇒ |γ| < 1. In other

words, the effect of idiosyncratic shock (εit) dies out.
I The independent variables (xit) are assumed to be strictly exogenous.
I µi is the individual-specific (random or fixed) effect.
I Each observation can be written as:

yit = γ
t
yi0 +

t∑
j=0

γ
j
β
′
xit−j +

1− γt

1− γ
µi +

t−1∑
j=0

γ
j
uit−j , (8)

where yi0 is the (non-stochastic) initial value.
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Dynamic panel data models– bias of the FE estimators

The demeaning transformation used to get the within estimator new creates new
independent variables that are correlated with the error term. As a result, the
standard OLS estimator is inconsistent.
General intuition:
I The within estimator for the panel AR(1) model:

yit − ȳi = (µi − µi) + γ (yit−1 − ȳi−1) + (εit − ε̄i) , (9)

where ȳi−1 = 1/(T − 1)
∑T

t=2
yit−1.

I The mean of the lagged dependent variable (ȳi−1) is correlated with ε̄i even if the
error term is not autocorrelated. The average ε̄i contains the lagged error term
εit−1 and, therefore, it is correlated with yit−1.

Taking the probability limit (plim) of the FE estimator (as N →∞):

plimγ̂FE = γ +
1
NT

(yit−1 − ȳi−1) (εit − ε̄i)
1
NT

(yit−1 − ȳi−1)2 (10)

it can be observed that the correlations between the lagged dependent variable
(ȳi−1) and error term will lead to inconsistency of the OLS estimator.
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Dynamic panel data models– bias of the FE estimators

Nickell’s (1981) bias. The small T bias of the FE estimator as N →∞:

plim
(
γ̂
FE − γ

)
= −

(1 + γ)
T

(
1−

1
T

1− γT

1− γ

)[
1−

1
T
−

2γ
(1− γ)T

(
1−

1
T

1− γT

1− γ

)]−1

(11)

The bias of the FE estimator depends on T as well as γ.
For reasonably large T it can be approximated:

plim
(
γ̂FE − γ

)
≈ −

(1 + γ)
T − 1

(12)

but when T = 2 then
plim

(
γ̂FE − γ

)
≈ −

(1 + γ)
2

(13)

The bias in the dynamic fixed effect model is caused by elimination of the individual-
specific effect from each observation. It creates a correlation of order 1/T between
explanatory variables and error term.
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Dynamic panel data models– bias of the RE estimators

Consider the RE AR(1) model:

yit = γyit−1 + εit + µi, (14)

where εit ∼ N (0, σ2
ε) and µit ∼ N (0, σ2

µ).
In the RE model, the quasi-demeaning also leads to correlation between the trans-
formed lagged dependent variable (ỹit−1 = yit−1 − θȳi−1) and the transformed
error term (ε̃it = εit − θε̄i). Therefore, the RE estimates will be biased.
For t− 1 the dependent variable:

yit−1 = γyit−2 + εit−1 + µi, (15)

also depends on the random individual-specific effect. If so, then the assumption
that the individual effects are independent of the explanatory variable (in our case
also yit−1) is not satisfied and

E (µi|yit−1) 6= 0. (16)
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Dynamic panel data models– bias of the FD estimators

The FD AR(1) estimator:

yit − yit−1 = (µi − µi) + γ (yit−1 − yit−2) + εit − εit−1 (17)

is also biased.
To illustrate the bias of the FD estimator it’s useful to recall yi,t−1.

yit−1 = γyit−2 + εit−1 + µi + εit−1. (18)

In the (18) yit−1 depends on the error term εit−1. At the same time, in the
(17) yit−1 is the explanatory variable and the error term, given by εit − εit−1,
contains the lagged error term from the non-transformed model. Therefore, the
lagged dependent variable is correlated with the error term also in the FD model.
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The MC exercise

To illustrate the magnitude of the Nickell’s bias we run the MC simulations.
Let’s assume that the true DGP (data generating process) is a simple panel AR(1)
process:

yit = γyit−1 + uit, (19)

where the error component is quite standard:

uit = µi + εit (20)

where µi ∼ N (0, σ2
µ) and εit ∼ N (0, σ2

ε).
We will consider the FE estimator.
The MC settings:
I γ = 0.9 ( in the second exercise also 0.5 and 0.95)
I T ∈ {3, 5, 10, 30}.
I σµ = 0.5 and σε = 0.25.
I N = 100 (the cross-sectional dimension).
I 1000 replications.
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Dynamic panel data models

The standard estimators (FE, RE, FD) fail to account for dynamics in the dynamic
panel data models. This is due to the fact that the lagged dependent variable
becomes endogenous (correlated with error term).
The dynamic panel data (DPD) models are designed to account for this endogeneity.
It is important when T is relatively small =⇒ micro data.
I When T is large the Nickell’s bias is relatively small. Which T is sufficiently large

to ignore the Nickell’s bias?
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The Anderson and Hsiao estimator
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The Anderson and Hsiao estimator I
Anderson and Hsiao (1981) propose estimator that simply uses the IV.
Starting point: the FD estimator:

∆yti = γ∆yti−1 + β1∆x1ti + . . .+ βk∆xkti + ∆εit. (21)

Problem: ∆yti−1 is correlated with the error term ∆εit = εit − εit−1.
Use twice lagged level of dependent variable yit−2 as an instrument for ∆yti−1. By
construction, yit−2 is not correlated with the error term ∆εit but is correlated with
endogenous variable, i.e. ∆yti−1.
In general, one might use the twice lagged differences ∆yti−2 = yti−2 − yti−3 as a
valid instrument for endogenous variable ∆yti−1. But:
I Using yti−2 as the instrumental variable =⇒ more data.
I Using ∆yti−2 as the instrumental variable =⇒ larger asymptotic variance of

estimator.

The AH estimator delivers consistent but not efficient estimates of the parameters
in the model. This is due to the fact that the IV doesn’t exploit all the available
moments conditions.
The IV estimator also ignores the structure of the error component in the trans-
formed model.
I The autocorrelation in the first differences errors leads to inconsistency of the IV

estimates.

The IV estimates would be inconsistent when other regressors are correlated with
the error term.
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Generalized Method of Moments (GMM)
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Generalized Method of Moments (GMM)

The standard classical methods, e.g., the Maximum Likelihood (ML) method, re-
quires a complete specification of the model that is considered to be estimated. This
includes also the probability of distribution of the variable of interest.
Contrary to the ML method, the Generalized Method of Moments (GMM)
requires only a set moment conditions that are implied by assumption of the un-
derlying econometric model. The GMM method is attractive when:
I there is a variety of moment or orthogonality conditions that are deduced from the

assumption of the theoretical model;
I the economic model is complex, i.e., it’s difficult to write down a tractable and

applicable likelihood function,
I to overcome the computational complexities associated with the ML estimator.
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Generalized Method of Moments (GMM)

Let’s assume that a sample of T observations is drawn from the joint probability distri-
bution:

f (w1, w2, . . . , wT , θ0) (22)
where θ0 is the (q×1) vector of true parameters and wt contains one or more endogenous
and/or exogenous variables.
Population moments condition:

E [m (wT , θ0)] = 0, for all t. (23)

where m(·) is the r-dimensional vector of functions.
Three cases:
1. q > r =⇒ the parameters in θ are not identified;
2. q = r =⇒ the parameters in θ are exactly identified;
3. q < r =⇒ the parameters in θ are overidentified and the moments conditions

have to be restricted in order to deliver a unique θ in estimation. This can be done
by the means of a weighting matrix (AT ).

Estimation bases on the empirical counterpart of E [m (wT , θ0)]:

MT (θ) =
1
T

T∑
t=1

m (wT , θ0) , (24)

where MT (θ) is the r-dimensional vector of sample moments.
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GMM – examples

Linear regression:
I Consider the standard linear regression:

yt = x
′
tβ + εt (25)

Under the standard (classical) assumption, the population conditions is following:

E (xt, εt) = E
[
xt,
(
yt − x′tβ

)]
= 0 for t ∈ 1, . . . , T. (26)

Linear regression with endogenous variables:
I Consider the standard linear regression with endogenous variables:

yt = x
′
tβ + εt (27)

where E(xt, εt) 6= 0.
I The population conditions:

E (zt, εt) = E
[
zt,
(
yt − x′tβ

)]
= 0 for t ∈ 1, . . . , T (28)

where zT is the set of the instrumental variables that satisfies the above orthogo-
nality conditions.
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The GMM and GIVE estimators I

The GMM estimator of θ bases on:

θ̂T = argminθ∈Θ
{
M ′T (θ)ATMT (θ)

}
, (29)

where AT is a r × r positive semi-define, possibly random weighting matrix.
We wish to choose the weighting matrix that minimizes the covariance matrix of θ̂.

I This provides the efficient estimator. Other weighting matrices would lead to less
efficient estimators of θ.

The general instrumental variable estimator (GIVE) combines all available
instruments to estimates the unknown parameters. In this case, the number of
instruments can be larger than number of parameters to estimate (r > k).
The starting point: the r population conditions:

E (zt, εt) = E
[
zt,
(
yt − x′tβ

)]
= 0 for t ∈ 1, . . . , T (30)

where zt is the set of (r) instruments, xt is the k-dimensional vector of regressors.
The regressors are endogenous, i.e., E (xt, εt) 6= 0 while the error term is idiosyn-
cratic, εt ∼ N (0, σ2

ε). The instruments are correlated with xt but not correlated
with the error term.
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The GMM and GIVE estimators II
This implies the following sample moments:

MT (θ) =
1
T

T∑
t=1

zt
(
yt − β′xt

)
. (31)

It can be shown that the GIVE estimator is given as:

β̂GIV E =
(
X′PzX

)−1
X′PzY, (32)

where Pz = Z (Z′Z)−1 Z′. The matrix Z collects all instruments, the matrix X
stands for the regressors while Y denotes the observations of the dependent variable.
The estimator of the variance matrix of β̂GIV E is as follows:

V ar
(
β̂GIV E

)
= σ̂2

GIV E

(
X′PzX

)−1
. (33)

where the estimated variance of the error term bases on the variance of the residuals
from the considered regression:

σ̂2
GIV E =

1
T −K

ε̂′GIV E ε̂GIV E . (34)

In analogous fashion to the basic linear models, the robust standard error (e.g.
hetereoskedasticity-consistent) can be computed.
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Sargan’s general test for misspecification

In the GIVE estimation we use r instruments. Are these instruments valid?
Consider following test statistics:

χ2
SM =

Q(β̂GIV E)
σ̂2
GIV E

, (35)

where
Q(β̂GIV E) =

(
y −Xβ̂GIV E

)′
Pz
(
y −Xβ̂GIV E

)
(36)

Under the null the regression is correctly specified and the r instruments Z are valid
instruments.
Sargan’s misspecification statistics is χ2 distributed with r − k degrees of freedom.
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The Arellano Bond estimator
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The Arellano Bond estimator

Arellano and Bond (1991) suggest using a GMM approach based on all available
conditions.
Starting point: the FD estimator:

∆yit = γ∆yit−1 + β′∆xit + ∆εit (37)

Valid instruments:
I [t=2 or t=1]: no instruments,
I [t=3]: the valid instrument for ∆yi2 = (yi2 − yi1) is yi1,
I [t=4]: the valid instruments for ∆yi3 = (yi3 − yi2) is yi2 as well as yi1,
I [t=5]: the valid instruments for ∆yi4 = (yi4 − yi3) is yi3 as well as yi2 and yi1,
I [t=6]: the valid instruments for ∆yi5 = (yi5−yi4) is yi4 as well as yi3, yi2 and yi1,
I [t=T]: the valid instruments for ∆yiT−1 = (yiT−1 − yiT−2) is yiT−2 as well as
yiT−3, . . ., yi1.

Hence, there is a total of (T−1)(T−2)/2 available instruments or moment conditions
for ∆yit−1. In general, it can be written as:

E
[
yis
(
∆yit − γ∆yit−1 − β′∆xit

)]
= 0 for s = 0, . . . , t− 2 and t = 2, . . . , T

(38)
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The Arellano Bond estimator

Consider the following specification:

∆yi. = γ∆yi.−1 + ∆Xi.β + ∆εi., (39)

where

∆yi. =

 ∆yi2
∆yi3
...

∆yiT

 ,∆yi.−1 =

 ∆yi1
∆yi2
...

∆yiT−1

 ,∆Xi. =

 ∆x′i2
∆x′i3
...

∆x′iT

 ,∆εi. =

 ∆εi2
∆εi3
...

∆εiT

 .
The corresponding matrix of instruments for the lagged difference:

Wi =


yi1 0 . . . 0
0 yi1, yi2 . . . 0
...

...
. . .

...
0 0 . . . yi1, yi2, . . . , yiT−2

 ,
Then the moment conditions can be described as:

E
[
W ′i∆εi.

]
= 0 (40)
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The Arellano Bond estimator

Finally, the GMM estimator that takes into account the formulated moment condi-
tions can be applied:

λ̂GMM =
(
G′ZSNZ

′G
)−1

G′ZSNZ
′∆y (41)

where
I λ̂GMM =

[
γ̂GMM β̂GMM

]′
,

I G = (∆y−1,∆X),
I Z = (W,∆X).
I SN is the optimal weighting matrix.

The matrix SN is usually calculated from initial estimates, e.g., IV estimates.

SN =

(
N∑
i=1

Z′i.êi.ê
′
i.Zi.

)−1

, (42)

where êi. stands for the residuals from the initial estimates.
The above procedure refers to two-step GMM estimator. Alternatively, one-step
estimator can be applied. One-step estimator takes into account the dynamic struc-
ture of the error term.
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The Arellano Bond estimator– general remarks

The Arellano-Bond (AB) estimator is usually called difference GMM.
The AB estimator deteriorates when:
I yit exhibits a substantial persistence, i.e., γ is close to unity.
I the variance of unit-specific error component (σµ) increases relatively to the variance

of the idiosyncratic error term (σε).

Note that for long panel (large T ) the number of instruments increases dramatically,
i.e., r = T/(T − 1)/2.
Consistency of the GMM estimator bases on the assumption that the transformed
error term is not serially correlated, i.e., E (∆ε,i,t ,∆ε,i,t−2 ) = 0.
I It’s crucially to test whether the second-order autocorrelation is zero for all peri-

ods in the sample. Conventionally, test bases on residuals from the first difference
equation.
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A system GMM estimator
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A system GMM estimator I

Blundell and Bond (1998) propose to include additional moment restrictions.
I These additional moment restrictions are imposed on the distribution of initial val-

ues, i.e., yi0.
I This set of restrictions is important when γ is close to unity and/or when σµ/σε

becomes large.

Consider simply panel AR(1) without regressors. Then,

yi0 =
µi

1− γ
+ εi0 for i = 1, . . . , N. (43)

under the following assumption:

E (∆yi1µi) = 0 (44)

It can be show that if the above condition is satisfied then the following T − 1
moment conditions can be used:

E [(yit − γyit−1) ∆yit−1] = 0. (45)

Note that the system estimator combines the standard AB estimator and equation
for levels (with the corresponding T − 1 moment conditions).

Jakub Mućk Econometrics of Panel Data Dynamic models A system GMM estimator 30 / 31



A system GMM estimator II

The instrument matrix:

Z =


ZAB 0 0 . . . 0

0 ∆yi2 0 . . . 0
0 0 ∆yi3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ∆yiT−1

 (46)

where ZAB is the instrument matrix from the Arellano-Bond estimator.
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