イロト イ団 トイモト イモト 一毛

Two-way error component models. GLS estimation. Cross-sectional dependence.

Jakub Mućk SGH Warsaw School of Economics

[Two-way Error Component Model](#page-1-0)

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0) [Two-way Error Component Model](#page-1-0) 2 / 29

[Two-way Error Component Model](#page-1-0)

$$
y_{it} = \alpha + X'_{it}\beta + u_{it} \qquad i \in \{1, ..., N\}, t \in \{1, ..., T\},
$$
 (1)

the composite error component:

$$
u_{i,t} = \mu_i + \lambda_t + \varepsilon_{i,t},\tag{2}
$$

where:

- \blacktriangleright μ_i the unobservable individual-specific effect;
- $\blacktriangleright \lambda_t$ the unobservable time-specific effect;
- $\blacktriangleright u_{i,t}$ the remainder disturbance.

重

 290

Two-way fixed effects model:

$$
y_{it} = \alpha_i + \lambda_t + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{it}, \qquad (3)
$$

where

- \bullet α_i the individual-specific intercept;
- \blacktriangleright λ_i the period-specific intercept;
- \blacktriangleright *u*_{*it*} ∼ *N* $(0, \sigma_u^2)$.
- As in the case of the one-way fixed effect model, independent variables x_1, \ldots, x_k cannot be time invariant (for a given unit).
- The estimation:
	- **1.** the least squares dummy variable estimator (LSDV);
	- **2.** the within estimator;
	- **3.** combination of the above methods.
- In the analogous fashion to the one-way fixed effect model, we define the following dummy variables:
	- \blacktriangleright for the *j*-th unit:

$$
\mathcal{D}_{jit} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}, \tag{4}
$$

 \blacktriangleright for the *τ*-th period:

$$
\mathcal{B}_{\tau it} = \begin{cases} 1 & t = \tau \\ 0 & \text{otherwise} \end{cases} . \tag{5}
$$

重

- In the analogous fashion to the one-way fixed effect model, we define the following dummy variables:
	- \blacktriangleright for the *j*-th unit:

$$
\mathcal{D}_{jit} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases} \tag{4}
$$

If for the τ -th period:

$$
\mathcal{B}_{\tau it} = \begin{cases} 1 & t = \tau \\ 0 & \text{otherwise} \end{cases} . \tag{5}
$$

The LSDV estimator can be obtained by estimating the following model:

$$
y_{it} = \sum_{j=1}^{N} \alpha_j \mathcal{D}_{jit} + \sum_{\tau=1}^{N} \lambda_{\tau} \mathcal{B}_{\tau it} + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{i,t}.
$$
 (6)

where $u_{i,t} \sim \mathcal{N}\left(0, \sigma_u^2\right)$.

 \blacksquare The parameters in equation [\(7\)](#page-4-0) can be estimated with the OLS.

The LSDV estimator:

$$
y_{it} = \sum_{j=1}^{N} \alpha_j \mathcal{D}_{jit} + \sum_{\tau=1}^{N} \lambda_{\tau} \mathcal{B}_{\tau it} + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{i,t}, \tag{7}
$$

where $u_{i,t} \sim \mathcal{N}\left(0, \sigma_u^2\right)$.

n We can test whether the individual-specific and period-specific effects are significantly different:

$$
\mathcal{H}_0: \quad \alpha_1 = \ldots = \alpha_k \quad \wedge \quad \lambda_1 = \ldots = \lambda_T = 0. \tag{8}
$$

 \blacksquare To verify the null described by [\(8\)](#page-6-0) we compare the sum of squared errors from the pooled model with (with restrictions, SSE_R) with the sum of squared errors from the LSDV model (without restrictions, SSE_R). The test statistics \mathcal{F} :

$$
\mathcal{F} = \frac{(SSE_R - SSE_U)/(N - T - 1)}{SSE_U/(NT - K - T)}
$$
\n(9)

if null is emph then $\mathcal{F} \sim \mathcal{F}_{(N-T-1,NT-K-T)}$.

The LSDV estimator:

$$
y_{it} = \sum_{j=1}^{N} \alpha_j \mathcal{D}_{jit} + \sum_{\tau=1}^{N} \lambda_{\tau} \mathcal{B}_{\tau it} + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{i,t}, \tag{7}
$$

where $u_{i,t} \sim \mathcal{N}\left(0, \sigma_u^2\right)$.

n We can test whether the individual-specific and period-specific effects are significantly different:

$$
\mathcal{H}_0: \quad \alpha_1 = \ldots = \alpha_k \quad \wedge \quad \lambda_1 = \ldots = \lambda_T = 0. \tag{8}
$$

 \blacksquare To verify the null described by [\(8\)](#page-6-0) we compare the sum of squared errors from the pooled model with (with restrictions, SSE_R) with the sum of squared errors from the LSDV model (without restrictions, SSE_R). The test statistics \mathcal{F} :

$$
\mathcal{F} = \frac{(SSE_R - SSE_U)/(N - T - 1)}{SSE_U/(NT - K - T)}
$$
\n(9)

if null is emph then $\mathcal{F} \sim \mathcal{F}_{(N-T-1,NT-K-T)}$.

■ One might test only individual or period effects:

 $\mathcal{H}_0: \qquad \alpha_1 = \ldots = \alpha_k,$ (10)

$$
\mathcal{H}_0: \qquad \lambda_1 = \ldots = \lambda_k. \tag{11}
$$

The construction of test for poolability is the same but we use different degrees of freedom.

 299

重

■ Consider the following transformations:

- \blacktriangleright averaging over time (for each unit *i*): \bar{y}_i ,
- \blacktriangleright averaging over unit (for each period *t*): \bar{y}_t ,
- **D** averaging over time and unit: \bar{y} ,

for the dependent variable *yit*:

$$
\bar{y}_i = \frac{1}{T} \sum_t^T y_{it}, \quad \bar{y}_t = \frac{1}{N} \sum_i^N y_{it}, \quad \bar{y} = \frac{1}{NT} \sum_t^T \sum_i^N y_{it}.
$$

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0) [Two-way Error Component Model](#page-1-0) 7 / 29

メロト メ御 トメ ヨ トメ ヨ ト

■ Consider the following transformations:

- \blacktriangleright averaging over time (for each unit *i*): \bar{y}_i ,
- \triangleright averaging over unit (for each period *t*): \bar{y}_t ,
- **D** averaging over time and unit: \bar{y} ,

for the dependent variable *yit*:

$$
\bar{y}_i = \frac{1}{T} \sum_t^T y_{it}, \quad \bar{y}_t = \frac{1}{N} \sum_i^N y_{it}, \quad \bar{y} = \frac{1}{NT} \sum_t^T \sum_i^N y_{it}.
$$

Given the above transformations we can eliminate both the individual- and period specific effects:

$$
(y_{it} - \bar{y}_i - \bar{y}_t + \bar{y}_{it}) = \beta'(x_{it} - \bar{x}_i - \bar{x}_t + \bar{x}_{it}) + (u_{it} - \bar{u}_i - \bar{u}_t + \bar{u}_{it}).
$$
 (12)

重

 QQ

The within estimator:

$$
\tilde{y}_{it} = \beta_1 \tilde{x}_{1it} + \ldots + \beta_k \tilde{x}_{kit} + \tilde{u}_{it}
$$
\n(13)

where

- $\tilde{y}_{it} = y_{it} \bar{y}_i \bar{y}_t + \bar{y}_{it}$ \tilde{x}_{1i} = x_{1i} + \bar{x}_{1i} + \bar{x}_{1i} + \bar{x}_{1i} \tilde{x}_{kit} = $x_{kit} - \bar{x}_{ki} - \bar{x}_{ki} + \bar{x}_{kit}$ $\tilde{u}_{it} = u_{it} - \bar{u}_{i} - \bar{u}_{t} + \bar{u}_{it}.$
- The parameters β_1, \ldots, β_k can be estimated by the OLS.
- The independent variables, i.e., x_{1it} , \dots , x_{kit} , cannot be time (unit) invariant.

€.

 298

Two-way random effects model:

$$
y_{it} = \alpha + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{it}, \qquad (14)
$$

where the error component is as follows:

$$
u_{it} = \mu_i + \lambda_t + \varepsilon_{it},\tag{15}
$$

where

- \triangleright *µ*^{*i*} is the individual-specific error component and *µ*^{*i*} ∼ N $(0, \sigma_{\mu}^2)$;
- \triangleright *λ*_{*t*} is the period-specific error component and *λ*_{*t*} ∼ *N* $(0, \sigma^2)$;
- **►** ε_{it} is the idiosyncratic error component and $\varepsilon_{it} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$.

重

 Ω

Two-way random effects model:

$$
y_{it} = \alpha + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{it}, \qquad (14)
$$

where the error component is as follows:

$$
u_{it} = \mu_i + \lambda_t + \varepsilon_{it},\tag{15}
$$

where

- \triangleright *µ*^{*i*} is the individual-specific error component and *µ*^{*i*} ∼ N $(0, \sigma_{\mu}^2)$;
- \triangleright *λ*_{*t*} is the period-specific error component and *λ*_{*t*} ∼ *N* $(0, \sigma^2)$;
- **►** ε_{it} is the idiosyncratic error component and $\varepsilon_{it} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$.
- The independent variables can be time invariant.
- Individual-specific and period-specific effects are independent:

 $\mathbb{E} (\mu_i, \mu_j) = 0$ if $i \neq j$, $\mathbb{E}(\lambda_s, \lambda_t) = 0$ if $s \neq t$ $\mathbb{E} (u_i, \lambda_t) = 0$

Estimation method: GLS (*generalized least squares*).

画

 Ω

The two-way RE model - the variance-covariance matrix of error term I SGH

It is assumed that the error term in the two-way RE model can be described as follow:

$$
u_{it} = \mu_i + \lambda_t + \varepsilon_{it},\tag{16}
$$

where $\mu_i \sim \mathcal{N}\left(0, \sigma_{\mu}^2\right)$, $\lambda_t \sim \mathcal{N}\left(0, \sigma_{\lambda}^2\right)$ and $\varepsilon_{it} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$.

- The variance-covariance matrix of the error term is not diagonal!.
- The diagonal elements of the variance covariance matrix of the error term:

$$
\mathbb{E}\left(u_{it}^{2}\right) = \mathbb{E}\left(\mu_{i} + \lambda_{t} + \varepsilon_{it}\right)^{2}
$$
\n
$$
= \underbrace{\mathbb{E}\left(\mu_{i}^{2}\right) + \mathbb{E}\left(\lambda_{t}^{2}\right)}_{=\sigma_{\mu}^{2}} + \underbrace{\mathbb{E}\left(\varepsilon_{it}^{2}\right)}_{=\sigma_{\lambda}^{2}} + \underbrace{2\text{cov}\left(\mu_{i}, \lambda_{t}\right)}_{=\sigma_{\varepsilon}^{2}} + \underbrace{2\text{cov}\left(\mu_{i}, \varepsilon_{it}\right)}_{=0} + \underbrace{2\text{cov}\left(\lambda_{t}, \varepsilon_{it}\right)}_{=0}
$$
\n
$$
= \sigma_{\mu}^{2} + \sigma_{\lambda}^{2} + \sigma_{\varepsilon}^{2}.
$$

For a given unit, non-diagonal elements of the variance covariance matrix of the error term $(t \neq s)$:

$$
\begin{array}{rcl}\n\text{cov}\left(u_{it}, u_{is}\right) & = & \mathbb{E}\left[\left(\mu_{i} + \lambda_{t} + \varepsilon_{it}\right)\left(\mu_{i} + \lambda_{s} + \varepsilon_{is}\right)\right], \\
& = & \underbrace{\mathbb{E}\left(\mu_{i}^{2}\right)}_{=\sigma_{\mu}^{2}} + \underbrace{\mathbb{E}\left(\lambda_{t}\lambda_{s}\right)}_{=0} + \underbrace{\mathbb{E}\left(\varepsilon_{it}\varepsilon_{is}\right)}_{=0} + \underbrace{\mathcal{C}\mathcal{V}\mathcal{V}}_{=0} \\
& = & \sigma_{\mu}^{2},\n\end{array}
$$

where $\mathcal{COV}_1 = \text{cov}(\lambda_t, \mu_i) + \text{cov}(\lambda_s, \mu_i) + \text{cov}(\lambda_t, \varepsilon_{it}) + \text{cov}(\lambda_s, \varepsilon_{it}) + 2\text{cov}(\mu_i, \varepsilon_{it}).$ $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B$

 QQ

The two-way RE model - the variance-covariance matrix of error term II SGH

Similarly, for a a given period, non-diagonal elements of the variance covariance matrix of the error term $(i \neq j)$:

$$
\begin{array}{rcl}\n\text{cov}\left(u_{it}, u_{jt}\right) & = & \mathbb{E}\left[\left(\mu_i + \lambda_t + \varepsilon_{it}\right)\left(\mu_j + \lambda_t + \varepsilon_{jt}\right)\right], \\
& = & \underbrace{\mathbb{E}\left(\mu_i \mu_j\right)}_{=0} + \underbrace{\mathbb{E}\left(\lambda_t^2\right)}_{=0} + \underbrace{\mathbb{E}\left(\varepsilon_{it}\varepsilon_{jt}\right)}_{=0} + \underbrace{\mathcal{C}\mathcal{O}\mathcal{V}_2}_{=0} \\
& = & \sigma_{\lambda}^2.\n\end{array}
$$

where $\mathcal{COV}_2 = \text{cov}(\mu_i, \lambda_t) + \text{cov}(\mu_i, \lambda_t) + \text{cov}(\mu_i, \varepsilon_{it}) + \text{cov}(\mu_j, \varepsilon_{it}) + 2\text{cov}(\lambda_t, \varepsilon_{it}).$

Finally, the variance-covariance matrix of the error term can be described:

$$
\mathbb{E}\left(u_{it}, u_{js}\right) = \begin{cases}\n\sigma_{\mu}^{2} + \sigma_{\lambda}^{2} + \sigma_{\varepsilon}^{2} & \text{if } i = j, t = s, \\
\sigma_{\mu}^{2} & \text{if } i = j, t \neq s, \\
\sigma_{\lambda}^{2} & \text{if } i \neq j, t = s, \\
0 & \text{if } i \neq j, t \neq s.\n\end{cases}
$$
\n(17)

- Unlike the one-way RE model, the variance-covariance matrix $\mathbb{E}(u_{it}, u_{is})$ is not block-diagonal because there is correlation between units. This correlation is caused by the the period-specific effects and equals $\sigma_{\lambda}^2/(\sigma_{\mu}^2 + \sigma_{\lambda}^2 + \sigma_{\varepsilon}^2)$.
- Akin to the one-way RE model there is equicorrelation which is implied by the unit-specific effects and equals $\sigma_{\mu}^2/(\sigma_{\mu}^2 + \sigma_{\lambda}^2 + \sigma_{\varepsilon}^2)$.

 Ω

Consider the following transformation:

$$
z_{it}^* = z_{it} - \theta_1 \bar{z}_i - \theta_2 \bar{z}_t + \theta_3 \bar{z}_{it}, \qquad (18)
$$

where $z_{it} \in \{y_{it}, x_{1it}, \ldots, x_{kit}, u_{it}\}\$ and

$$
\bar{z}_i = \frac{1}{T} \sum_t^T z_{it}, \quad \bar{y}_t = \frac{1}{N} \sum_i^N z_{it}, \quad \bar{z} = \frac{1}{NT} \sum_t^T \sum_i^N z_{it},
$$

and

.

$$
\theta_1 = 1 - \frac{\sigma_{\varepsilon}}{\sqrt{T \sigma_{\mu}^2 + \sigma_{\varepsilon}^2}}
$$

\n
$$
\theta_2 = 1 - \frac{\sigma_{\varepsilon}}{\sqrt{N \sigma_{\lambda}^2 + \sigma_{\varepsilon}^2}}
$$

\n
$$
\theta_3 = \theta_1 + \theta_2 + \frac{\sigma_{\varepsilon}}{\sqrt{T \sigma_{\mu}^2 + N \sigma_{\lambda}^2 + \sigma_{\varepsilon}^2}} - 1.
$$

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0) [Two-way Error Component Model](#page-1-0) 12 / 29

メロト メタト メミト メミト

 \equiv

 298

- **Swamy and Aurora (1972)** propose running three least squares regressions to estimate *σ*²_{*ε*}, *σ*_{$μ$}² and *σ*_{$λ$}² which allow us to calculate *θ*₁, *θ*₂ and *θ*₃.
	- **1.** The within regression allows to estimate the variance of the idiosyncratic component, i.e., $\hat{\sigma}_{\varepsilon}^2$.
	- **2.** The between (**individuals**) regression allows to estimate the σ_{μ} which is the estimated variance of the error term from the following regression:

$$
\bar{y}_i - \bar{y} = \beta_1 (\bar{x}_{1i} - \bar{x}_1) + \ldots + \beta_k (\bar{x}_{ki} - \bar{x}_k) + \bar{u}_i - \bar{u},
$$

and $\hat{\sigma}_{\mathcal{I}}^2$ is the estimated variance of the error term from the above regression. Then, the estimated variance of the individual specific-error term can be described as follow

$$
\hat{\sigma}_{\mu}^{2} = \frac{\hat{\sigma}_{\mathcal{I}}^{2} - \hat{\sigma}_{\varepsilon}^{2}}{T}.
$$

3. The between (**periods**) regression allows to estimate the σ_{λ} which is the estimated variance of the error term from the following regression:

$$
\bar{y}_t - \bar{y} = \beta_1 (\bar{x}_{1t} - \bar{x}_1) + \ldots + \beta_k (\bar{x}_{kt} - \bar{x}_k) + \bar{u}_t - \bar{u},
$$

and $\hat{\sigma}_{\mathcal{T}}^2$ is the estimated variance of the error term from the above regression. Then, the estimated variance of the individual period-error term can be described as follow

$$
\hat{\sigma}_{\lambda}^2 = \frac{\hat{\sigma}_{\mathcal{T}}^2 - \hat{\sigma}_{\varepsilon}^2}{N}.
$$

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0) [Two-way Error Component Model](#page-1-0) 13 / 29

 Ω

つひひ

- Alternative estimators of σ_{ξ}^2 , σ_{μ}^2 and σ_{λ}^2 are proposed by Wallace and Hussain (1969), Amemiya (1971), Fuller and Battese (1974) and Nerlove (1971).
- In general, estimates of σ_{ε}^2 , σ_{μ}^2 and σ_{λ}^2 allow to calculate θ_1 , θ_2 and θ_3 and estimate model for transformed variables:

$$
y_{it}^* = \beta_1 x_{1it}^* + \ldots + \beta_k x_{kit}^* + u_{it}^* \tag{19}
$$

where $z_{it}^* = z_{it} - \theta_1 \bar{z}_i - \theta_2 \bar{z}_t + \theta_3 \bar{z}_{it}$ and $z_{it} \in \{y_{it}, x_{1it}, \dots, x_{kit}, u_{1it}\}.$

Computational warning: sometimes estimates of σ_{μ}^2 or σ_{λ}^2 could be negative. This is due to the fact that we use two-step strategy rather than jointly estimation.

$$
y_{it} = \alpha + \beta_1 x_{1it} + \beta_k x_{kit} + \mu_i + \lambda_t + \varepsilon_{it}
$$
\n
$$
(20)
$$

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0) [Two-way Error Component Model](#page-1-0) 15 / 29

メロト メタト メミト メミト

重。

 $2Q$

[Non-spherical variance-covariance matrix of the error](#page-19-0) [term](#page-19-0)

JAKUB MUĆK ECONOMETRICS OF PANEL DATA TWO-WAY ERROR COMPONENT MODEL

In the previous meeting we've assumed that the variance covariance matrix of the error term is spherical:

$$
\mathbb{E}\left(uu'\right) = \sigma_u^2 I\tag{21}
$$

or, at least, block diagonal (in the RE model):

$$
\mathbb{E}\left(u_{i.}u'_{i.}\right) = \Sigma_{i,i} = \left(\sigma_{\mu}^{2} + \sigma_{\varepsilon}^{2}\right)\left[\begin{array}{cccc} 1 & \rho & \dots & \rho \\ \rho & 1 & \vdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{array}\right],\tag{22}
$$

where

$$
\rho = \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma_{\varepsilon}^2},
$$

where σ_{μ}^{2} and σ_{ε}^{2} stands for the variance of the individual-specific and idiosyncratic error term.

つくへ

■ More general case:

$$
\mathbb{E}\left(uu'\right) = \Sigma = \begin{bmatrix} \Sigma_{1,1} & \Sigma_{1,2} & \dots & \Sigma_{1,N} \\ \Sigma_{2,1} & \Sigma_{2,2} & \dots & \Sigma_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{N,1} & \Sigma_{N,2} & \dots & \Sigma_{N,N} \end{bmatrix},\tag{23}
$$

where $\Sigma_{i,j}$ is the variance-covariance matrix of the error term between *i*-th and *j*-th (cross-sectional) unit.

■ More general case:

$$
\mathbb{E}\left(uu'\right) = \Sigma = \begin{bmatrix} \Sigma_{1,1} & \Sigma_{1,2} & \dots & \Sigma_{1,N} \\ \Sigma_{2,1} & \Sigma_{2,2} & \dots & \Sigma_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{N,1} & \Sigma_{N,2} & \dots & \Sigma_{N,N} \end{bmatrix},\tag{23}
$$

where $\Sigma_{i,j}$ is the variance-covariance matrix of the error term between *i*-th and *j*-th (cross-sectional) unit.

Implications: the least squares estimator is still consistent (if other assumptions are satisfied) but it is no longer BLUE (best linear unbiased estimator).

- To overcome the problem of non-spherical variance-covariance matrix of the error term
- If we know Σ and the other assumptions are satisfied one might apply **the GLS (***Generalized Least Squares***) estimator**:

$$
\hat{\beta}^{GLS} = \left(X'\hat{\Sigma}^{-1}X\right)^{-1}X'\hat{\Sigma}^{-1}y,\tag{24}
$$

and the variance-covariance estimator:

$$
Var\left(\hat{\beta}^{GLS}\right) = \left(X'\hat{\Sigma}^{-1}X\right)^{-1}.\tag{25}
$$

In the presence of the non-spherical disturbances the GLS estimator is BLUE. Key challenge: Σ !.

The variance-covariance matrix of the error term can be non-spherical due to:

- **1.** Autocorrelation (serial correlation).
- **2.** Heteroskedasticity.
- **3.** Cross-sectional dependence.
- **4.** Combination of the above cases.

Response to a unit shock in period $t = 0$.

 $\rho = 0.95, \ \rho = 0.75, \ \rho = 0.5.$

JAKUB MUĆK ECONOMETRICS OF PANEL DATA TWO-WAY ERROR COMPONENT MODEL

NON-SPHERICALVARIANCE-COVARIANCE MATRIX OF THE [error term](#page-19-0) 21 / 29

 Ω

- Visual inspection: plotting residuals.
- Simple regressions.
- Test proposed by Baltagi and Wu (1999).
	- In The null hypothesis is about no autocorrelation:

$$
\mathcal{H}_0 \quad \rho = 0. \tag{27}
$$

NON-SPHERICALVARIANCE-COVARIANCE MATRIX OF THE

- In The test investigates only the first-order autocorrelation.
- \blacktriangleright The test statistics is the Durbin-Watson statistic tailored to the panel data.

General idea:

- **1.** The autocorrelation coefficient is estimated from the OLS (within) residuals.
- **2.** All variables are transformed:

$$
z_{it}^* = \begin{cases} (1 - \hat{\rho}^2)^{\frac{1}{2}} z_{it} & \text{if } t = 1\\ (1 - \hat{\rho}^2)^{\frac{1}{2}} \left(z_{it} \left(\frac{1}{1 - \hat{\rho}^2} \right)^{\frac{1}{2}} - z_{it-1} \left(\frac{\hat{\rho}^2}{1 - \hat{\rho}^2} \right) \right) & \text{if } t > 1 \end{cases}
$$
(28)

Note that the above transformation is quite similar to the Prais-Winters transformation.

- **3.** The first observation of each panel should be removed and then it is possible to apply within (FE) estimator to transformed data.
- **4.** Baltagi and Wu propose the GLS estimator of the RE model with the AR error term. The main idea is quite similar to basic RE model.

NON-SPHERICALVARIANCE-COVARIANCE MATRIX OF THE

- **Heteroskedasticity** refers to the situation in which the variance of the error term is not constant.
- Example for panel data:

$$
\mathbb{E}\left(uu'\right) = \Sigma = diag\left(I\sigma_{u1}^2, \dots, I\sigma_{u,N}^2\right) \neq I\sigma_u^2,
$$
\n(29)

NON-SPHERICALVARIANCE-COVARIANCE MATRIX OF THE

when $\sigma_{u,1}^2 \neq \ldots \neq \sigma_{u,N}^2$.

General intuition: uncertainty associated with the outcome *y* (captured by the variance of the error term) is not constant for various values of independent variables *x*.

- When the error term is heteroskedastic the robust estimator of the variance-covariance can be used to obtain consistent estimates of the standard errors.
- White's heteroscedasticity-consistent estimator:

$$
Var(\hat{\beta}) = (X'X)^{-1} (X'\hat{\Sigma}X) (X'X)^{-1}
$$
 (30)

where $\hat{\Sigma} = diag(\hat{u}_1^2, \dots, \hat{u}_N^2)$.

- The clustered robust standard errors:
	- ▶ All observations are divided into *G* groups:

$$
Var(\hat{\beta}) = (X'X)^{-1} \left(\sum_{i=1}^{G} x'_i \hat{u}_i \hat{u}'_i x_i \right) (X'X)^{-1}.
$$
 (31)

NON-SPHERICALVARIANCE-COVARIANCE MATRIX OF THE

ERROR TERM 25 / 29

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0)

Cross-sectional dependence takes place when the error terms between individuals at the same time period *t* are correlated:

$$
\mathbb{E}\left(u_{it}u_{jt}\right) \neq 0 \quad \text{if} \quad i \neq j. \tag{32}
$$

[Non-sphe](#page-19-0)[ri](#page-29-0)[cal](#page-19-0) [v](#page-31-0)[a](#page-19-0)[ri](#page-29-0)[a](#page-19-0)[nce](#page-30-0)[-c](#page-31-0)[o](#page-19-0)[v](#page-18-0)[ar](#page-19-0)[ianc](#page-34-0)[e](#page-18-0) [ma](#page-19-0)[t](#page-34-0)[r](#page-19-0)[i](#page-34-0)[x](#page-19-0) [of](#page-0-0)[the](#page-34-0)

- \blacksquare The cross-sectional dependence may arise due to the presence of common or/and unobserved factors that become a part of the error term. For instance:
	- \triangleright common business cycles fluctuations.
	- \blacktriangleright spillovers.
	- \blacktriangleright neighborhood effects, herd behavior, and interdependent preferences.

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0) ERROR TERM 26 / 29 ■ Consider the static panel data model:

$$
y_{it} = \alpha + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{it}.
$$
\n(33)

■ The cross-sectional correlation coefficient:

$$
\hat{\rho}_{i,j} = \frac{\sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt}}{\left(\sum_{t=1}^{T} \hat{u}_{it}\right)^{\frac{1}{2}} \left(\sum_{t=1}^{T} \hat{u}_{jt}\right)^{\frac{1}{2}}}. \tag{34}
$$

Note that $\rho_{i,j} = \rho_{j,i}$. For panel consisting of *N* unit we get $N(N-1)/2$ pair-wise correlation coefficients.

- The hypothesis of interest:
- $\mathcal{H}_0: \quad \rho_{i,j} = 0 \quad \text{if} \quad i \neq j.$ (35)

$$
\mathcal{H}_1: \quad \rho_{i,j} \quad \neq \quad 0 \quad \text{if} \quad i \neq j \tag{36}
$$

The LM statistic (Breusch and Pagan, 1980):

$$
LM = T \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{i,j}^2.
$$
 (37)

The above statistic is valid for fixed *N* as $T \to \infty$ and is asymptomatically distributed as χ^2 with $N(N-1)/2$ degrees of freedom.

■ The LM statistic exhibits substantial size distortion when *N* is relatively large due to fact that it is not correctly centered for fixed *T* .

SGH

Pesaran (2004) proposes the following test statistic:

$$
CD = \sqrt{\frac{2T}{N(N-1)}} \left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \hat{\rho}_{i,j} \right). \tag{38}
$$

Under the null about no cross sectional dependence, the CD statistic is normally distributed, i.e., $CD \sim \mathcal{N}(0, 1)$, for $N \to \infty$ and sufficiently large *T*.

- \blacksquare The CD statistic can be used in a wide range of panel-data models, e.g., basic static models, homogeneous/heterogeneous dynamic model, nonstationary model.
- **Unbalanced panels:**

$$
CD = \sqrt{\frac{2}{N(N-1)}} \left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sqrt{T_{ij}} \hat{\rho}_{i,j} \right).
$$
 (39)

NON-SPHERICALVARIANCE-COVARIANCE MATRIX OF THE

ERROR TERM 28 / 29

Jakub Mućk Econometrics of Panel Data [Two-way error component model](#page-0-0)

Friedman's statistics:

$$
FR = \frac{T - 1}{(N - 1)R_{ave} + 1}
$$
\n(40)

where R_{ave} is the average Spearman's cross-sectional correlation.

The FR statistic is asymptotically χ^2 distributed with with $T-1$ degrees of freedom, for fixed *T* and and sufficiently large *N*.

Friedman's statistics:

$$
FR = \frac{T - 1}{(N - 1)R_{ave} + 1}
$$
\n(40)

where *Rave* is the average Spearman's cross-sectional correlation.

- The FR statistic is asymptotically χ^2 distributed with with $T-1$ degrees of freedom, for fixed *T* and and sufficiently large *N*.
- Frees' statistics bases on the sum of the squared rank correlation coefficients R_{ave}^2 .

$$
FRE = N\left(R_{ave}^2 - \frac{1}{T - 1}\right),\tag{41}
$$

where

$$
R_{ave}^{2} = \sqrt{\frac{2}{N(N-1)}} \left(\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sqrt{T_{ij}} \hat{r}_{i,j} \right).
$$
 (42)

where $r_{i,j}$ is the Spearman's correlation between residuals for *i* and *j* unit.

- The null is rejected when $R_{ave}^2 > 1/(T-1) + Q_b/N$, where Q_b is the *b*-th quantile of the *Q* distribution (the *Q* distribution is the weighted sum ot two χ^2 random variables).
- Both Friedman's and Frees' statistic are designed to static panel data models.

SGH