K ロ K K (個) X (星) X (星) → 三星 → の Q (や

One-way error component models. Fixed and random effects model

Jakub Mućk SGH Warsaw School of Economics

[One-way error component model](#page-1-0)

JAKUB MUĆK ECONOMETRICS OF PANEL DATA FE AND RE MODELS ONE-WAY ERROR COMPONENT MODEL 2 / 19

In the model:

$$
y_{it} = \alpha + X'_{it}\beta + u_{it} \quad i \in \{1, ..., N\}, t \in \{1, ..., T\}
$$
 (1)

it is assumed that all units are homogeneous. Why?

One-way error component model:

$$
u_{i,t} = \mu_i + \varepsilon_{i,t} \tag{2}
$$

where:

 \blacktriangleright μ_i – the unobservable individual-specific effect; \blacktriangleright $\varepsilon_{i,t}$ – the remainder disturbance.

イロト イ部 トメ ミト メモト

重

 $2Q$

In the model:

$$
y_{it} = \alpha + X'_{it}\beta + u_{it} \quad i \in \{1, ..., N\}, t \in \{1, ..., T\}
$$
 (1)

it is assumed that all units are homogeneous. Why?

One-way error component model:

$$
u_{i,t} = \mu_i + \varepsilon_{i,t} \tag{2}
$$

where:

 \blacktriangleright μ_i – the unobservable individual-specific effect;

 \blacktriangleright $\varepsilon_{i,t}$ – the remainder disturbance.

- **The most popular estimators:**
	- ▶ The fixed effects (FE) estimator.
	- ▶ The random effects (RE) estimator.

メロト メ御 トメ ヨ トメ ヨ ト

重

 290

[Fixed effects model](#page-4-0)

We can relax assumption that all individuals have the same coefficients

$$
y_{it} = \alpha_i + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{it}
$$
\n⁽³⁾

イロメ イ部メ イヨメ イヨメー

€.

 QQQ

- Note that an *i* subscript is added to only intercept α_i but the slope coefficients, β_1 , \ldots , β_k are constant for all individuals.
- **An individual intercept** (α_i) are include to control for individual-specific and **time-invariant characteristics. That intercepts are called fixed effects**.
- Fixed effects capture the **individual heterogeneity.**
- The estimation:
	- i) The least squares dummy variable estimator
	- ii) The fixed effects/within estimator

The natural way to estimate fixed effect for all individuals is to include an indicator variable. For example, for the first unit:

$$
\mathcal{D}_{1i} = \begin{cases} 1 & i = 1 \\ 0 & \text{otherwise} \end{cases} \tag{4}
$$

イロト イ部 トイミト イミト

€.

 QQQ

The number of dummy variables equals *N*. **It is not feasible to use the least square dummy variable estimator when** *N* **is large**

We might rewrite the fixed regression as follows:

$$
y_{it} = \sum_{j=1}^{N} \alpha_i \mathcal{D}_{ji} + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + u_{i,t}
$$
 (5)

Why α is missing?

Let us start with simple fixed effects specification for individual i :

$$
y_{it} = \alpha_i + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + u_{it} \qquad t = 1, \ldots, T \tag{6}
$$

Average the observation across time and using the assumption on time-invariant parameters we get:

$$
\bar{y}_i = \alpha_i + \beta_1 \bar{x}_{1i} + \ldots + \beta_k \bar{x}_{ki} + \bar{u}_i \tag{7}
$$

where $\bar{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}, \ \bar{x}_{1i} = \frac{1}{T} \sum_{t=1}^T x_{1it}, \ \bar{x}_{ki} = \frac{1}{T} \sum_{t=1}^T x_{kit}$ and $\bar{u}_i =$ $\frac{1}{T} \sum_{t=1}^{T} u_i$

Now we substract (7) from (6)

$$
(y_{it} - \bar{y}_i) = \underbrace{(\alpha_i - \alpha_i)}_{=0} + \beta_1 (x_{1it} - \bar{x}_{1i}) + \ldots + \beta_k (x_{itk} - \bar{x}_{ki}) + (u_{it} - \bar{u}_i)
$$
(8)

Using notation: $\tilde{y}_{it} = (y_{it} - \bar{y}_i), \ \tilde{x}_{1it} = (x_{1it} - \bar{x}_{1i}), \ \tilde{x}_{kit} = (x_{kit} - \bar{x}_{ki}) \ \tilde{u}_{it} =$ $(u_{it} - \bar{u}_i),$ we get

$$
\tilde{y}_{it} = \beta_1 \tilde{x}_{1t} + \ldots + \beta_k \tilde{x}_{kt} + \tilde{u}_{i,t} \tag{9}
$$

KORK KORK KERK EL POLO

Note that we **do not estimate directly fixed effects**.

 $2Q$

We can test estimates of intercept to verify whether the fixed effects are different among units:

$$
\mathcal{H}_0: \alpha_1 = \alpha_2 = \ldots = \alpha_N. \tag{10}
$$

- The poolability test is design to test joint significance of individual-specific intercepts.
- To test [\(10\)](#page-8-0) we estimate: i) **unrestricted model** (the least squares dummy variable estimator) and ii) **restricted model** (pooled regression). Then we calculate sum of squared errors for both models: *SSE^U* and *SSER*.

$$
\mathcal{F} = \frac{(SSE_R - SSE_U)/(N-1)}{SSE_U/(NT - K)}\tag{11}
$$

イロト イ団 ト イミト イモト 一番

if null is true then $\mathcal{F} \sim \mathcal{F}_{(N-1,NT-K)}$.

- \blacksquare The within transformation, by construction, eliminates all time invariant explanatory variables.
- A common practice is to use robust/clustered standard errors.
	- In the FE estimation, the heterogeneity in outcome is only taken into account. However, there could be systematic differences in variation of outcome for each individual.

イロト イ母 トイラト イラトー

G.

 QQQ

In the FE estimation, individual-specific effects could be potentially correlated with explanatory variables since they are fixed.

[Random Effect model](#page-10-0)

Jakub Mućk Econometrics of Panel Data [FE and RE models](#page-0-0) [Random Effect model](#page-10-0) 10 / 19

■ Let's assume the following model

$$
y_{it} = \alpha + X'_{it}\beta + u_{it}, \quad i \in \{1, ..., N\}, t \in \{1, ..., T\}.
$$
 (12)

 \blacksquare The error component (u_t) is the sum of the individual specific random component (μ_i) and idiosyncratic disturbance $(\varepsilon_{i,t})$:

$$
u_{it} = \mu_i + \varepsilon_{it},\tag{13}
$$

イロト イ部 トイミト イミト

(重) $2Q$

where $\mu_i \sim \mathcal{N}(0, \sigma_\mu^2);$ and $\varepsilon_{i,t} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$.

Jakub Mućk Econometrics of Panel Data [FE and RE models](#page-0-0) [Random Effect model](#page-10-0) 11 / 19

 QQQ

■ Let's assume the following model

$$
y_{it} = \alpha + X'_{it}\beta + u_{it}, \quad i \in \{1, ..., N\}, t \in \{1, ..., T\}.
$$
 (12)

 \blacksquare The error component (u_t) is the sum of the individual specific random component (μ_i) and idiosyncratic disturbance $(\varepsilon_{i,t})$:

$$
u_{it} = \mu_i + \varepsilon_{it},\tag{13}
$$

where $\mu_i \sim \mathcal{N}(0, \sigma_\mu^2);$ and $\varepsilon_{i,t} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$.

- Note that independent variables can be time invariant.
- Individual (random) effects are independent:

$$
\mathbb{E}\left(\mu_i, \mu_j\right) = 0 \qquad \text{if } i \neq j. \tag{14}
$$

イロン イ団ン イミン イモン 一番

Estimation method: GLS (*generalized least squares*).

 QQQ

 \blacksquare The error component (u_t) :

$$
u_{it} = \mu_i + \varepsilon_{it},\tag{15}
$$

イロン イ団ン イミン イモン 一番

where $\mu_i \sim \mathcal{N}(0, \sigma_{\mu}^2)$ and $\varepsilon_{i,t} \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$.

Diagonal elements of the variance covariance matrix of the error term:

$$
\mathbb{E}\left(u_{it}^2\right) = \mathbb{E}\left(\mu_i^2\right) + \mathbb{E}\left(\varepsilon_{it}^2\right) + 2cov\left(\mu_i, \varepsilon_{it}\right)
$$

$$
= \sigma_\mu^2 + \sigma_\varepsilon^2
$$

Non-diagonal elements of the variance covariance matrix of the error term $(t \neq s)$:

$$
cov(u_{it}, u_{is}) = \mathbb{E}(u_{it}u_{is}) = \mathbb{E}[(\mu_i + \varepsilon_{it}) (\mu_i + \varepsilon_{is})].
$$

■ After manipulation:

$$
cov(u_{it}, u_{is}) = \underbrace{\mathbb{E}(\mu_i^2)}_{\sigma_\mu^2} + \underbrace{\mathbb{E}(\mu_i \varepsilon_{it})}_{0} + \underbrace{\mathbb{E}(\mu_i \varepsilon_{is})}_{0} + \underbrace{\mathbb{E}(\varepsilon_{it} \varepsilon_{is})}_{0} = \sigma_\mu^2
$$

Jakub Mućk ECONOMETRICS OF PANEL DATA FE AND RE MODELS RANDOM EFFECT MODEL 12 / 19

Finally, variance covariance matrix of the error term for given individual (*i*):

$$
\mathbb{E}\left(u_{i}.u'_{i.}\right) = \Sigma_{u,i} = \left(\sigma_{\mu}^{2} + \sigma_{\varepsilon}^{2}\right)\left[\begin{array}{cccc} 1 & \rho & \dots & \rho \\ \rho & 1 & \vdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{array}\right],\tag{16}
$$

where

$$
\rho = \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma_{\varepsilon}^2}.
$$

- Note that Σ_u is block diagonal with equicorrelated diagonal elements $\Sigma_{u,i}$ but not spherical.
- Although disturbances from different (cross-sectional) units are independent presence of the time invariant random effects (μ_i) leads to equi-correlations among regression errors belonging to the same (cross-sectional) unit.

KORK SERVER EL POLO

 QQQ

Consider the following linear model:

$$
y = \beta X + u \tag{17}
$$

when the variance covariance matrix of the error term $(\mathbb{E}(uu') = \sigma^2 I)$ is spherical then the OLS estimator is motivated:

$$
\beta^{OLS} = \left(X'X\right)^{-1} X'y. \tag{18}
$$

Let's relax the assumption about the variance covariance matrix of the error term, i.e., $\mathbb{E}(uu') = \Sigma$ and Σ is not diagonal but is positively defined. We can transform the baseline model [\(17\)](#page-15-0) as follows:

$$
Cy = C\beta X + Cu,\tag{19}
$$

where $C = \Sigma^{-\frac{1}{2}}$.

 \blacksquare The variance covariance matrix of the error term becomes in the transformed model:

$$
\mathbb{E}\left(CuC'u'\right) = \mathbb{E}\left(\Sigma^{-\frac{1}{2}}u(\Sigma^{-\frac{1}{2}})'u'\right) = \mathbb{E}\left(\Sigma^{-1}\Sigma\right) = I.
$$
 (20)

After manipulations, the GLS estimator of the vector *β* is:

$$
\beta^{GLS} = \left(X'\Sigma^{-1}X\right)^{-1}X'\Sigma^{-1}y.
$$
\n(21)

イロン イ団ン イミン イモン 一番

How to choose Σ**?**.

SGH

■ Using the GLS estimator we have:

$$
\hat{\beta}^{RE} = \left(X'\Sigma^{-1}X\right)^{-1}X'\Sigma^{-1}y,\tag{22}
$$

イロト イ部 トイミト イモトー

重

 Ω

$$
Var\left(\hat{\beta}^{RE}\right) = \left(X'\Sigma^{-1}X\right)^{-1},\tag{23}
$$

but we don't know Σ !

We know that $\Sigma = \mathbb{E}(uu')$ is block-diagonal and:

$$
cov(u_{it}, u_{js}) = \begin{cases} 0 & \text{if } i \neq j, \\ \sigma_{\mu}^2 + \sigma_{\varepsilon}^2 & \text{if } i = j \text{ and } s = t, \\ \rho(\sigma_{\mu}^2 + \sigma_{\varepsilon}^2) & \text{if } i = j \text{ and } s \neq t, \end{cases}
$$

where $\rho = \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2} + \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2}$.

- **But** we do not know σ_{μ} and σ_{ε} .
- **There are many different strategies to estimates** σ_{μ} **and** σ_{ε} **.**

We use the GLS transforms of the independent (x_{jit}^*) and dependent variable (y_{it}^*) :

$$
x_{jit}^* = x_{jit} - \hat{\theta}_i \bar{x}_{ji}
$$

$$
y_{it}^* = y_{it} - \hat{\theta}_i \bar{y}_i
$$

where \bar{x}_{ji} and \bar{y}_i are the individuals means.

Estimates of the transforming parameter:

$$
\hat{\theta}_i = 1 - \sqrt{\frac{\hat{\sigma}_\varepsilon^2}{T_i \hat{\sigma}_\mu^2 + \hat{\sigma}_\varepsilon^2}}.
$$

The estimates of the idiosyncratic error component σ_{ε} :

$$
\hat{\sigma}_{\varepsilon}^{2} = \frac{\sum_{i}^{n} \sum_{t}^{T_{i}} \hat{u}_{it}^{2}}{NT - N - K + 1}
$$

where

$$
\hat{u}_{it}^{2} = (y_{it} - \bar{y}_{i} + \bar{y}) - \hat{\alpha}^{Within} - (x_{it} - \bar{x}_{i} + \bar{x})\hat{\beta}^{Within},
$$

where $\hat{\alpha}^{Within}$ and $\hat{\beta}^{Within}$ stand for the within estimates.

イロト イ団 トイミト イミド ニミー つんぐ

イロト イ団 トイミト イミド ニミー つんぐ

The error variance of individual specific random component (σ_{μ}^2) :

$$
\hat{\sigma}_{\mu}^{2} = \frac{SSR^{Between}}{N - K} - \frac{\hat{\sigma}_{\varepsilon}^{2}}{\bar{T}}
$$

where \overline{T} is the harmonic mean of T_i , i.e., $\overline{T} = n / \sum_i^n (1/T_i)$, and $SSR^{Between}$ stands for the sum of squared residuals from the between regression (details on further lectures):

$$
SSR^{Between} = \sum_{i}^{n} (\bar{y}_{i} - \hat{\alpha}^{Between} - \bar{x}_{i} \hat{\beta}^{Between})
$$

where $\hat{\beta}^{Between}$ and $\hat{\alpha}^{Between}$ stand for the coefficient estimates from the between regression.

 Ω

イロン イ団 メイミン イモン 一番

- Method which gives more precise estimates in small samples and unbalanced panels.
- **The estimation of** σ_{ε} (the idiosyncratic error component) is the same \implies it bases on the residuals from the within regression.
- \blacksquare The variance or the individual error term:

$$
\label{eq:variance} \hat{\sigma}^2_{\mu,SA} = \frac{SSR^{Between} - (N-K)\,\hat{\sigma}^2_{\varepsilon}}{NT - tr},
$$

where $SSR^{Between}$ is the sum of the squared residuals from the between regression and

$$
tr = \text{trace}\left\{ \left(X'PX \right)^{-1} X'ZZ'X \right\}
$$

$$
P = \text{diag}\left\{ \frac{1}{T_i} e_{T_i} e'_{T_i} \right\}
$$

$$
Z = \text{diag}\left\{ e_{T_i} \right\}
$$

where e_{T_i} is a $T_i \times 1$ vector of ones.

- In the standard RE model, the variance of the random effect is assumed to be σ_{μ}^{2} ($\mu \sim$ $\mathcal{N}\left(0,\sigma_{\mu}^{2}\right)).$
- We can test for the presence of heterogeneity:

$$
\begin{array}{rcl}\n\mathcal{H}_0: & \sigma_\mu & = & 0 \\
\mathcal{H}_1: & \sigma_\mu & \neq & 0\n\end{array}
$$

- If the null hypothesis is rejected, then we conclude that there are random individual differences among sample members, and that the random effects model is appropriate.
- If we fail to reject the null hypothesis, then we have no evidence to conclude that random effects are present.
- We construct the Lagrange multiplier statistic:

$$
LM = \sqrt{\frac{NT}{2(T-1)}} \left(\frac{\sum_{i=1}^{N} \left(\sum_{t=1}^{T} \hat{u}_{it} \right)^{2}}{\sum_{i=1}^{N} \sum_{t=1}^{T} \hat{u}_{it}^{2}} - 1 \right),
$$
\n(24)

where $\hat{u}_{i,t}$ stands for the residuals, i.e., $\hat{u}_{it} = y_{it} - \hat{\alpha}_0 - \hat{\beta}_1 x_{1it} - \ldots - \hat{\beta}_k x_{kit}$.

Conventionally, $LM \sim \chi^2(1)$. In large samples, $LM \sim \mathcal{N}(0, 1)$.

SGH