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Introduction

Panel of data consists of a group of cross-section units (people, firms,
states, countries) that are observed over the time:
Cross-section:
yi where
i ∈ {1, . . . , N}.
Time series:
yt where
t ∈ {1, . . . , T}.
Panel data:
yit where
i ∈ {1, . . . , N}
t ∈ {1, . . . , T}.
In general,
N - the cross-sectional dimension.
T - the time dimension.
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Introduction

We might describe panel data using T and N:
long/short describes the time dimension (T );
wide/narrow describes the cross-section dimension (N);
For example: panel with relatively large N and T : long and wide panel.

In a balanced panel, each individuals(unit) has the same number of obser-
vation.
Unbalanced panel is a panel in which the number of time series observations
is different across units.
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Advantages of Panel Data (Baltagi, 2014)

Controlling for individual heterogeneity.
Panel data offer more informative data, more variability, less collinearity
among the dependent variables, more degrees of freedom and more efficiency
in estimation.
Identification and measurement of effects that are simply not detectable in
pure cross-section or pure time-series data.
Testing more complicated behavioral models than purely cross-section or
time-series data.
Reduction in biases resulting from aggregation over firms or individuals.
Overcome the problem of nonstandard distributions typical of unit roots tests
=⇒ macro panels.
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Limitations of Panel Data

Design and data collection problems:
I coverage;
I nonresponse;
I frequency of interviewing;

Distortions of measurement errors
Selectivity problems:
I self-selectivity;
I nonresponse;
I attrition;

Short T .
Cross-sectional dependence.
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Two examples (Arellano, 2003)

Classical example
Agricultural Cobb-Douglas production function. Consider the following model:

yit = βxit + uit + ηi (1)

I yit – the log output.
I xit – the log of a variable input;
I ηi – an farm-specific input that is constant over time, e.g., soil quality.
I uit – a stochastic input that is outside framer’s control, e.g., rainfalls.
I β - the technological parameter.

An example in which panel data does not work
Returns to education. Consider the following model:

yit = α + βxit + uit (2)

I yit – the log wage;
I xit – years of the full-time education;
I β – returns to education.

In addition:
uit = ηi + εit (3)

where ηi stands for the unobserved individual ability.
Problem: xit lacks of time variation.
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Pooled OLS estimator
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Pooled OLS estimator

Pooled model is one where the data on different units are pooled together
with no assumption on individual differences:

yit = β0 + β1x1it + . . .+ βkxkit + uit (4)

where
I yit – the dependent variable;
I xkit – the k − th explanatory variable;
I uit – the error/disturbance term;
I β0 – the intercept;
I β1, . . ., βk – the structural parameters;

Note that the coefficients β0, β1, . . ., βk are the same for all unit (do not
have i or t subscript).
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Pooled OLS estimator

Assumptions (for linear pooled model):

E(u) = 0 (5)
E(uu′) = σ2

uI (6)
rank(X) = K + 1 < NT (7)
E(u|X) = 0 (8)

(8): X is nonstochastic and is not correlated with u.
(6): the error term (u) is not autocorrelated and homoscedastic.
(8) =⇒ strictly exogeneity of independent variables.

Gauss-Markov Theorem
If (5)-(8)and are satisfied then β̂POOLED is BLUE (the best linear unbiased
estimator).
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Robust/ Clustered Standard Errors

The general assumption in pooled regression on the error terms are very
strong or even unrealistic.
The lack of correlation between errors corresponding to the same
individuals.
Let us relax the above assumption:

cov(ui,t, ui,s) 6= 0 (9)

Then we have problem of both autocorrelation and heteroskedasticity.
The OLS estimator is still consistent but the standard errors are incorrect.
We might use the clustered/robust standard errors. Here, the time
series for each individual are clusters.
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Fixed effects model
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One-way Error Component Model

In the model:

yit = α+X ′itβ + uit i ∈ {1, . . . , N}, t ∈ {1, . . . , T} (10)

it is assumed that all units are homogeneous. Why?
One-way error component model:

ui,t = µi + εi,t (11)

where:
I µi – the unobservable individual-specific effect;
I εi,t – the remainder disturbance.
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Fixed effects model

We can relax assumption that all individuals have the same coefficients

yit = αi + β1x1it + . . .+ βkxkit + uit (12)

Note that an i subscript is added to only intercept αi but the slope coeffi-
cients, β1, . . ., βk are constant for all individuals.
An individual intercept (αi) are include to control for individual-specific
and time-invariant characteristics. That intercepts are called fixed
effects.
Fixed effects capture the individual heterogeneity.
The estimation:
i) The least squares dummy variable estimator
ii) The fixed effects estimator
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The Least Squares Dummy Variable Estimator

The natural way to estimate fixed effect for all individuals is to include an
indicator variable. For example, for the first unit:

D1i =

{
1 i = 1
0 otherwise (13)

The number of dummy variables equals N . It is not feasible to use the
least square dummy variable estimator when N is large
We might rewrite the fixed regression as follows:

yit =
N∑
j=1

αiDji + β1x1it + . . .+ βkxkit + ui,t (14)

Why α is missing?
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The Fixed Effects (Within Group) Estimator

Let us start with simple fixed effects specification for individual i:

yit = αi + β1x1it + . . .+ βkxkit + uit t = 1, . . . , T (15)

Average the observation across time and using the assumption on time-invariant
parameters we get:

ȳi = αi + β1x̄1i + . . .+ βkx̄ki + ūi (16)

where ȳi = 1
T

∑T

t=1 yit, x̄1i = 1
T

∑T

t=1 x1it, x̄ki = 1
T

∑T

t=1 xkit and ūi =
1
T

∑T

t=1 ui

Now we substract (16) from (15)

(yit − ȳi) = (αi − αi)︸ ︷︷ ︸
=0

+ β1(x1it − x̄1i) + . . .+ βk(xitk − x̄ki) + (uit − ūi) (17)

Using notation: ỹit = (yit − ȳi), x̃1it = (x1it − x̄1i), x̃kit = (xkit − x̄ki) ũit =
(uit − ūi),
we get

ỹit = β1x̃1t + . . .+ βkx̃kt + ũi,t (18)
Note that we do not estimate directly fixed effects.
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Poolability test

We can test estimates of intercept to verify whether the fixed effects are
different among units:

H0 : α1 = α2 = . . . = αN . (19)

The poolability test is design to test joint significance of individual-specific
intercepts.
To test (19) we estimate: i) unrestricted model (the least squares dummy
variable estimator) and ii) restricted model (pooled regression). Then we
calculate sum of squared errors for both models: SSEU and SSER.

F = (SSER − SSEU )/(N − 1)
SSEU/(NT −K) (20)

if null is true then F ∼ F(N−1,NT−K).
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Random Effects model
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Random Effects model

Let’s assume the following model

yit = α+X ′itβ + uit, i ∈ {1, . . . , N}, t ∈ {1, . . . , T}. (21)

The error component (ut) is the sum of the individual specific random com-
ponent (µi) and idiosyncratic disturbance (εi,t):

uit = µi + εit, (22)

where µi ∼ N (0, σ2
µ);

and εi,t ∼ N (0, σ2
ε).

Note that independent variables can be time invariant.
Individual (random) effects are independent:

E (µi, µj) = 0 ifi 6= j. (23)

Estimation method: GLS (generalized least squares).
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RE model – variance covariance matrix of the error term I

The error component (ut):

uit = µi + εit, (24)

where µi ∼ N (0, σ2
µ) and εi,t ∼ N (0, σ2

ε).
Diagonal elements of the variance covariance matrix of the error term:

E
(
u2
it

)
= E

(
µ2
i

)
+ E

(
ε2
it

)
+ 2cov (µi, εit)

= σ2
µ + σ2

ε

Non-diagonal elements of the variance covariance matrix of the error term
(t 6= s):

cov (uit, uis) = E (uituis) = E [(µi + εit) (µi + εis)] .

After manipulation:

cov (uit, uis) = E
(
µ2
i

)︸ ︷︷ ︸
σ2
µ

+E (µiεit)︸ ︷︷ ︸
0

+E (µiεis)︸ ︷︷ ︸
0

+E (εitεis)︸ ︷︷ ︸
0

= σ2
µ

Jakub Mućk Advanced Applied Econometrics Panel Data Random Effects model 20 / 38



RE model – variance covariance matrix of the error term II

Finally, variance covariance matrix of the error term for given individual (i):

E
(
ui.u

′
i.

)
= Σu,i =

(
σ2
µ + σ2

ε

)


1 ρ . . . ρ

ρ 1
... ρ

...
...

. . .
...

ρ ρ . . . 1

 , (25)

where

ρ =
σ2
µ

σ2
µ + σ2

ε
.

Note that Σu is block diagonal with equicorrelated diagonal elements Σu,i
but not spherical.
Although disturbances from different (cross-sectional) units are independent
presence of the time invariant random effects (µi) leads to equi-correlations
among regression errors belonging to the same (cross-sectional) unit.
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Model estimation: RE

Using the GLS estimator we have:

β̂RE =
(
X ′Σ−1X

)−1
X ′Σ−1y, (26)

V ar
(
β̂RE

)
=

(
X ′Σ−1X

)−1
, (27)

but we don’t know Σ !
We know that Σ = E (uu′) is block-diagonal and:

cov (uit, ujs) =

 0 if i 6= j,
σ2
µ + σ2

ε if i = j and s = t,

ρ
(
σ2
µ + σ2

ε

)
if i = j and s 6= t,

where ρ = σ2
µ/
(
σ2
µ + σ2

ε

)
.

But we do not know σµ and σε.
There are many different strategies to estimates σµ and σε.
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Model estimation: RE – example

We use the GLS transforms of the independent (x∗jit) and dependent variable (y∗it):

x∗jit = xjit − θ̂ix̄ji

y∗it = yit − θ̂iȳi
where x̄ji and ȳi are the individuals means.
Estimates of the transforming parameter:

θ̂i = 1−
√

σ̂2
ε

Tiσ̂2
µ + σ̂2

ε

.

The estimates of the idiosyncratic error component σε:

σ̂2
ε =

∑n

i

∑Ti
t
û2
it

NT −N −K + 1
where

û2
it = (yit − ȳi + ȳ)− α̂Within − (xit − x̄i + x̄) β̂Within,

where α̂Within and β̂Within stand for the within estimates.
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Model estimation: RE – example

The error variance of individual specific random component (σ2
µ):

σ̂2
µ =

SSRBetween

N −K
−
σ̂2
ε

T̄

where T̄ is the harmonic mean of Ti, i.e., T̄ = n/
∑n

i
(1/Ti), and SSRBetween

stands for the sum of squared residuals from the between regression (details on
further lectures):

SSRBetween =
n∑
i

(
ȳi − α̂Between − x̄iβ̂Between

)
where β̂Between and α̂Between stand for the coefficient estimates from the between
regression.
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Model estimation: RE – Swamy-Arora method

Method which gives more precise estimates in small samples and unbalanced panels.
The estimation of σε (the idiosyncratic error component) is the same
=⇒ it bases on the residuals from the within regression.
The variance or the individual error term:

σ̂2
µ,SA =

SSRBetween − (N −K) σ̂2
ε

NT − tr
,

where SSRBetween is the sum of the squared residuals from the between regression
and

tr = trace
{(

X′PX
)−1

X′ZZ′X

}
P = diag

{ 1
Ti
eTie

′
Ti

}
Z = diag

{
eTi

}
where eTi is a Ti × 1 vector of ones.
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Testing on the random effect

In the standard RE model, the variance of the random effect is assumed to be σ2
µ

(µ ∼ N
(
0, σ2

µ

)
).

We can test for the presence of heterogeneity:

H0 : σµ = 0
H1 : σµ 6= 0

If the null hypothesis is rejected, then we conclude that there are random indi-
vidual differences among sample members, and that the random effects model is
appropriate.
If we fail to reject the null hypothesis, then we have no evidence to conclude that
random effects are present.
We construct the Lagrange multiplier statistic:

LM =

√
NT

2(T − 1)

(∑N

i=1

(∑T

t=1 ûit
)2∑N

i=1

∑T

t=1 û
2
it

− 1
)
, (28)

where ûi,t stands for the residuals, i.e., ûit = yit − α̂0 − β̂1x1it − . . .− β̂kxkit.
Conventionally, LM ∼ χ2(1). In large samples, LM ∼ N (0, 1).
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Comparison of Fixed and Random Effects model
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Comparison of Fixed and Random Effects model

If the true DGP includes random effect then RE model is preferred:
The random effects estimator takes into account the random sampling process
by which the data were obtained.
The random effects estimator permits us to estimate the effects of variables
that are individually time-invariant.
The random effects estimator is a generalized least squares estimation pro-
cedure, and the fixed effects estimator is a least squares estimator.

Endogenous regressors
If the error term is correlated with any explanatory variable then
both OLS and GLS estimators of parameters are biased and
inconsistent.
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Comparison of Fixed and Random Effects model

Random effects Fixed effects
Individual µi ∼ N

(
0, σ2

µ

)
αi

effects drawn from the random sam-
ple =⇒ we can estimate
the parameter of distribution,
i.e., σ2

µ

αi are assumed to be constant
over time

Assumptions: (i) E (µi|εit) = 0 (i) E (αi|εit) = 0
(ii) E (µi|xit) = 0
individual effects are indepen-
dent of the explanatory vari-
able xit

Estimation GLS OLS (within or LSDV)
Efficiency higher lower
Additional: impossible to use time in-

variant regressors (collinear-
ity with αi)
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Hausman Test

The null H0 in the Hausman test is that both the random and fixed
effect estimates are consistent.
If the alternative hypothesis H1 holds then the random effect estimates
are inconsistent.
Test statistics:

H =
[
β̂FE − β̂RE

]′ (
V arβ̂FE − V arβ̂RE

)−1 [
β̂FE − β̂RE

]
(29)

The statistics H is distributed χ2 with degrees of freedom determined by K,
i.e., the dimension of the coefficient vector β.
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Hausman Test- some remarks

In general, the Hausman test asks whether the fixed effects and random
effects estimates of β are significantly different.
We can test only models with the same set of explanatory variables:
I We cannot compare the random effects estimates corresponding to time-invariant

regressors due to their collinearity with individual intercept.

The rejection of the null hypothesis indicates that the random effect esti-
mates of β are not consistent or that the model is wrongly specified
(misspecification error).
It is assumed that the fixed effect model is consistent under both null and
alternative.
I What if regressors are not strictly exogenous?

The Hausman may be used in more general context.
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Between Estimator
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Between Estimator

The between estimator uses just cross-sectional variation.
Averaging over time yields:

ȳi = αBetween + βBetween1 x̄1i + . . .+ βBetweenk x̄ki + ūi, (30)

where ȳi = T−1
∑

t
yit, x̄1i = T−1

∑
t
x1it, . . ., x̄ki = T−1

∑
t
xkit, ūi =

T−1
∑

t
uit.

or in the matrix form:

ȳ = αBetween + x̄βBetween + u. (31)

The parameters αBetween, βBetween1 , . . ., βBetweenk can be estimated with the
OLS estimator.
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Hausman-Taylor estimator
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Hausman-Taylor estimator

Let’s consider the following one-way RE model:

yit = x1itβ1 + x2itβ2 + z1iγ1 + z2iγ2 + µi + uit (32)

where:
x1it are time-varying variables; not correlated with µi
x2it are time-varying variables; correlated with µi
z1i are time-invariant variables; not correlated with µi
z2i are time-invariant variables; correlated with µi

The RE model estimates on γ2 (and β2) are inconsistent.
The estimator proposed by Hausman and Taylor (1981) takes into account
the above correlation.
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The anatomy of the Hausman-Taylor estimator

First step: Within regression for the model including only time-variable
regressors, both x1it and x2it. Here, the usual differences from the temporal
mean are used:

(yit − ȳi) = β1(x1i, − x̄1i) + β2(x2it − x̄2i) + (uit − ūi) (33)

Based on the expression above we can estimate variance of the idiosyncratic
error, i.e., σ̂2

ε .
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The anatomy of the Hausman-Taylor estimator

Second step: construct the intra-temporal mean of the residuals from (33):

ē = [(ē1, ē1, . . . , ē1)︸ ︷︷ ︸
T

, . . . , (ēN , ēN , . . . , ēN )︸ ︷︷ ︸
T

]′ (34)

Then make TSLS for ēi using:
variables: z1it (time invariant, not correlated with µi), z2it (time invariant,
correlated with µi)
instruments: z1it, x1it (time invariant, not correlated with µi)
Specifically,
1. Regress z2it on z1it as well as x1it.
2. Use the predicted value from the above regression and create new matrix, i.e.,

Z = [z1it, ẑ21t].
3. Regress ēi on Z to get estimates of γ1 and γ2.
4. Calculate σ2

TSLS,ē the variance of the error components from the above re-
gression.

Now, we can calculate the variation of the individual-specific error compo-
nent:

σ2
µ = σ2

TSLS,ē −
σ2
ε

T
. (35)
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The anatomy of the Hausman-Taylor estimator

Based on the estimates of σ2
µ and σ2

ε calculate the conventional in the FGLS
regression scale parameter θ:

θ =
√

σ2
ε

σ2
ε + T−1σ2

µ
(36)

Finally, do a TSLS regression of y∗ on X∗ with instruments described by V :

y∗ = yit − θyit, (37)
X∗ = [x1it, x2it, z1i, z2i]− θ[x1it, x2it, z1i, z2i], (38)
V = [(x1it − x̄1i) , (x2it − x̄2i) , z1i, x̄1i], (39)

more specifically:
1. Regress X∗ on the instruments (V ) and obtain fitted values, i.e., X̂∗,
2. Regress y∗ on the predicted values from the previous step, i.e, X̂∗, in order to

get the estimates of [β, γ].

The estimates of the variance-covariance of the structural parameters are a
little bit more complicated.
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