イロト イヨト イヨト イヨト 二日

Autoregressive distributed lags models. Vector Autoregression (VAR) models. Structural VAR.

Jakub Mućk SGH Warsaw School of Economics

Introduction

INTRODUCTION

- Time series y_t a series of observations indexed in time order, where $t = 1, 2, \ldots, T$.
- Lag operator L:

$$L\left(y_t\right) = y_{t-1}.\tag{1}$$

• Difference operator/first difference Δ :

$$\Delta(y_t) = (1 - L) y_t = y_t - y_{t-1}.$$
(2)

• Growth rates measure the percentage changes of y_t within a specific period:

$$g = \frac{y_t - y_{t-1}}{y_{t-1}}.$$
 (3)

INTRODUCTION

■ Logarithmic growth rates:

$$\Delta \ln y_t = \ln y_t - \ln y_{t-1} = \ln \frac{y_t}{y_{t-1}} = \ln \frac{y_{t-1} \times (1+g)}{y_{t-1}} \approx g.$$
(4)

Dynamic nature of some economic processes:

$$y_t = f(x_t, x_{t-1}, x_{t-2}, \ldots).$$
 (5)

INTRODUCTION

- Persistence/inertia of variables of interest.
- Inappropriate lag structure typically leads to serial correlation of the error term.
- Key assumption: stationary time series (i.e. non-trending variables, mean reversion).
- Models that accounts for persistence/ dynamic nature of relationship:
 - autoregressive models,
 - distributed lag models,
 - autoregressive distributed lag models,
 - error correction models (accounting for cointegration).
- In addition, multivariate models:
 - ▶ VAR models,
 - SVAR models.

Distributed lag model

DISTRIBUTED LAG MODEL

Distributed lag model

SGH

6 / 40

Distributed lags model of order K (denoted as DL(K)):

$$y_t = \mu + \sum_{i=0}^{K} \beta_i x_{t-i} + \varepsilon_t, \tag{6}$$

where

- ▶ y_t outcome/ dependent variable,
- \blacktriangleright x_t explanatory variable,
- $\triangleright \varepsilon_t$ the error term.
- **Short-run multiplier** (β^{SR}):

$$\beta^{SR} = \beta_0. \tag{7}$$

• Long-run multiplier (β^{LR}):

$$\beta^{LR} = \beta_0 + \beta_1 + \ldots + \beta_K. \tag{8}$$

• The parameters of equation (6) can be estimated with the least squares estimator.

DISTRIBUTED LAG MODEL

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Autoregressive model

AUTOREGRESSIVE MODEL

■ Autoregressive model of order 1 (denoted as AR(1))

$$y_t = \mu + \rho y_{t-1} + \varepsilon_t \tag{9}$$

where ε_t is the error term and $\varepsilon_t \sim \mathcal{N}(0, \sigma)$.

- Key assumption: $|\rho| < 1$
- The parameter ρ measures the persistence/ inertia of y_t .
 - If ρ is close to 0 then effect of exogenous disturbances (measured by ε_t) is almost immediately absorbed.
 - If ρ is close to 1 then effect of exogenous slowly dies out.
- Selected properties of y_t when it follows AR(1) process:

$$\mathbb{E}(y_t) = \frac{\mu}{1-\rho},\tag{10}$$

$$Var(y_t) = \frac{\sigma^2}{1 - \rho^2}.$$
 (11)

■ Half-life:

$$hl = \frac{\ln(0.5)}{\ln(\rho)}.\tag{12}$$

AUTOREGRESSIVE MODEL

AR(1) and IRF I

- What is effect of the error term (ε_t) on dependent variable?
- Consider the simplified case $(\mu = 0)$ of AR(1) model:

$$y_t = \rho y_{t-1} + \varepsilon_t, \tag{13}$$

SGH

9 / 40

and assume that $\varepsilon_0 = 1$ and for t > 1, $\varepsilon_t = 0$. Then:

. . .

$$y_0 = 0 \times \rho + 1 = 1$$

$$y_1 = y_0 \times \rho + 0 = 1 = \rho$$

$$y_2 = y_1 \times \rho + 0 = \rho\rho = \rho^2$$

or more generally:

$$y_t = \rho^t. \tag{14}$$

Taking into account the fact that ε_0 is 0 in above example, the AR(1) model can be rewritten into moving-average representation:

$$y_t = \sum_{i=1}^{\infty} \rho^i \varepsilon_{t-i} + \varepsilon_t = \varepsilon_t + \sum_{i=1}^{\infty} \phi_i \varepsilon_{t-i}.$$
(15)

AUTOREGRESSIVE MODEL

• The moving average representation illustrates how the outcome variable reacts to the some exogenous disturbances over the time:

$$\frac{\partial \mathbb{E}\left(y_t\right)}{\partial \varepsilon_{t-i}} = \phi_i = \rho^i.$$
(16)

Impulse response function describes the expected evolution of the outcome variable to a unit shock.

$$\{1, \phi_1, \phi_2, \ldots\}.$$
 (17)

For the variable that follows AR(1):

$$\left\{1,\rho,\rho^2,\ldots\right\}.\tag{18}$$

AUTOREGRESSIVE MODEL

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

■ Autoregressive model of order P (denoted as AR(P))

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \ldots + \rho_P y_{t-P} + \varepsilon_t.$$
(19)

- The parameters can be still estimated with least squares.
- The AR(P) models
 - are useful in studying complex dynamic properties of variable of interest,
 - are useful in forecasting.

AUTOREGRESSIVE MODEL

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

AUTOREGRESSIVE MODEL

イロト イヨト イヨト イヨト

æ

■ Estimates of AR(1) model

$$\hat{U}_t = \underbrace{0.184}_{(0.087)} + \underbrace{0.969U_{t-1}}_{(0.014)} \tag{20}$$

substantial/extreme persistence.

But: serially correlated residuals (correlation between residuals and its lag $\approx 0.66).$

■ Estimates of AR(2) model

$$\hat{U}_t = \underbrace{0.285}_{(0.066)} + \underbrace{1.613U_{t-1}}_{(0.045)} - \underbrace{0.661U_{t-2}}_{(0.045)} \tag{21}$$

AUTOREGRESSIVE MODEL

How does unemployment rate react to exogenous shocks?

$$U_t = 0.184 + 0.969 U_{t-1}$$

AUTOREGRESSIVE MODEL

14 / 40

Empirical example: unemployment rate U_t in the US

SGH

14 / 40

Impulse response function:

Autoregressive distributed lag model

AUTOREGRESSIVE DISTRIBUTED LAG MODEL

Autoregressive distributed lag model ADL(1,0):

$$y_t = \mu + \rho y_{t-1} + \beta_0 x_t + \varepsilon_t, \tag{22}$$

when $|\rho| < 1$.

• Assume that $y_0 = 0$, $\mu = 0$ and $\varepsilon_t = 0$ and consider a unit change in x at the period 0. Then,

$$y_{0} = 0 \times \rho + \beta_{0} \times 1 + 0 = \beta_{0},$$

$$y_{1} = \beta_{0} \times \rho + \beta_{0} \times 0 + 0 = \rho\beta_{0},$$

$$y_{2} = \rho\beta_{0} \times \rho + \beta_{0} \times 0 + 0 = \rho^{2}\beta_{0},$$

more generally

$$y_t = \rho^t \beta_0$$

- Short-run multiplier: β_0 .
- Impulse response function for *i*th period:

$$\frac{\partial \mathbb{E}\left(y_{t}\right)}{\partial x_{t-i}} = \rho^{i} \beta_{0}.$$

イロト イロト イヨト イヨト 三日

• Cumulative response function for *i*th period:

$$\sum_{j=0}^{i} \frac{\partial \mathbb{E}\left(y_{t}\right)}{\partial x_{t-j}} = \sum_{j=0}^{i} \rho^{j} \beta_{0} = \beta_{0} + \beta_{0} \rho + \beta_{0} \rho^{2} + \ldots + \beta_{0} \rho^{j}.$$

■ The long-run multiplier:

$$\sum_{j=0}^{\infty} \frac{\partial \mathbb{E}(y_t)}{\partial x_{t-j}} = \beta_0 \left(1 + \rho + \rho^2 + \ldots \right) = \frac{\beta_0}{1 - \rho}.$$

AUTOREGRESSIVE DISTRIBUTED LAG MODEL

< □ > < □ > < □ > < □ > < □ > = Ξ

• Autoregressive distributed lag model ADL(P,K):

$$y_{t} = \mu + \sum_{i=1}^{P} \rho_{i} y_{t-i} + \sum_{i=0}^{K} \beta_{i} x_{t-i} + \varepsilon_{t}.$$
 (23)

Short-run multiplier (β^{SR} **):**

$$\beta^{SR} = \beta_0. \tag{24}$$

Long-run multiplier (β^{LR}):

$$\beta^{LR} = \frac{\beta_0 + \beta_1 + \ldots + \beta_K}{1 - \rho_1 - \rho_2 - \ldots - \rho_P} = \frac{\sum_{i=0}^K \beta_i}{1 - \sum_{i=1}^P \rho_i}.$$
 (25)

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS TIME SERIES (II) AUTOREGRESSIV

Autoregressive distributed lag model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The trade-off between:

- \blacksquare Risk of omitting important variables (when P and/or K are small).
- Efficiency (when P and/or K are large).

The most popular strategies:

- From general to specific
- From specific to general

Selection criteria:

- Serial correlation of residuals,
- Information criteria.
- Significance.

イロト イポト イヨト イヨト

- Data: time series from 1993Q1to 2016Q.
- Dependent variable:
 - c_t the logged real consumption expenditures (in constant prices.).

Explanatory variable:

 y_t - the logged real GDP (in constant prices).

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS TIME SERIES (II)

AUTOREGRESSIVE DISTRIBUTED LAG MODEL

SGH Empirical example: consumption function for Germany

Jakub Mućk

Advanced Applied Econometrics Time Series (II)

AUTOREGRESSIVE DISTRIBUTED LAG MODEL

21 / 40

The DL models:

$$\Delta c_t = \alpha_0 + \sum_{i=0}^{K} \beta_i \Delta y_{t-i} + \varepsilon_t, \qquad (26)$$

Κ	0	1	2	
μ	0.002	0.002	0.002	
	(0.001)	(0.001)	(0.001)	
β_0	0.278	0.328	0.295	
	(0.092)	(0.096)	(0.087)	
β_1		-0.135	-0.200	
		(0.096)	(0.091)	
β_2			0.142	
			(0.087)	
β^{LR}	0.278	0.193	0.236	
	(0.092)	(0.114)	(0.120)	
BIC	-705.547	-696.699	-705.430	

イロト イロト イヨト イヨト 二日

The ADL models:

	P	K	_		
$\Delta c_t =$	$\mu + \sum \rho_j \Delta$	$\Delta c_{t-i} + \sum$	$\beta_i \Delta y_{t-i} +$	-ε _t ,	(27)
Ū.	$\sum_{i=1}^{j}$			0)	()
	J=1	<i>i</i> =0	,		
К	0	1	2	0	
Р	0	0	0	1	
μ	0.002	0.002	0.002	0.002	
	(0.001)	(0.001)	(0.001)	(0.001)	
$ ho_1$				-0.290	
				(0.073)	
β_0	0.278	0.328	0.295	0.204	
	(0.092)	(0.096)	(0.087)	(0.074)	
β_1		-0.135	-0.200		
		(0.096)	(0.091)		
β_2			0.142		
			(0.087)		
β^{LR}	0.278	0.193	0.236	0.205	
	(0.092)	(0.114)	(0.120)	(0.068)	
BIC	-705.547	-696.699	-705.430	-707.569	

AUTOREGRESSIVE DISTRIBUTED LAG MODEL

イロト イロト イヨト イヨト 三日

23 / 40

Error correction model

Error correction model

If x_t and y_t are cointegrated then

$$e_t = y_t - \beta_0 - \beta_1 x_t \tag{28}$$

SGH

25 / 40

the residuals, e_t , measure deviation from a common stochastic trend (or long-run equilibrium between variables).

- **Long-run elasticity** equals β_1 in (28).
- **Error correction model**] In the **short-run** dynamics the deviation from long-run relationship between variables can be taken into account by using **the lagged residuals from the long-run equation, i.e.** e_{t-1} .

$$\Delta y_t = \mu + \delta e_{t-1} + \sum_{i=1}^P \rho_i \Delta y_{t-i} + \sum_{i=0}^K \beta_i \Delta x_{t-i} + \varepsilon_t, \qquad (29)$$

where parameter δ measures the pace of adjustment toward long-run equilibrium and $\delta \in (-1, 0)$.

■ Half-life:

$$hl = \frac{\ln(0.5)}{\ln(1+\delta)}.$$
 (30)

Error correction model

- Alternatively, one might directly account for an adjustment toward the long-run relationship.
- This can be captured by replacing the lagged residuals, i.e., e_{t-1} , in (29) by the variables in levels, i.e. y_{t-1} and x_{t-1} :

$$\Delta y_t = \mu + \phi_1 y_{t-1} + \phi_2 x_{t-1} + \sum_{i=1}^P \rho_i \Delta y_{t-i} + \sum_{i=0}^K \beta_i \Delta x_{t-i} + \varepsilon_t, \quad (31)$$

where:

- ▶ ϕ_1 measures the pace of adjustment toward long-run equilibrium and if variables of interest are cointegrated then $\phi_1 \in (-1, 0)$
- The long-run elasticity of y_t with respect to changes in x_t : $-\phi_2/\phi_1$.

Error correction model

Both c_t and y_t are integrated in order order 1.

The ADF statistics: -3.52.

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS TIME SERIES (II)

Error correction model

Error Correction Model (simplified version):

$$\Delta \hat{c}_t = -\underbrace{0.153ec_{t-1}}_{(0.050)} + \underbrace{0.283}_{(0.066)} \Delta y_t \tag{33}$$

where ec_{t-1} is the error correction, i.e., lagged residuals from regression for variables in levels.

Estimated parameter δ that describe pace of adjustment to the long-run equilibrium is statistically significant and negative.

half-life: ≈ 4.13 quarters $(4.13 \approx \ln(0.5) / \ln(1 - 0.153))$.

Error correction model

28 / 40

Vector Autoregression (VAR) models

VECTOR AUTOREGRESSION (VAR) MODELS

- Vector Autoregression (VAR) models are atheoretical/agnostic multivariate models that allow to capture dynamic properties of several variables with an interplay between them.
- VAR(2,1) model:

$$\mathbf{y}_t = \mathcal{A}_0 + \mathcal{A}_1 \mathbf{y}_{t-1} + \varepsilon_t, \tag{34}$$

where \mathbf{y}_t is the vector of two endogenous variables, ε_t is the vector of the error terms, \mathcal{A}_0 is the vector of constants and \mathcal{A}_1 is the matrix of coefficients that captures dynamic relationship.

■ In the standard VAR model:

 $\varepsilon_t \sim \mathcal{N}(0, \Sigma)$,

where Σ is the symmetric but possibly not diagonal matrix.

■ VAR(2,1) model in matrix form:

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} a_{10} \\ a_{20} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_{1t-1} \\ y_{2t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}.$$
(35)

• VAR(K,P) model:

$$\mathbf{y}_t = \mathcal{A}_0 + \mathcal{A}_1 \mathbf{y}_{t-1} + \ldots + \mathcal{A}_P \mathbf{y}_{t-P} + \varepsilon_t, \qquad (36)$$

where *P* is the number of lags while *K* is the number of endogenous variables. • VARX(K,P) model:

$$\mathbf{y}_t = \mathcal{A}_0 + \mathcal{A}_1 \mathbf{y}_{t-1} + \ldots + \mathcal{A}_P \mathbf{y}_{t-P} + \mathcal{D} x_t + \varepsilon_t, \qquad (37)$$

where P is the number of lags while K is the number of endogenous variables and x_t is the vector of exogenous variables.

General notation:

$$\mathcal{A}\left(L\right)\mathbf{y}_{t}=\varepsilon_{t},\tag{38}$$

where $\mathcal{A}(L) = (I - \mathcal{A}_0 - \mathcal{A}_1 L - \ldots - \mathcal{A}_P L^P)$

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS TIME SERIES (II)

Vector Autoregression (VAR) models

- Key assumption is **stability**. The VAR model is stable if:
 - VAR(K,1): $det(I A_1z) \neq 0$ and |z| < 1.
 - VAR(K,P): $det(I A_1z \ldots A_Pz^P) \neq 0$ and |z| < 1.

or if eigenvalues of below matrix are below zero:

$$\begin{bmatrix} \mathcal{A}_{1} & \dots & \dots & \mathcal{A}_{P} \\ I & 0 & \dots & 0 \\ 0 & I & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & I & 0 \end{bmatrix}.$$
 (39)

- Stability implies stationarity.
- If VAR model is stable then, according to the Wold theorem, it has infinite moving average MA(∞) representation:

$$\mathbf{y}_{t} = \mathcal{A}(L)^{-1} \varepsilon_{t} = \mathcal{C}(L) \varepsilon_{t} = \sum_{i=0}^{\infty} \mathcal{C}_{i} \varepsilon_{t-i}.$$
 (40)

VECTOR AUTOREGRESSION (VAR) MODELS

SGH

• The moving average representation is useful tool in an investigation of dynamic reaction of endogenous variables to some disturbances. In particular, **impulse response function** measures dynamic effects of variables to a change in the error term in given equation:

$$IRF_{i,j,h} = \frac{\partial y_{i,t+h}}{\partial \varepsilon_{j,t}},\tag{41}$$

and, since VAR model is stable, $IRF_{i,j,h}$ tends to 0 as $h \to \infty$. Alternative measure is **cumulative impulse response function**:

$$CIRF_{i,j,H} = \sum_{h=0}^{H} \frac{\partial y_{i,t+h}}{\partial \varepsilon_{j,t}}.$$
(42)

• Forecast variance error decomposition: shows the share of disturbances in overall forecasting error in given horizon.

- The VAR models can be estimated consistently equation-by-equation using ordinary least squares estimator.
- Key problem: the lag length. Natural trade-off
 - [High lag length]: a loss in efficiency but smaller risk of omitting important lags (endogenity).
 - **[Low lag length]:** a high risk of omitting important lags but smaller loss in efficiency.
- Criteria for selecting lag length:
 - Serial correlation.
 - Information criteria.

Vector Autoregression (VAR) models

Structural VAR

STRUCTURAL VAR

• **VAR models are atheoretical**. One of the assumption is that the error terms can be correlated between equations:

$$\varepsilon_t \sim \mathcal{N}(0, \Sigma),$$

where Σ is the non-diagonal matrix.

• In the **Structural VAR models** the errors are not correlated and, therefore, can be interpreted as structural shocks:

$$\mathbf{u}_{t} \sim \mathcal{N}\left(0, I\right),$$

where I is the identity matrix.

• Using non-sample information (theory) is essential in order to identify structural shocks.

Popular schemes of the structural shocks identification

- Cholesky's decomposition
- AB-model/short-run restrictions
- Long-run restrictions
- Sign restrictions
- Identification through heteroskedasticity

• Let us rewrite the variance of the errors:

$$\Sigma = PP',\tag{43}$$

where P is the lower triangular matrix.

• Now, define the new error which is transformation of the error from the reduced form:

$$u_t = P^{-1} \varepsilon_t, \tag{44}$$

STRUCTURAL VAR

and clearly

$$var(u_t) = P^{-1}var(\varepsilon_t)(P')^{-1} = P^{-1}P(P')^{-1}P' = I.$$
 (45)

• The orthogonalized IRF (at given time horizon):

$$OIRF_{\dots,h} = P^{-1} \times IRF_{\dots,h}.$$
 (46)

• The ordering of variables matters.

■ The AB-model:

$$A\varepsilon_t = Bu_t,\tag{47}$$

where A is the matrix describing contemporaneous relationship between endogenous variables while matrix B measures the short-run impact of structural shock on variables, u_t is the vector of structural shocks.

• Key problem: identification problem. The AB model can be rewritten as:

$$\varepsilon_t = A^{-1} B u_t, \tag{48}$$

and it could be shown that there are needed K(K+1)/2 restrictions while K is the number of parameters and the total number of parameters is $2K^2$.

• The parameters can be estimated with the ML estimator while possible overidentifying restriction can be tested with LR test.

• The long-run impact (matrix C):

$$C = \lim_{h \to \infty} CIRF_{,,h} = \sum_{h=0}^{\infty} IRF_{.,.,h} = \sum_{h=0}^{\infty} \mathcal{C}_h.$$
(49)

where C_h is the matrix from the moving average representation.

• The identification of structural shocks can base on the long-run neutrality. In other words, this translates into zero restrictions on elements of matrix C.

STRUCTURAL VAR 40 / 40