
Autoregressive distributed lags models. Vector
Autoregression (VAR) models. Structural VAR.

Jakub Mućk
SGH Warsaw School of Economics

Jakub Mućk Advanced Applied Econometrics Time Series (II) 1 / 40



Introduction

Jakub Mućk Advanced Applied Econometrics Time Series (II) Introduction 2 / 40



Basic definitions

Time series yt a series of observations indexed in time order, where t =
1, 2, . . . , T .
Lag operator L:

L (yt) = yt−1. (1)

Difference operator/first difference ∆:

∆ (yt) = (1− L) yt = yt − yt−1. (2)

Growth rates measure the percentage changes of yt within a specific period:

g = yt − yt−1

yt−1
. (3)

Logarithmic growth rates:

∆ ln yt = ln yt − ln yt−1 = ln yt

yt−1
= ln yt−1 × (1 + g)

yt−1
≈ g. (4)
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Motivation

Dynamic nature of some economic processes:

yt = f (xt, xt−1, xt−2, . . .) . (5)

Persistence/inertia of variables of interest.
Inappropriate lag structure typically leads to serial correlation of the error
term.
Key assumption: stationary time series (i.e. non-trending variables, mean
reversion).
Models that accounts for persistence/ dynamic nature of relationship:
I autoregressive models,
I distributed lag models,
I autoregressive distributed lag models,
I error correction models (accounting for cointegration).

In addition, multivariate models:
I VAR models,
I SVAR models.
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Distributed lag model
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Distributed lag model

Distributed lags model of order K (denoted as DL(K)):

yt = µ+
K∑

i=0

βixt−i + εt, (6)

where
I yt – outcome/ dependent variable,
I xt – explanatory variable,
I εt – the error term.

Short-run multiplier (βSR):

βSR = β0. (7)

Long-run multiplier (βLR):

βLR = β0 + β1 + . . .+ βK . (8)

The parameters of equation (6) can be estimated with the least squares es-
timator.
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Autoregressive model
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AR(1)

Autoregressive model of order 1 (denoted as AR(1))

yt = µ+ ρyt−1 + εt (9)

where εt is the error term and εt ∼ N (0, σ).
Key assumption: |ρ| < 1
The parameter ρ measures the persistence/ inertia of yt.
I If ρ is close to 0 then effect of exogenous disturbances (measured by εt) is

almost immediately absorbed.
I If ρ is close to 1 then effect of exogenous slowly dies out.

Selected properties of yt when it follows AR(1) process:

E(yt) = µ

1− ρ , (10)

V ar(yt) = σ2

1− ρ2 . (11)

Half-life:
hl = ln(0.5)

ln(ρ) . (12)
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AR(1) and IRF I

What is effect of the error term (εt) on dependent variable?
Consider the simplified case (µ = 0) of AR(1) model:

yt = ρyt−1 + εt, (13)

and assume that ε0 = 1 and for t > 1, εt = 0. Then:

y0 = 0× ρ+ 1 = 1
y1 = y0 × ρ+ 0 = 1 = ρ

y2 = y1 × ρ+ 0 = ρρ = ρ2

. . .

or more generally:
yt = ρt. (14)

Taking into account the fact that ε0 is 0 in above example, the AR(1) model
can be rewritten into moving-average representation:

yt =
∞∑

i=1

ρiεt−i + εt = εt +
∞∑

i=1

φiεt−i. (15)
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AR(1) and IRF II

The moving average representation illustrates how the outcome variable re-
acts to the some exogenous disturbances over the time:

∂E (yt)
∂εt−i

= φi = ρi. (16)

Impulse response function describes the expected evolution of the out-
come variable to a unit shock.

{1, φ1, φ2, . . .} . (17)

For the variable that follows AR(1):{
1, ρ, ρ2, . . .

}
. (18)
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AR(P)

Autoregressive model of order P (denoted as AR(P))

yt = ρ1yt−1 + ρ2yt−2 + . . .+ ρP yt−P + εt. (19)

The parameters can be still estimated with least squares.
The AR(P) models
I are useful in studying complex dynamic properties of variable of interest,
I are useful in forecasting.
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Empirical example: unemployment rate Ut in the US
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Source: FRED
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Empirical example: unemployment rate Ut in the US

Estimates of AR(1) model

Ût = 0.184
(0.087)

+ 0.969
(0.014)

Ut−1 (20)

substantial/extreme persistence.
But: serially correlated residuals ( correlation between residuals and its lag
≈ 0.66).
Estimates of AR(2) model

Ût = 0.285
(0.066)

+ 1.613
(0.045)

Ut−1 − 0.661
(0.045)

Ut−2 (21)

How does unemployment rate react to exogenous shocks?
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Empirical example: unemployment rate Ut in the US

AR(1) model:

Ut = 0.184
(0.087)

+ 0.969
(0.014)
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Empirical example: unemployment rate Ut in the US
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Autoregressive distributed lag model
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ADL(1,0) model I

Autoregressive distributed lag model ADL(1,0):

yt = µ+ ρyt−1 + β0xt + εt, (22)

when |ρ| < 1.
Assume that y0 = 0, µ = 0 and εt = 0 and consider a unit change in x at
the period 0. Then,

y0 = 0× ρ+ β0 × 1 + 0 = β0,

y1 = β0 × ρ+ β0 × 0 + 0 = ρβ0,

y2 = ρβ0 × ρ+ β0 × 0 + 0 = ρ2β0,

more generally
yt = ρtβ0.

Short-run multiplier: β0.
Impulse response function for ith period:

∂E (yt)
∂xt−i

= ρiβ0.
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ADL(1,0) model II

Cumulative response function for ith period:

i∑
j=0

∂E (yt)
∂xt−j

=
i∑

j=0

ρjβ0 = β0 + β0ρ+ β0ρ
2 + . . .+ β0ρ

j .

The long-run multiplier:

∞∑
j=0

∂E (yt)
∂xt−j

= β0
(
1 + ρ+ ρ2 + . . .

)
= β0

1− ρ .
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ADL(P,K) model

Autoregressive distributed lag model ADL(P,K):

yt = µ+
P∑

i=1

ρiyt−i +
K∑

i=0

βixt−i + εt. (23)

Short-run multiplier ( βSR):

βSR = β0. (24)

Long-run multiplier (βLR):

βLR = β0 + β1 + . . .+ βK

1− ρ1 − ρ2 − . . .− ρP
=

∑K

i=0 βi

1−
∑P

i=1 ρi

. (25)
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Choosing order of AR/DL/ADL models

The trade-off between:
Risk of omitting important variables (when P and/or K are small).
Efficiency (when P and/or K are large).

The most popular strategies:
From general to specific
From specific to general

Selection criteria:
Serial correlation of residuals,
Information criteria.
Significance.
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Empirical example: consumption function for Germany

Data: time series from 1993Q1to 2016Q.
Dependent variable:
ct - the logged real consumption expenditures (in constant prices.).
Explanatory variable:
yt - the logged real GDP (in constant prices).
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Empirical example: consumption function for Germany
ct
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Empirical example: consumption function for Germany

The DL models:

∆ct = α0 +
K∑

i=0

βi∆yt−i + εt, (26)

K 0 1 2
µ 0.002 0.002 0.002

(0.001) (0.001) (0.001)
β0 0.278 0.328 0.295

(0.092) (0.096) (0.087)
β1 -0.135 -0.200

(0.096) (0.091)
β2 0.142

(0.087)
βLR 0.278 0.193 0.236

(0.092) (0.114) (0.120)
BIC -705.547 -696.699 -705.430
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Empirical example: consumption function for Germany

The ADL models:

∆ct = µ+
P∑

j=1

ρj∆ct−j +
K∑

i=0

βi∆yt−i + εt, (27)

K 0 1 2 0
P 0 0 0 1
µ 0.002 0.002 0.002 0.002

(0.001) (0.001) (0.001) (0.001)
ρ1 -0.290

(0.073)
β0 0.278 0.328 0.295 0.204

(0.092) (0.096) (0.087) (0.074)
β1 -0.135 -0.200

(0.096) (0.091)
β2 0.142

(0.087)
βLR 0.278 0.193 0.236 0.205

(0.092) (0.114) (0.120) (0.068)
BIC -705.547 -696.699 -705.430 -707.569

Jakub Mućk Advanced Applied Econometrics Time Series (II) Autoregressive distributed lag model 23 / 40



Error correction model
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Error correction model

If xt and yt are cointegrated then

et = yt − β0 − β1xt (28)

the residuals, et, measure deviation from a common stochastic trend (or
long-run equilibrium between variables).
Long-run elasticity equals β1 in (28).
[Error correction model] In the short-run dynamics the deviation from
long-run relationship between variables can be taken into account by using
the lagged residuals from the long-run equation, i.e. et−1.

∆yt = µ+ δet−1 +
P∑

i=1

ρi∆yt−i +
K∑

i=0

βi∆xt−i + εt, (29)

where parameter δ measures the pace of adjustment toward long-run equi-
librium and δ ∈ (−1, 0).
Half-life:

hl = ln(0.5)
ln(1 + δ) . (30)
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Error correction model – alternative approach

Alternatively, one might directly account for an adjustment toward the
long-run relationship.
This can be captured by replacing the lagged residuals, i.e., et−1, in (29) by
the variables in levels, i.e. yt−1 and xt−1:

∆yt = µ+ φ1yt−1 + φ2xt−1 +
P∑

i=1

ρi∆yt−i +
K∑

i=0

βi∆xt−i + εt, (31)

where:
I φ1 measures the pace of adjustment toward long-run equilibrium and if vari-

ables of interest are cointegrated then φ1 ∈ (−1, 0)
I The long-run elasticity of yt with respect to changes in xt: −φ2/φ1.
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Empirical example: consumption function for Germany

Both ct and yt are integrated in order order 1.

Long-run relationship:

ĉt = 3.984
(0.174)

+ 0.657
(0.013)

yt (32)

What is the long-run elasticity?

Residuals from the long-run
regression
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The ADF statistics: -3.52.
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Empirical example: consumption function for Germany

Error Correction Model (simplified version):

∆ĉt = −0.153
(0.050)

ect−1 + 0.283
(0.066)

∆yt (33)

where ect−1 is the error correction, i.e., lagged residuals from regression for
variables in levels.

Estimated parameter δ that describe pace of adjustment to the long-run
equilibrium is statistically significant and negative.

half-life: ≈ 4.13 quarters (4.13 ≈ ln(0.5)/ ln(1−0.153)).
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Vector Autoregression (VAR) models
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VAR models

Vector Autoregression (VAR) models are atheoretical/agnostic multi-
variate models that allow to capture dynamic properties of several variables
with an interplay between them.
VAR(2,1) model:

yt = A0 +A1yt−1 + εt, (34)

where yt is the vector of two endogenous variables, εt is the vector of the
error terms, A0 is the vector of constants and A1 is the matrix of coefficients
that captures dynamic relationship.
In the standard VAR model:

εt ∼ N (0,Σ) ,

where Σ is the symmetric but possibly not diagonal matrix.
VAR(2,1) model in matrix form:[

y1t

y2t

]
=
[
a10
a20

]
+
[
a11 a12
a21 a22

][
y1t−1
y2t−1

]
+
[
ε1t

ε2t

]
. (35)
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VAR(K,P) models

VAR(K,P) model:

yt = A0 +A1yt−1 + . . .+AP yt−P + εt, (36)

where P is the number of lags while K is the number of endogenous variables.
VARX(K,P) model:

yt = A0 +A1yt−1 + . . .+AP yt−P +Dxt + εt, (37)

where P is the number of lags while K is the number of endogenous variables
and xt is the vector of exogenous variables.
General notation:

A (L) yt = εt, (38)

where A (L) =
(
I −A0 −A1L− . . .−APL

P
)
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Impulse response function I

Key assumption is stability.The VAR model is stable if:
I VAR(K,1): det(I −A1z) 6= 0 and |z| < 1.
I VAR(K,P): det(I −A1z − . . .−AP z

P ) 6= 0 and |z| < 1.
or if eigenvalues of below matrix are below zero:

A1 . . . . . . AP

I 0 . . . 0
0 I . . . 0
...

...
...

...
0 . . . I 0

 . (39)

Stability implies stationarity.
If VAR model is stable then, according to the Wold theorem, it has infinite
moving average MA(∞) representation:

yt = A (L)−1 εt = C (L) εt =
∞∑

i=0

Ciεt−i. (40)
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Impulse response function II

The moving average representation is useful tool in an investigation of dy-
namic reaction of endogenous variables to some disturbances. In particular,
impulse response function measures dynamic effects of variables to a
change in the error term in given equation:

IRFi,j,h = ∂yi,t+h

∂εj,t
, (41)

and, since VAR model is stable, IRFi,j,h tends to 0 as h → ∞. Alternative
measure is cumulative impulse response function:

CIRFi,j,H =
H∑

h=0

∂yi,t+h

∂εj,t
. (42)

Forecast variance error decomposition: shows the share of disturbances
in overall forecasting error in given horizon.
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VAR models – estimation

The VAR models can be estimated consistently equation-by-equation using
ordinary least squares estimator.
Key problem: the lag length. Natural trade-off
I [High lag length]: a loss in efficiency but smaller risk of omitting important

lags (endogenity).
I [Low lag length]: a high risk of omitting important lags but smaller loss in

efficiency.
Criteria for selecting lag length:
I Serial correlation.
I Information criteria.
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Structural VAR
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VAR and Structural VAR models

VAR models are atheoretical. One of the assumption is that the error
terms can be correlated between equations:

εt ∼ N (0,Σ) ,

where Σ is the non-diagonal matrix.
In the Structural VAR models the errors are not correlated and, therefore,
can be interpreted as structural shocks:

ut ∼ N (0, I) ,

where I is the identity matrix.
Using non-sample information (theory) is essential in order to identify struc-
tural shocks.

Jakub Mućk Advanced Applied Econometrics Time Series (II) Structural VAR 36 / 40



SVAR models – survey

Popular schemes of the structural shocks identification
Cholesky’s decomposition
AB-model/short-run restrictions
Long-run restrictions
Sign restrictions
Identification through heteroskedasticity
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Cholesky’s decomposition

Let us rewrite the variance of the errors:

Σ = PP ′, (43)

where P is the lower triangular matrix.
Now, define the new error which is transformation of the error from the
reduced form:

ut = P−1εt, (44)

and clearly

var(ut) = P−1var(εt)(P ′)−1 = P−1P (P ′)−1P ′ = I. (45)

The orthogonalized IRF (at given time horizon):

OIRF.,.,h = P−1 × IRF.,.,h. (46)

The ordering of variables matters.
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AB-model/short-run restrictions

The AB-model:
Aεt = But, (47)

where A is the matrix describing contemporaneous relationship between en-
dogenous variables while matrix B measures the short-run impact of struc-
tural shock on variables, ut is the vector of structural shocks.
Key problem: identification problem. The AB model can be rewritten
as:

εt = A−1But, (48)

and it could be shown that there are needed K(K + 1)/2 restrictions while
K is the number of parameters and the total number of parameters is 2K2.
The parameters can be estimated with the ML estimator while possible overi-
dentifying restriction can be tested with LR test.
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Long-run restrictions

The long-run impact (matrix C):

C = lim
h→∞

CIRF,,h =
∞∑

h=0

IRF.,.,h =
∞∑

h=0

Ch. (49)

where Ch is the matrix from the moving average representation.
The identification of structural shocks can base on the long-run neutrality.
In other words, this translates into zero restrictions on elements of matrix C.
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