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Basic definitions

Time series yt a series of observations indexed in time order, where t =
1, 2, . . . , T .
Lag operator L:

L (yt) = yt−1. (1)

Difference operator/first difference ∆:

∆ (yt) = (1− L) yt = yt − yt−1. (2)

Growth rates measure the percentage changes of yt within a specific period:

g = yt − yt−1

yt−1
. (3)

Logarithmic growth rates:

∆ ln yt = ln yt − ln yt−1 = ln yt
yt−1

= ln yt−1 × (1 + g)
yt−1

≈ g. (4)
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Stationarity
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Stationarity

Weak stationarity (wide-sense stationarity) is satisfied when series
have:
1. constant mean:

E (yt) = µ (5)

2. constant variance :
var (yt) = σ2 (6)

3. covariance doesn’t depend on time t:

cov (yt, yt+s) = cov (yt, yt−s) = γs (7)

Stationary time series have the property of mean reversion
Nonstationary time series series has a unit root
Intuition: stationary series fluctuate around sample mean.
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Integration

The order of integration is the minimum number of differences required to
obtain stationary series.
Stationary series are integrated of order 0, i.e. yt ∼ I(0).
If series is non-stationary but its first difference is stationary then this series
is integrated of order 1, i.e., yt ∼ I(1).
In general,

yt ∼ I(d)⇐⇒ ∆dyt ∼ I(0). (8)
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Difference-stationary and trend-stationary

Difference-stationary:

yt ∼ I(1)⇐⇒ ∆yt ∼ I(0). (9)

Trend-stationary:

yt = β0 + β1t+ εt ⇐⇒ εt ∼ I(0). (10)

The choice between difference and trend stationarity is sometimes arbitrary.
But it has implication for yt.
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Examples of stationary/non-stationary processes

Stationary processes
White noise.
Autoregressive process.

Non-stationary processes
Random walk.
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White noise and AR(1)

White noise:
yt = εt, (11)

where εt ∼ N (0, σ2).
AR(1) process:

yt = ρyt−1 + εt, (12)

where |ρ| < 1 and εt ∼ N (0, σ2).
Selected properties of yt when it follows AR(1) process:

E(yt) = 0, (13)

V ar(yt) = σ2

1− ρ2 . (14)

Both white noise and AR(1) processes are stationary.
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AR(1) process with constant and time trend

Let µ denotes constant term. Then AR(1) with constant:

yt = µ+ ρyt−1 + εt (15)

where |ρ| < 1 and εt ∼ N (0, σ2).
It’s useful to rewrite (15) as follows:

(yt − µ) = ρ (yt−1 − µ) + εt (16)

The long-run expected value:

E(yt) = µ/(1− ρ) (17)

Finally, we AR(1) model might be extended by linear trend. Then

(yt − µ− δt) = ρ (yt−1 − µ− δ(t− 1)) + εt (18)
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Random Walk I

Random walk process is an example of nonstationary process.

yt = yt−1 + εt (19)

where εt ∼ N
(
0, σ2)

The sample means depends on the time span.
Using recursive substitution we can show that random walk process is wan-
dering

y1 = y0 + ε1

y2 = y1 + ε2 = y0 + ε1 + ε2 = y0 +
2∑
k=1

εk

. . .

yt = y0 +
t∑

k=1

εk

(20)

Cumulative sum of shocks/innovations (
t∑

k=1

εk) is often said to be stochastic

trend.
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Random Walk II

E(yt) depends on initial value:

E(yt) = E(y0 + ε1 + ε2 + . . .+ εt) = y0 (21)

But the variance depends on time and cannot be limited:

var(yt) = var(ε1 + ε2 + . . .+ εt) = tσ2 (22)

Hence, the condition on constant variance is not satisfied. Therefore, the
random walk process is nonstationary.
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Random Walk with drift and trend

We can include constant term into DGP of basic random walk process. It’s
known as random walk with drift

yt = µ+ yt−1 + εt (23)

where εt ∼ N (0, σ2) .
The mean and variance:

E(yt) = tµ+ y0 + E(ε1 + ε2 + . . .+ εt) = tµ+ y0,
var(yt) = var(ε1 + ε2 + . . .+ εt) = tσ2.

(24)

Finally, we might include deterministic trend

yt = µ+ βt+ yt−1 + εt, (25)

where εt ∼ N (0, σ2).
The addition of deterministic trend strengthens the trend behavior:

E(yt) = tµ+
(
t2 + t

2

)
β + y0t. (26)

Jakub Mućk Advanced Applied Econometrics Time Series (I) Stationarity 13 / 33



Examples (simulated data)
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Dickey-Fuller test
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Dickey–Fuller test (basic) I

The general assumption: yt is generated by AR(1):

yt = ρyt−1 + εt (27)

The general idea is to test whether ρ is equal or significantly less than one.
The null is that there is unit root (yt is nonstationary).
Estimating ρ in equation (27) and calculating t-statistics might lead to completely
meaningless result (spurious regression). Therefore, yt should be differenced:

∆yt = (ρ− 1) yt−1 + εt = γyt−1 + εt (28)

where εt ∼ N (0, σ2) and γ = (ρ− 1).
The null (yt is not stationary) and alternative (yt is stationary)

H0 : ρ = 1 ⇐⇒ H0 : γ = 0
H1 : ρ < 1 ⇐⇒ H1 : γ < 0 (29)

To check stationary we estimate equation (27) and calculate t-statistic. Here, we
cannot use t distribution because the calculated t statistic is not t dis-
tributed. Therefore we use τ distribution which equals t-statistics. Critical
values for τ statistic are computed from numerical distributions.
The null is rejected when τ is below its critical value.
One might include in regression (27) deterministic components: constant or time
trend. The null and alternative will be the same.
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Augmented Dickey—Fuller test

To avoid the danger of autocorrelation of error test we might extend test
regression by autoregression part of higher order:

∆yt = γyt−1 +
P∑
i=1

αi∆yt−i + εt (30)

The null and the alternative are the same as in the basic version.

H0 : γ = 0
H1 : γ < 0 (31)

In practice, including autoregressive part in DF regression is very often ap-
proach.
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Distribution of the Dickey-Fuller statistic

The distribution of the Dickey-Fuller statistic is approximated numerically.
Under the null, the series yt has a unit root, i.e., ρ = 1 and

yt = yt−1 + εt (32)

where εt ∈ N (0, σ2).
Assumptions:
I T = 1000;
I σ = 0.1;
I Number of replications: 100000.
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Simulations results – distribution of the Dickey-Fuller statistic
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value -3.304 -2.569 -1.938 -1.614 -0.500
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Critical values for the (augmented) Dickey-Fuller test

Critical values for the (augmented) Dickey-Fuller test are different from the
t-student distribution.
There could be slight differences in critical values between software since they
are calculated numerically.

Regression 1% 5% 10%

∆yt = γyt−1 + εt -2.56 -1.94 -1.62

∆yt = µ+ γyt−1 + εt -3.43 -2.86 -2.57

∆yt = µ+ δt+ γyt−1 + εt -3.96 -3.41 -3.13

t-student statistic -2.33 -1.65 -1.28

Note: above critical values are taken from Davidson and MacKinnon (1993)

Jakub Mućk Advanced Applied Econometrics Time Series (I) Dickey-Fuller test 20 / 33



Empirical example: unemployment rate Ut

The Dickey-Fuller regression:

∆Ut = 0.087
(0.185)

− 0.0311
(0.0144)

Ut−1, (33)

Test statistic: −0.031/0.014 ≈ −2.16
Critical value (10% significance level):
-2.570
=⇒ null cannot be rejected H0

[But:] serially correlated residuals
Correlation between residuals and their lags
≈ 0.65

The Dickey-Fuller regression:

∆Ut = 0.2854
(0.066)

− 0.049
(0.011)

Ut−1 + 0.662
(0.045)

∆Ut−1,

(34)
Test statistic: −0.049/0.011 ≈ −4.47
Critical value (1% significance leveli):
-3.458
=⇒ the H0 can be rejected (about unit root)
at 1% significance level.
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Empirical example: logged real GDP ln GDPt

the ADF statistic p
lnGDPt -2.07 1
∆ lnGDPt -11.19 0

where p is the number of lags in the Dickey-
Fuller regression.

Critical values
1% 5% 10%
-3.458 -2.879 -2.570

What is the order of integration of GDPt?

Is the lnGDPt difference-stationary?

lnGDPt
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Empirical example: the ln GDPt and stationarity around trend

Is the lnGDPt stationarity around a
(deterministic) trend?
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The ADF test statistic: -1.232
Critical value (10% significance level):
-3.130.
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The ADF test statistic: -1.232
Critical value (10% significance level):
-3.130.

Residuals from the lnGDPt regressed
on a deterministic trend.
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Spurious Regressions
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An investigation on stationary is necessary because there is a danger of ob-
taining the significant estimation results from unrelated data when se-
ries exhibit unit root. Such case is said to be spurious regression.
To illustrate we simulate two random walk series (yt and xt):

DGP1 : yt = yt−1 + εt
DGP2 : xt = xt−1 + ηt

(35)

where ηt ∼ N
(
0, σ2

η

)
and εt ∼ N

(
0, σ2

ε

)
.

The series yt and xt are simulated independently so there is no relation
between these variables.

Jakub Mućk Advanced Applied Econometrics Time Series (I) Spurious Regressions 25 / 33



Figure: Simulated random walk series yt and xt
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Despite no relation between series there is upward trend in both series.
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Figure: Scatter plot of simulated random walk series yt and xt
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Simple regression of yt on xt (standard errors are in round brackets):

yt = 17.818
(0.62048)

+ 0.842xt
(0.02062)

(36)

t-statistic for xt : 40.82
R2 is about 0.705
But we know that series yt on xt were generated independently and there is
no true relationship between these variables. Thus, the above estimates
are totally meaningless or spurious.
When nonstationary time series are used in a simple regression, the least
squares estimator doesn’t have its usual properties. As a result, t-statistics
are not reliable.
The residuals from such (spurious) regression are autocorrelated.

See residuals
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Figure: Residuals from regression yt on xt
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DW statistics: 0.22 LM statistic (the autocorrelation of first order): 682.958[0.0000]
Back to example
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Cointegration
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Cointegration

Cointegration is a special case of relationship between non-stationary vari-
ables.
Key assumption: yt and xt are integrated of order one and the residuals
et, i.e,:

et = yt − β0 − β1xt (37)

are stationary. Then, variables xt and yt are cointegrated.
Intuition(1): if variables are cointegrated then they share common stochastic
trend.
Intuition(2): if variables are cointegrated then there exists long-run relation-
ship (equilibrium) between variables.
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Testing cointegration

First step: testing stationarity. If the variables xt and yt are integrated of order
one then go to the next step.
Second step: estimate parameters for the long-run regression, obtain residuals
(et) and test whether residuals are stationary:

et = yt − β0 − β1xt (38)

The null and altenrative:
H0 : et ∼ I(1) ⇐⇒ H0 : xt and yt are not cointegrated
H1 : et ∼ I(0) ⇐⇒ H1 : xt and yt are cointegrated (39)

But use the critical values for the cointegration test (which are different from the
ADF test for a series):

Table: Critical values

Long-run regression 1% 5% 10%
yt = β1xt + et -3.39 -2.76 -2.45
yt = β0 + β1xt + et -3.96 -3.37 -3.07
yt = β0 + δt+ β1xt + et -3.98 -3.42 -3.13

Notes: critical values are taken from Hamilton (1994)
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Empirical example: consumption function for Germany

Both ct and yt are integrated in order order 1.

Long-run relationship:

ĉt = 3.984
(0.174)

+ 0.657
(0.013)

yt (40)

What is the long-run elasticity?

Residuals from the long-run
regression
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The ADF statistics: -3.52.

Jakub Mućk Advanced Applied Econometrics Time Series (I) Cointegration 33 / 33


	Introduction
	Stationarity
	Dickey-Fuller test
	Spurious Regressions
	Cointegration

