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Relationship :

Q = β0 + β1P + ε (1)
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The supply curve (S)

QS = β0 + β1P + εs (1)

where εs is the unobservable sup-
ply shifter
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Q is the amount of good
P is the price of good
E1, E2 and E3 are observed values.

The supply curve (S)

QS = β0 + β1P + εs (1)

where εs is the unobservable sup-
ply shifter
The demand curves (Di) for different
values of Z

QD = α0 + α1P + α2Z + εd (2)

where Z is the observable demand
shifter, and εd is the unobservable
demand shifter.
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Simultaneous Equations Models (SEM)
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A general notation for SEM

Structural form is the the form derived from an economic theory.
System of M linear equations:

γ11y1+ . . .+ γ1MyM+ β11x1+ . . .+ β1KxK = ε1
γ21y2+ . . .+ γ2MyM+ β21x2+ . . .+ β2KxK = ε2

...
γM1y1+ . . .+ γMMyM+ βM1xM+ . . .+ βMKxK = εM

M endogenous: y1, y2, . . ., yM .
K exogenous variables: x1, x2, . . ., xK .
M structural error terms/innovations: ε1t, ε2, . . ., εM .
Assuming that ε = [ε1, ε2, . . . , εM ]

E(ε) = 0 oraz E(εεT ) = Σ,

where Σ is the variance-covariance matrix of structural innovations.
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Structural form

Structural form – matrix notation:

YΓ + XB = ε, (3)

where ( N denotes number of observations):
I Y is a N ×M matrix of endogenous variables.
I X is a N ×K matrix of exogenous variables.
I ε is a N ×M matrix of structural disturbances.
I Γ is a M ×M matrix.
I B is K ×M a matrix.

In addition:
E(ε) = 0 oraz E(εε′) = Σ,

where Σ is the variance-covariance matrix of the error term
The structural form consists of: Γ, B, and Σ.

Jakub Mućk Advanced Applied Econometrics SEM Simultaneous Equations Models (SEM) 6 / 30



Reduced form

Reduced form:
Y = XΠ + ν, (4)

where
Π = −BΓ−1 (5)

and ν is a matrix of disturbances in the reduced form:

ν = εΓ−1 (6)

and
E(ννT ) =

(
Γ−1)T ΣΓ−1 = Ω. (7)
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The Problem of Identification
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Example

Empirical observations: E1, E2 and E3.
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The Problem of Identification I

Structural form:
YΓ + XB = ε (8)

Reduced form:
Y = XΠ + ν (9)

Π = −BΓ−1 (10)

It is importantly to have reduced form that has exactly one corresponding
structural form.
If there are several structural forms that correspond to reduced form =⇒
lack od identification
For instance, let F denote some transformation (matrix). Then, alternative
structural form, which will be some transformation of true structural form:

YΓ̃ + XB̃ = ε̃ = YΓF + XBF = εF (11)

Then reduced form corresponding to new/alternative structura form will be
the same as in the case of original structural form.

Π̃ = −BFF−1Γ−1 = BΓ−1 = Π (12)

Jakub Mućk Advanced Applied Econometrics SEM The Problem of Identification 10 / 30



The Problem of Identification II

It implies that both structural form are empirically equivalent.
A popular strategy to identify parameters is to use non-sample in-
formation. This refers to restrictions that can be derived from an economic
theory.
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Example I

Example (qd – demand; qs – supply, p – price; z – exogenous variable):

qd = α0 + α1p+ α2z + εd (13)
qs = β0 + β1p+ β2z + εs (14)
qd = qs (15)

After manipulation and assuming that α1 6= β1 the reduced form is as follows:

q = α1β0−α0β1
α1−β1

+ α1β2−α2β1
α1−β1

z + α1εs−α2εd
α1−β1

= π11 + π21z + νq, (16)

p = β0−α0
α1−β1

+ β1−α2
α1−β2

z + εs−εd
α1−β1

= π12 + π22z + νp, (17)

Reduced form consists of four parameters π11, π12, π21 i π22), while in
the structural form we have six parameters (α0, α1, α2, β0, β1 i β2).
Obviously, there is no unique solution of system of six equations
(parameters in structural form) with four variables (parameters in
reduced form).
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Example II I

Example (qd – demand; qs – supply, p – price; z and x – exogenous variables):

qd = α0 + α1p+ α2x+ εd (18)
qs = β0 + β1p+ β2z + εs (19)
qd = qs (20)

Structural form:

[q p]
[

1 1
−α1 −β1

]
+ [1 x z]

[
−α0 −β0
−α2 0

0 −β2

]
= [εd εs] (21)

Reduced form:

[q p] = [1 x z]

[
(α1β0 − α0β1) /γ (β0 − α0) /γ
−α2β1/γ −α2/γ
α1β2/γ β2/γ

]
+ [ν1 ν2] (22)

where γ = α1 − β1
All structural forms, including false ones, can be described as follows:

B̃ = BF =

[
α0f11 + β0f12 α0 + β0f22

α2f11 α2f12
β2f21 β2f22

]
,

and looking at the F components
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Example II II

I when f12 6= 0 =⇒ then x appears in the supply equation. This is inconsis-
tent with the assumed theory (structural form).

I when f21 6= 0 =⇒ then z appears in the demand equation. This is incon-
sistent with the assumed theory (structural form).

Summing up, if f12 = f21 = 0 then reduced form is consistent with structural form.
F = I allows to get original structural form.
Unique solution:

α0 = π11 − π12
(
π31
π32

)
, α1 = π31

π32
, α2 = π22

(
π21
π22
− π31
π32

)
,

β0 = π11 − π12
(
π21
π22

)
, β1 = π21

π22
, β2 = π32

(
π31
π32
− π21
π22

)
.

Jakub Mućk Advanced Applied Econometrics SEM The Problem of Identification 14 / 30



The problem of identification and number of parameters

Structural form:
I Γ is an M ×M nonsingular matrix =⇒ M2 parameters.
I B is an K ×M nonsingular matrix =⇒ KM parameters.
I Σ is M ×M symetric matrix =⇒ 1

2M(M + 1) parameters.
The structural form consists of M2 +KM + 1

2M(M + 1). parameters

Reduced form:
I Π is an K ×M nonsingular matrix =⇒ KM parameters.
I Ω is M ×M symetric matrix =⇒ 1

2M(M + 1) parameters.
The structural form consists of KM + 1

2M(M + 1) parameters.
The difference between structural and reduced form equals M2.
Therefore, it is essential to use non-sample information.
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Restrictions – non-sample information

1. Normalization – in each equation one endogenous variable has coefficient
1.
I Then the number of additional parameters equals M(M − 1) .

2. Identities.
3. Exclusion – zeros in matrices Γ and B.
4. Linear restrictions.

I But it can lead to false structure. For example, assuming constant returns to
scale in production function lead to situation, in which effects of economies of
scale is measured by technical change.

5. Restrictions on Σ.
I In modern macroeconometrics, the common approach is to assumed uncorre-

lated structural shocks.
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Order condition

Order condition
The number of exogenous variables excluded from given equation must be
not smaller than the number of endogenous variables included in given
equation.

The order condition should be checked for each equation.
The order condition can be understood by comparing with IV.
The order condition is not sufficient.
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Order and rank condition

Practically, we can use method with tableau which allows to check both
conditions.
[Step #1] Rewrite parameters of structural forms in the following way:
y1 y2 . . . yM 1 x1 x2 . . . xk

Γ′ B′

[Krok #2] For each equation (denoted by j) we consider submatrix from
which we exclude:
I j-th row;
I columns which have nonzero elmenents in the jrow.

j-th equation is identified when the above submatrix has full rank.
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The Problem of Identification

The equation is:
Underidentified when the number of excluded exogenous variables is smaller
than the number of endogenous variables or rank condition fails.
Exactly identified when the number of excluded exogenous variables equals
the number of endogenous variables and rank condition is satisfied.
Overidentified when the number of excluded exogenous variables is greater
than the number of endogenous variables and rank condition is satisfied.
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Example I

qd = α0 + α1p+ εd

qs = β0 + β1p+ εs

qd = qs

qd qs 1 p

1 0 −α0 −α1
0 1 −β0 −β1
1 −1 0 0
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Example I

qd = α0 + α1p+ εd

qs = β0 + β1p+ εs

qd = qs

qd qs 1 p

1 0 −α0 −α1
0 1 −β0 −β1
1 −1 0 0

first equation: [1 − 1]′ =⇒ equation is underidentified.
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Example I

qd = α0 + α1p+ εd

qs = β0 + β1p+ εs

qd = qs

qd qs 1 p

1 0 −α0 −α1
0 1 −β0 −β1
1 −1 0 0

first equation: [1 − 1]′ =⇒ equation is underidentified.

second equation: [1 1]′ =⇒ equation is underidentified.
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Example II

qd = α0 + α1p+ α2z + εd

qs = β0 + β1p+ εs

qd = qs

qd qs 1 p z

1 0 −α0 −α1 −α2
0 1 −β0 −β1 0
1 −1 0 0 0
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Example II

qd = α0 + α1p+ α2z + εd

qs = β0 + β1p+ εs

qd = qs

qd qs 1 p z

1 0 −α0 −α1 −α2
0 1 −β0 −β1 0
1 −1 0 0 0

first equation: [1 − 1]′ =⇒ equation is underidentified.

second equation: [1 1]′ and [−α2 0]′. In addition,

rank
[

1 −α2
1 0

]
= 2

=⇒ equation is exactly identified.
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Example III

qd = α0 + α1p+ α2z + εd

qs = β0 + β1p+ β2x+ εs

qd = qs

qd qs 1 p z x

1 0 −α0 −α1 −α2 0
0 1 −β0 −β1 0 −β2
1 −1 0 0 0 0
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Example III

qd = α0 + α1p+ α2z + εd

qs = β0 + β1p+ β2x+ εs

qd = qs

qd qs 1 p z x

1 0 −α0 −α1 −α2 0
0 1 −β0 −β1 0 −β2
1 −1 0 0 0 0

first equation: [1 − 1]′ and [−β2 0]′. Importantly,

rank
[

1 −β2
−1 0

]
= 2

=⇒ equation is exactly identified.
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Estimation Methods
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Estimation Methods

Single equation
OLS/LS (ordinary least squares);
2SLS (two-stages least squares;
GMM (generalized methods of moments);
LIML (limited information maximum likelihood).
System estimation
3SLS (three-stages least squares);
GMM (generalized methods of moments);
FIML (full-information maximum likelihood).
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Inconsistency of the OLS
Structural form of j-th equation:

yj = Yjγj + Xjβj + εj

= Zjδj + εj

where Zj is the matrix containing both endogenous and exogenous
variables that appears in the j-th equation, i.e. Zj = [Yj Xj ].
Reduced form of j-th equation:

Yj = ΠjXj + νj

where Πj is the j-th column of the matrix Π and ν = εΓ−1.

The OLS estimator is inconsistent:

δ̂OLSj =
[
Z′jZj

]−1 Z′jyj = δj +
[

Y′jYj Y′jXj

X′jYj X′jXj

]−1 [
Y′jεj
X′jεj

]
I plim 1

N
XT
j εj tends to zero as Xj are non-random (or exogenous).

I The key problem is plim 1
N

YT
j εj which does not tend to 0 . This

correlation leads to simultaneous equations bias.
There are special cases when the OLS is consistent: recursive models
with uncorrelated structural errors.
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Estimation methods: 2SLS

2SLS estimator (two-stage least squares 2SLS) bases on IV approach.
Key idea: use X as instruments for Yj in the j-the equation.
[Step #1] Regress all endogenous variables j (Yj) on exogenous variables.
=⇒ Calculate fitted values Ŷj .
[Step #2] Regress yj on Ŷj and Xj .
I Above strategy illustrate why the order condition is so important.
I The IV perspective: if the order condition is not satisfied then the number

of endogenous variables is greater than number of instruments.
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Estimation Methods – 2SLS

The 2SLS estimator for the j-th equation that exploits the fitted values from the
first step (Ŷj):

δ̂2SLS
j =

[
ŶT
j Yj ŶT

j Xj

XT
j Yj XT

j Xj

]−1 [
ŶT
j yj

XT
j yj

]
. (23)

Asymptotic variance:

V ar
(
δ̂2SLS
j

)
= σ̂jj

[
ẐTj Ẑj

]−1
, (24)

where Zj is matrix containing all variables in the j-th equation. The variance of
the error term can be estimated with:

σ̂jj =

(
yj − Zj δ̂2SLS

j

)T (
yj − Zj δ̂2SLS

j

)
N

, (25)

and depends on observed variance (Zj).
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Estimation methods: 3SLS

3SLS estimator (three-stage least squares) is system estimation method,
i.e., parameters are estimated jointly.
Key concept:
I Use the 2SLS estimator for each equation.
I In the next step, use feasible generalized least squares/ seemingly unrelated

regression (FGLS/SUR) estimator that accounts for cross-equation correlation
of the error term.
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Estimation methods: 3SLS I

Matrix notation:
y1
y2
...

yM




Z1 0 . . . 0
0 Z2 . . . 0
...

...
...

...
0 0 . . . ZM




δ1
δ2
...
δM

 =


ε1
ε2
...
εM

 , (26)

where Zi is a set of exogenous and endogenous variable in the i-th equation
and ε1, ε2, . . . , εM are the structural disturbances.
Key assumption about the error term:
I E(ε|X) = 0
I E(εε′|X) = Σ̄ = Σ⊗ I.

Variance-covariance of the error term:

Σ⊗ I =


σ2

11 σ2
12 . . . σ2

1M
σ2

21 σ2
22 . . . σ2

2M
...

...
...

...
σ2
M1 σ2

M2 . . . σ2
MM




1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

 , (27)
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Estimation methods: 3SLS II

The cross-equation correlation can be estimated with the 2SLS estimates:

σ̂ij =
(
yi − Ziδ̂2SLS

i

)′ (yi − Zj δ̂2SLS
j

)
N

, (28)

Finally, the standard FGLS can be applied:

δ̂3SLS =
[
Ẑ′
(
Σ−1 ⊗ I

)
Ẑ
]−1 Ẑ′

(
Σ−1 ⊗ I

)
y. (29)
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