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Multiple regression

Least squares estimator :

y = β0 + β1x1 + β2x2 + . . .+ βKxK + ε (1)

where
I y is the (outcome) dependent variable;
I x1, x2, . . . , xK is the set of independent variables;
I ε is the error term.

The dependent variable is explained with the components that vary with the
the dependent variable and the error term.
β0 is the intercept.
β1, β2, . . . , βK are the coefficients (slopes) on x1, x2, . . . , xK .

β1, β2, . . . , βK measure the effect of change in x1, x2, . . . , xK upon the
expected value of y (ceteris paribus).
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Assumptions of the least squares estimators I

Assumption #1: true DGP (data generating process):

y = Xβ + ε. (2)

Assumption #2: the expected value of the error term is zero:

E (ε) = 0, (3)

and this implies that E (y) = Xβ.
Assumption #3: Spherical variance-covariance error matrix.

var(ε) = E(εε′) = Iσ2 (4)

. In particular:
I the variance of the error term equals σ:

var (ε) = σ2 = var (y) . (5)
I the covariance between any pair of εi and εj is zero”

cov (εi, εj) = 0. (6)

Assumption #4: Exogeneity. The independent variable are not random
and therefore they are not correlated with the error term.

E(Xε) = 0. (7)
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Assumptions of the least squares estimators II

Assumption #5: the full rank of matrix of explanatory variables (there is
no so-called collinearity):

rank(X) = K + 1 ≤ N. (8)

Assumption #6 (optional): the normally distributed error term:

ε ∼ N
(
0, σ2) . (9)
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Gauss-Markov Theorem

Assumptions of the least squares estimators
Under the assumptions A#1-A#5 of the multiple linear regression model,
the least squares estimator β̂OLS has the smallest variance of all linear and
unbiased estimators of β.

β̂OLS is the Best Linear Unbiased Estimators (BLUE) of β.
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The least squares estimator

The least squares estimator

β̂OLS =
(
X′X

)−1 X′y. (10)

The variance of the least square estimator

V ar(β̂OLS) = σ2 (X′X)−1 (11)

If the (optional) assumption about normal distribution of the error
term is satisfied then

β ∼ N
(
β̂OLS , V ar(β̂OLS)

)
. (12)

Jakub Mućk Advanced Applied Econometrics Heteroskedasticity and serial correlation Least squares estimator 7 / 45



Consequences of non spherical errors
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Consequences of non spherical errors

General variance of the least square estimator (β̂OLS):

V ar(β̂OLS) = E
[(
β̂OLS − β

) (
β̂OLS − β

)′]
. (13)

Let rewrite the least square estimator:

β̂OLS =
(
X′X

)−1 X′y =
(
X′X

)−1 X′ (Xβ + ε) = β +
(
X′X

)−1 X′ε, (14)

then

V ar(β̂OLS) = E
[(

X′X
)−1 X′ε

((
X′X

)−1 X′ε
)′]

= E
[(

X′X
)−1 X′εε′X

(
X′X

)−1
]

=
(
X′X

)−1 X′E
[
εε′
]

X
(
X′X

)−1

If the assumption #3 about spherical variance-covariance error matrix,
i.e.. E(εε′) = σ2I is not satisfied, the above expression cannot be simpli-
fied and written as:

V ar(β̂OLS) = σ2 (X′X)−1
. (15)
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Non spherical errors

Consequences
I The least squares estimator is still unbiased and consistent but it no longer

BLUE.
I Inconsistency of variance. The standard errors usually computed for the

least squares estimator are unreliable.
I Confidence intervals and hypothesis tests that use these standard errors may

be misleading.
Detection
I Visual inspection of residuals.
I Formal tests.

Dealing with non spherical errors
I (Feasible) Generalized Least Squares.
I Robust standard errors.

Special cases
I Heteroskedasticity of the error term.
I Serial correlation.
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Heteroskedasticity
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Heteroskedasticity

Homoskedasticity
I The simple linear model:

yi = −β0 + β1xi + εi var(εi) = σ2, (16)

the variance of the least squares estimators for β1:

var(β̂LS1 ) =
σ2∑N

i=1 (xi − x̄)2
(17)

Heteroskedasticity
I The simple linear model (with heteroskedasticity):

yi = β0 + β1xi + εi var(εi) = σ2
i , (18)

the variance of the least squares estimators for β1:

var(β̂LS1 ) =
N∑
i=1

wiσ
2
i =

∑N

i=1 (xi − x̄)2 σ2
i[∑N

i=1 (xi − x̄)2]2 (19)
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Heteroskedasticity

Heteroskedasticity is often encountered when using cross-sectional data.
Cross-section data invariably involve observation units of varying sizes, e.g.,
households, firms, workers.
Intuition: as the size of the economic unit becomes larger, there is more
uncertainty associated with the outcomes.
Heteroskedasticity is sometimes present in time-series data.
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Detecting Heteroskedasticity
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Detecting Heteroskedasticity

Method that can be used to detect heteroskedasticity
1. An informal way using residual charts, i.e., the squared residuals versus

explanatory variables.
2. A formal way using statistical tests:

2.1 The Breusch-Pagan test;
2.2 The White test;
2.3 The Goldfeld-Quandt test.
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The Breusch-Pagan test I

The Breusch-Pagan Lagrange Multiplier test allows to test whether
the variance of the error term depends on some explanatory variables z that
are possibly different from x

A general form for the variance function

var(yi) = σ2
i = E(ε2

i ) = h (α0 + α1zi1 + . . .+ αSziS) . (20)

Two possible functions for h():
I Exponential function:

h (α0 + α1zi1 + . . .+ αSziS) = exp (α0 + α1zi1 + . . .+ αSziS) . (21)
I Linear function:

h (α0 + α1zi1 + . . .+ αSziS) = α0 + α1zi1 + . . .+ αSziS , (22)

it should be noted that in the linear function one must be careful to ensure
h() > 0.

The null and alternative hypotheses are:

H0 : α1 = α2 = . . . = αS = 0,
H1 : not all αj = 0.
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The Breusch-Pagan test II
The null is about homoskedasticity while the alternative is about heteroskedas-
ticity.
Note that for linear function we have:

ε2
i = E(ε2

i ) + νi = α0 + α1zi1 + . . .+ αSziS + νi, (23)

where νi is random.
The test statistics based on the above regression (for linear function) obtained
after substitution the least squares residualsε̂2

i for ε2
i :

ε̂2
i = α0 + α1zi1 + . . .+ αSziS + νi. (24)

Finally, the test statistics based on the R2 from the previous regression has
a chi-square distribution with S degrees of freedom:

χ2 = NR2 ∼ χ2
(S). (25)

The Breusch-Pagan/ Lagrange Multiplier test is a large sample test.
In this test, the value of the statistic computed from the linear function is
valid for testing an alternative hypothesis of heteroskedasticity where the
variance function can be of any form given by h().
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The White test I

In the White test the explanatory variables x, their squares and cross-
products are used instead of z.
Example. In the linear

E(y) = β0 + β1x1 + β2x2. (26)

the following variables will be used

z1 = x1, z2 = x2, z3 = x2
1, z4 = x2

2, and z5 = x1x2.

The White test is perform as F test or χ2 test (as previously).
The null is about homoskedasticity while the alternative is about heteroskedas-
ticity.
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The Goldfeld-Quandt test I

The Goldfeld-Quandt test is designed to test for this form of heteroskedas-
ticity, where the sample can be partitioned into two groups and we suspect
the variance could be different in the two groups.
The sample can be partitioned with:
I indicator variable,
I qualitative variable.

Example: wages for female and male workers:

lnwagei = β0 + β1educi + β2femalei + εi, i = 1, 2, . . . , N. (27)

Splitting sample:

lnwageMi = βM0 + βM1educMi + εMi, i = 1, 2, . . . , NM , (28)
lnwageFi = βF0 + βF1educFi + εFi, i = 1, 2, . . . , NF . (29)

The null hypothesis:
H0 σ2

M = σ2
F . (30)
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The Goldfeld-Quandt test II

Test statistics:

F = σ̂2
M/σ

2
M

σ̂2
F /σ

2
F

∼ F(NM−KM ,FM−KF ), (31)

when the null is true

F = σ̂2
M

σ̂2
F

, (32)

when σ̂2
M > σ̂2

F

If the F is higher than its critical value we can reject the null.
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Heteroskedasticity-Consistent Standard Errors
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Heteroskedasticity-Consistent Standard Errors I

In the presence of the heteroskedasticity the least squares estimator, although
still being unbiased, is no longer blue.
The typical least squares standard errors are incorrect.
Heteroskedasticity-Consistent Standard Errors is a way of correcting
the standard errors so that our interval estimates and hypothesis tests are
valid since they take into consideration heteroskedasticity.
White’s heteroskedasticity-consistent estimator for the simple linear
model:

ˆvar
(
β̂LS1

)
= N

N − 2

∑N

i=1 (xi − x̄)2 ε̂2
i[∑N

i=1 (xi − x̄)2]2 . (33)

The White’s estimator for the variance helps avoid computing incorrect in-
terval estimates or incorrect values for test statistics in the presence of het-
eroskedasticity but it does not address the other implication of heteroskedas-
ticity.
I But when sample size is large the variance of the least squares estimator may

still be sufficiently small to get precise estimates.
I Robust standard errors estimator does not require to specify a suitable variance

function h().
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Clustered standard errors
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Clustered standard errors

Clustered standard errors could be applied in the presence of the heteroskedas-
ticity and when observation can be grouped/clustered.
Example: student’s result and classes.
Key assumption: independence (of the error term) between clusters and
dependence within clusters.
The variance-covariance of the error term:

E(εiεj) =
{

0 if i and j belong to different clusters,
σij if i and j belong to the same group (34)

The general variance-covariance of the error term matrix will be block diag-
onal.
Denoting the group by g = 1, 2, . . . , G, the variance can be estimated:

V ar(β̂LS) =
(
X′X

)−1

(
G∑
g=1

x′ê′g êgx

)(
X′X

)−1
. (35)

Key problem: we should know our data to appropriately apply clustering.
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Generalized Least Squares
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GLS: known form of variance I

Consider simply linear regression:

yi = β0 + β1xi + εi (36)

where the error term is heteroskedastic, i.e., var(εi) = σ2
i .

The generalized least squares estimator (GLS) depends on the un-
known variance of the error term σ2

i .
However, one can assume some structure on σ2

i . For instance,

var(εi) = σ2
i = σ2xi. (37)

Under above assumption we can apply GLS transformation to our variables
(dependent, explanatory and error term):

yi√
xi

= β0
1√
xi

+ β1
xi√
xi

+ εi√
xi
, (38)

or more generally
z∗i = zi√

xi
. (39)
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GLS: known form of variance II

The variance of the transformed error term is therefore constant:

var(ε∗i ) = var( εi√
xi

) = 1
xi
var(εi) = 1

xi
σ2xi = σ2. (40)

Therefore the least squares estimator can be applied to the regression that
bases on transformed variables.

y∗i = β0 + β1x
∗
i + ε∗i . (41)

The GLS transformation/estimator can be viewed as a weighted least
squares estimator:
I Minimizing sum of ε∗i , i.e., the transformed errors:

N∑
i=1

ε∗2i =
N∑
i=1

ε2
i

xi
=

N∑
i=1

(
εi

x
1/2
i

)2

. (42)

I The error are weighted by 1/x1/2
i .

I Intuition: observation with smaller error variance has a larger weights (im-
portance).
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GLS and grouped data I

Example: wages for female and male workers in the divided samples"
Splitting sample:

lnwageMi = βM0 + βM1educMi + εMi, i = 1, 2, . . . , NM , (43)
lnwageFi = βF0 + βF1educFi + εFi, i = 1, 2, . . . , NF . (44)

The GLS estimator can be applied as follows:

lnwageMi

σM
= βM0

1
σM

+ βM1
educMi

σM
+ εMi

σM
, i = 1, 2, . . . , NM , (45)

lnwageFi
σF

= βF0
1
σF

+ βF1
educFi
σF

+ εFi
σF

, i = 1, 2, . . . , NF . (46)

where σM and σF is the standard deviation of the error term in the subsam-
ples form male and female workers, respectively.
How to get σM and σF estimates?
We can use a Feasible Generalized Least Squares (FGLS) estimator.
The steps are as follows:

1. Obtained σM and σF estimates by applying the least squares separately to
both subsamples (like in the Goldfeld-Quandt test).
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GLS and grouped data II

2. Construct the general variance of the error term:

σ̂i =
{

σ̂M if FEMALEi = 0,
σ̂F if FEMALEi = 1. (47)

3. Apply the least squares to the transformed initial model:

lnwagei
σ̂i

= β0
1
σ̂i

+ β1
educi

σ̂i
+ β2

femalei

σ̂i
+
εi

σ̂i
. (48)

Jakub Mućk Advanced Applied Econometrics Heteroskedasticity and serial correlation Generalized Least Squares 30 / 45



Unknown Form of Variance I

General steps in applying the GLS when the form of variance is
unknown

1. Estimate equation by least squares and compute the squares of the least
squares residual ε̂i

2. Take squared residuals (ε̂2
i ) and apply the least squares to the equation de-

scribing the variance. One of the possible form is :

ln ε̂2
i = α1 + α2z1 + . . .+ αSzS + νi (49)

where νi is the random and zj is explanatory variable or its transformation
(e.g. logarithmic).

3. Compute the estimated variance σ̂2
i . For the example from previous point:

σ̂2
i = exp (α̂1 + α̂2z1 + . . .+ α̂SzS) . (50)

4. Transform variables (dependent and explanatory):

y∗i = yi/σ̂i and x∗ji = xji/σ̂i. (51)

5. Apply the least squares to transformed variables.
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Serial correlation
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Nature of serial correlation of the error term

Serial correlation of error term is usually present in time series.
In general, serial correlation is a measure of persistence/inertia. This is a
common feature of many economic variables.
Serial correlation of the error term suggests that dynamic relationship
between variables is misspecified.
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Detecting serial correlation of the error term

An informal way using residual charts:
I plotting residuals êt versus time,
I plotting residuals êt versus lagged residuals êt−1,

Formal ways using statistical tests:
I Testing autocorrelation of order one as well as of higher orders.
I The Lagrange multiplier test.
I The Durbin-Watson test.
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Autocorrelation

The population correlation x and y:

ρxy = cov (x, y)√
var (x) var (y)

. (52)

he population autocorrelation of order one:

ρ1 = cov (yt, yt−1)√
var (yt) var (yt−1)

. (53)

The sample autocorrelation (ACF) of order one:

r1 =
∑T

t=2 (yt − ȳ) (yt−1 − ȳ)∑T

t=1 (yt − ȳ)2 . (54)
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Autocorrelation

The k-th order sample autocorrelation (ACF) :

rk =
1

T−k

∑T

t=k+1 (yt − ȳ) (yt−k − ȳ)
1
T

∑T

t=1 (yt − ȳ)2 . (55)

Testing significance of autocorrelation.
I The null is about no serial correlation, i.e.,

H0 : ρk = 0. (56)
I The test statistic:

Z =
√
Trk ∼ N (0, 1). (57)
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The Lagrange multiplier test I
The Lagrange multiplier test allows to test jointly correlations at more
than one lag.
The AR(1) model for error term:

et = ρ1et−1 + νt (58)

where νt ∼ N (0, σ2
ν).

Substitution into a simple regression we get:

yt = β0 + β1xt + ρ1et−1 + νt. (59)

Substituting by the residuals we get:

yt = β0 + β1xt + ρ1êt−1 + νt, (60)

and using a fact that yt = β̂0 + β̂1 + êt:

β̂0 + β̂1 + êt = β0 + β1xt + ρ1êt−1 + νt, (61)

which after manipulation leads to the following auxiliary regression in
the Lagrange Multiplier (LM) test:

êt = γ0 + γ1xt + ρêt−1 + νt. (62)
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The Lagrange multiplier test II

The null is about no autocorrelation of order one, i.e.,

H0 : ρ1 = 0. (63)

The test statistic:
LM = T ×R2 ∼ χ2

(1). (64)
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The Lagrange multiplier test – testing higher order of autocorrelation

The AR(k) model for error term:

et = ρ1et−1 + ρ2et−2 + . . .+ ρket−k + νt. (65)

The auxiliary regression:

êt = γ0 + γ1xt + ρêt−1 + ρ̂2et−2 + . . .+ ρ̂ket−k + νt. (66)

The null is about no autocorrelation up to k-th order:

H0 : ρ1 = ρ2 = . . . = ρk = 0. (67)

The test statistic:
LM = T ×R2 ∼ χ2

(k). (68)
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Estimation with Serially Correlated Errors
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Dealing with serial correlation

Four strategies can be considered:
1. Least squares estimation with HAC (heteroskedasticity and autocorrelation

consistent) standard errors.
2. Generalized squares estimation (the Cochrane-Orcutt estimator).
3. Dynamic model (TBC on next classes)
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HAC standard errors

The variance of the least squares estimator (in the simply regression model, i.e.,
yt = β0 + β1xt + et):

var(β̂1) =
∑
t

wtvar(et) +
∑
t

∑
t6=s

wtwscov(et, es), (69)

where
wt =

(xt − x̄)∑
t

(xt − x̄)2 . (70)

If there is no serial correlation then the variance

var(β̂1) =
∑
t

w2
t var(et), (71)

is very similar to the heteroskedasticity-consistent (HC) variance estimator.
In practice, we estimate the Newey-West robust standard errors by limiting (trun-
cating) the number of lags (the second term of the HAC). The results (i.e. standard
errors) can be very sensitive the this choice.
The common practice is to use the prewhitening of explanatory variables.
I It allows to eliminate the persistence of explanatory variable that could be

essential in constructing weights (wt).
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Properties of an AR(1) error model

AR(1) error model:
et = ρet−1 + νt, (72)

where |ρ| < 1, νt ∼ N (0, σ2
ν) and cov(νt, νs) = 0 for t 6= s.

The mean and variance of the error term:

E (et) = 0, var(et) = σ2
e = σ2

ν

1− ρ . (73)

The covariance and autocorrelation (of order i-th) of the error term:

cov(et, et−k) = ρkσ2
ν

1− ρ2 , ρi = ρi. (74)
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Simple regression with AR(1) errors

When the error term follows AR(1) then the simple regression can be ex-
pressed:

yt = β0 + β1xt + ρet−1 + νt. (75)

For the period t− 1 the error term can be expressed as:

et−1 = yt−1 − β0 − β1xt−1. (76)

Combining above facts we get:

yt = β0 (1− ρ) + β1xt + ρyt−1 − ρβ2xt−1 + νt. (77)
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The Cochrane-Orcutt estimator

Alternatively, we can use the Cochrane-Orcutt estimator.
This is a special case of GLS transformation, i.e.,

z∗t = zt − ρzt−1, (78)

where z ∈ {yt, xt, et}.
This transformation is called quasi-differencing.
To get estimates of ρ we can use sample correlation of residuals.
By construction the error term is not autocorrelated:

e∗t = et − ρet−1 = ρet−1 + νt − ρet−1 = νt. (79)
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