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Multiple regression SGH

m Least squares estimator :

y=PBo+ Biz1 + Bexa+ ...+ Brxrk + € (1)

where

» y is the (outcome) dependent variable;
> z1,x2,...,7K is the set of independent variables;
» ¢ is the error term.

m The dependent variable is explained with the components that vary with the
the dependent variable and the error term.

m o is the intercept.

m (31, 052,..., Bk are the coefficients (slopes) on x1,x2,...,2k.
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Multiple regression SGH

m Least squares estimator :

y=PBo+ Biz1 + Bexa+ ...+ Brxrk + € (1)

where
» y is the (outcome) dependent variable;
> z1,x2,...,7K is the set of independent variables;
» ¢ is the error term.

The dependent variable is explained with the components that vary with the
the dependent variable and the error term.

m o is the intercept.

m (31, 052,..., Bk are the coefficients (slopes) on x1,x2,...,2k.
81, B2, ..., Bk measure the effect of change in x1,x2,...,xx upon the
expected value of y (ceteris paribus). J
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Assumptions of the least squares estimators I SGH

m Assumption #1: true DGP (data generating process):
y=XpB+e. (2)
m Assumption #2: the expected value of the error term is zero:
E(e) =0, ®3)
and this implies that E (y) = X2.
m Assumption #3: Spherical variance-covariance error matrix.
var(e) = E(ee’) = Io? 4)
. In particular:
> the variance of the error term equals o:
var (&) = 02 = var (y). (5)
> the covariance between any pair of €; and ¢; is zero”
cov (g4,¢5) = 0. (6)
m Assumption #4: Exogeneity. The independent variable are not random
and therefore they are not correlated with the error term.
E(Xe) = 0. (7)
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Assumptions of the least squares estimators 11 SGH

m Assumption #b5: the full rank of matrix of explanatory variables (there is
no so-called collinearity):

rank(X) =K +1< N. (8)
m Assumption #6 (optional): the normally distributed error term:

e~N (0, 0'2) . (9)
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Gauss-Markov Theorem SGH

Assumptions of the least squares estimators

Under the assumptions A#1-A#5 of the multiple linear regression model,
the least squares estimator 59X has the smallest variance of all linear and
unbiased estimators of .

B9L5 is the Best Linear Unbiased Estimators (BLUE) of j.

LEAST SQUARES ESTIMATOR
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The least squares estimator SGH

m The least squares estimator
AOLS = (X'X) ' Xy. (10)

m The variance of the least square estimator

Var(f°F%) = ¢* (X'X)71 (11)

m If the (optional) assumption about normal distribution of the error
term is satisfied then

B~ N (B85, Var(39F?)) . (12)
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Estimating non-linear relationship SGH

m Economic variables are not always related by straight-line relationships. They
display curvilinear forms.

[Example] Wages (w) and experience (exper):
w = Bo + Brexper + Paexper? + ¢. (13)

In the above model, the quadratic relationship is assumed. Why?

In general, the choice of function form is related to:
1. economic theory,
2. empirical pattern,
3. properties of residuals.

® The most popular nonlinear functions:

» quadratic and cubic relationship,

> polynomial equations,

» logs of the dependent and/or independent variable.
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Examples SGH

o Orange line :
l/ = Aﬁ] + Afg,l‘
Red line :

ER y=p1+ ,32-”52
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Examples SGH

Orange line :

3 7 l/ = Aﬁ] + Afg,l‘
Red line :

R y=p1+P2lnx

40 60 80 100 120 140 160
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Examples SGH

B Orange line :

Yy = Aﬁ] + Afg,l‘
o Red line :

Iny = p1 + Bz

1.0 15 20 25 3.0
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Examples SGH

71 Orange line :
y = B1 + Pax

o Red line :
Iny=p1+ p2lnx

15 2.0 25 3.0 35
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How to interpret coefficients SGH

m Marginal effects measures expected instantaneous change in the dependent
variable (y)in a reaction to change in explanatory variable (z):

IE (y)
ox

In other words, the marginal effects is the slope of the tangent to the curve
at a particular point.

Marginal effect = (14)

m Elasticity measures the percentage change in y in a reaction to percentage
change in x:

ox y’
m Semi-elasticity measures the percentage change in y in a reaction to a
change in =

Elasticity = O (y) = (15)

IE (y) 1
ox y’

Semi-Elasticity = (16)
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Some useful functions SGH

Name Function Slope Elasticity
(marginal effects)

Linear y = Bo + fix b1 51%

Quadratic y = Bo + Bz’ 261x 25@5

Quadratic (II) y = Bo + fiz + f2” B+ 2Bax (Br + 2B22)

Cubic y = Bo + pia® 33122 312 L

Log-Log In(y) = Bo + B1 In(x) Bt B1

Log-Linear In(y) = o + fiz By Bz

a 1 unit change in z leads to (approximately) a 100 81% change in y

Linear-Log y = Bo + 51 1n(z) 51% 51%

a 1 % change in x leads to (approximately) a 31/100 unit change in y

ESTIMATING NON-LINEAR RELATIONSHIP 12 / 31



Interaction variable SGH

m Interaction variable is the product of (at least) two variable involved in
regression and accounts for simultaneous effects of two variables.

m [Example] Wages (w), experience (exper) and education (educ):
w = Bo + Brexper + Baexper® + Bseduc + Baexper X educ + €. a7

m In this case:

E
Marginal effect of education = OE (w) = B3 + Baexper,
Oeduc
E
Marginal effect of experience = OF (w) = (2 + 2B3exper + Paeduc.
Odexper
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Model Specification SGH

A model could be misspecified when
B important explanatory variables are omitted,
m irrelevant explanatory variables are included,
m a wrong functional form is chosen,

m the assumptions of the multiple regression model are not satisfied
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Omitted variables I SGH

m Omission of a relevant variable (defined as one whose coefficient is nonzero)
might lead to an estimator that is biased. This bias is known as omitted-
variable bias.

m Let’s assume true DGP (data generating process):
y = Po+ Biz1 + Pax2 + €. (18)

m Consider the case when we do not have data on zs.
Equivalently, we impose the restriction that 82 = 0. According to our true
DGP this restriction is invalid.

m Then the expected value of the least squares estimator of (i:

ALSy cov(z1,T2)
E(3) = o1+ 5, (19)
and the omitted variable bias:
bias (AILS) =E(BL%) - B = 52w- (20)

var(z2)

m The omitted bias is larger if:
> the true slope on omitted variable B2 is higher,
» the omitted variable (z2) is more correlated with the included variable (x3).

m However, there is no bias when the omitted variable is not correlated with
the explanatory variables.
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Irrelevant variables I SGH

m Due to omitted-variable bias one might follow strategy to include as many
variable as possible.

m However, doing so may also inflate the variance of estimate.

m The inclusion of irrelevant variables may reduce the precision of the esti-
mated coefficients for other variables in the equation
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RESET test I SGH

m RESET (REgression Specification Error Test) is designed to detect
omitted variables and incorrect functional form.

m Consider the multiple linear regression:

y=PLo+bix1+ ...+ Brxi +e. (21)
m [Step #1]. Obtain the least square estimates and calculate the fitted values:
G=85° + Bt + ...+ BF (22)
m [Step #2]. Consider the following auxiliary regressions:
Model 1 : y=Bo+Bix1+ ...+ Brxk + i’ +e.
Model 2 : y=Bo+ Bz + ...+ Brxk + 719" + 120" +e.

Obtain the least squares estimators of v, in Model 1 and/or 71 and 72 in
Model 2.

[Step #3]. Consider the following null:

Model 1 : Ho: m =0,
Model 2 : Ho: m=72=0,

In both cases the null hypothesis is about misspecification.
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RESET test 11 SGH

m The RESET test is very general test allowing for testing functional form.
However, if we reject the null we do not know what is the source of misspec-
ification.

m If a number of observations is large one might replace squared and cubic fitted
values of outcome variable by squared and cubic of explanatory variables.
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Collinearity I SGH

® When data are the result of an uncontrolled experiment, many of the eco-
nomic variables may move together in systematic ways.

m This problem is labeled collinearity and explanatory variable are said to be
collinear.

m Example: multiple regression with two explanatory variable
y = Po + Biz1 + Pax2 + €. (23)

The variance of the least squares estimator for (2:

var AQLS = (JTVQ , 24
(57) (L —7r7) >0, (wiz — 22) 24

where 715 is the correlation between x1 and zs.

m Extreme case: 723 = 1 then the x1 and x2 are perfectly collinear. In this
case the least squares estimator is not defined and we cannot obtain the least
squares estimates.

m If 77, is large then:

> the standards errors are large = small (in modulus) ¢ statistics. Typically, it
leads to the conclusion that parameter estimates are not significantly different
from zero,

> estimates may be very sensitive to the inclusion or exclusion of a few observa-
tions,

> estimates may be very sensitive to the exclusion of insignificant variables.
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Identifying and mitigating collinearity SGH

m Detecting collinearity:
» pairwise correlation between explanatory variables,
»> variance inflation factor (VIF) which is calculated for each explanatory
variable. The VIF is a function of R? from auxiliary regression of the selected
explanatory variable on the remaining explanatory variables:

(25)

The values above 10 suggests collinearity.
m Dealing with collinearity:

» Obtaining more infromation.
» Using non-sample information, i.e., restrictions on parameters.

COLLINEARITY
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Normality of the error term SGH

m The assumption of the error term is crucial to test the hypothesis. However,
the error term is random variable and , therefore, is not unobservable.

m The normality of the error term can be justified on the basis of the residuals
properties.
m The assessment of this assumption bases on:

» the residuals histogram,
> results of the Jarque-Berra test.

m But if the sample is sufficiently large then, according to a central limit the-
orem, the distribution of least squares estimator can be approximated by
normal distribution.
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SGH

The Jarque-Berra test

the Jarque-Berra test allows to investigate whether sample

m In general,
data have the skewness and kurtosis that match to normal distribution

m The skewness (S) and kurtosis (K) of residuals (é;)

1 N
NZ é,-—e
S= =1 ;s and K= =1 s —3
1 N ) 2 1 al N 2\ 2
(NZ(éi—é)> (N_E;(@i‘e)>
=1 1=

NORMALITY OF THE ERROR TERM
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Goodness-of -fit I SGH

m The observed values (y;) of dependent variable can be decomposed into the
fitted values () and the residuals (é;):

Yi = Ui + €, (27)
m subtracting the sample mean (y) from both sides:
Yi—Yy=9i—y+é. (28)
® Squaring and summing both sides of above equation:
N N
Dwi-pP =) -9+ e (29)
i=1 i=1 i=1

In the above expression we use assumption that Zi\; (§: — y) é; = 0 since
the x1,...,xx are not random.

m The decomposition of total variation in dependent variable:
SST =SSR+ SSE, (30)

where
> SST is the sum of squares and SST = Zi\;l (yi — g)2,
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Goodness-of -fit I SGH

> SSR is the sum of squares due to regression and SSR = Z (9: — y)

» SSE is the sum of squares due to regression and SSE = Z i1 6

m Coefficient of determination R? is the proportion of variation that can
be explained by independent variables:

2 SSR_ . SSE
B =957 =1 S (31)

R?€<0,1>.
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Correlation coefficient and R? SGH
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m The correlation coefficient p,, between = and y is defined by:

cov(z, o
Pay = (z,y) _ v (32)
var(z)y/var(y)  %«0y

and the sample correlation coefficient

Szy
S2Sy’

(33)

Toy =

takes the values between —1 and 1.

m In simple linear regression: the relationship between R? and Tzy IS as
follows:

R*=r2,, (34)

and, therefore, the R? can also be computed as the square of the sample
correlation coefficient between y; and §; = Bo + iz -
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Adjusted R? SGH

m The coefficient of determination R? is always higher if we include additional
explanatory variable even if the added variable is not justified/ relevant.

m The adjusted coefficient of determination R?:

2 SSE (N-1)

R = "~ SST (N - K)’ (35)

where SSFE is the sum of squared errors and SST is the sum of squares.

m With the adjusted coefficient of determination we account for a decrease in
degree of freedoms: (N —1)/(N — K).

m However, it has no convenient interpretation.
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Information Criteria SGH

m Information criteria are alternative measures of goodness-of-fit. They have
no interpretation but, like adjusted R?, account for a decrease in degrees of
freedom.

m The Akaike information criterion (AIC):

SSE 2K
m The Bayesian information criterion (SIC):
. (SSE\ KIn(K)
SIC—1n<N>+ = (37)

m Using the above criteria, the lower values of AIC/BIC signals better fit to
data.
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