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Least squares estimator
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Multiple regression

Least squares estimator :

y = β0 + β1x1 + β2x2 + . . .+ βKxK + ε (1)

where
I y is the (outcome) dependent variable;
I x1, x2, . . . , xK is the set of independent variables;
I ε is the error term.

The dependent variable is explained with the components that vary with the
the dependent variable and the error term.
β0 is the intercept.
β1, β2, . . . , βK are the coefficients (slopes) on x1, x2, . . . , xK .

β1, β2, . . . , βK measure the effect of change in x1, x2, . . . , xK upon the
expected value of y (ceteris paribus).
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Assumptions of the least squares estimators I

Assumption #1: true DGP (data generating process):

y = Xβ + ε. (2)

Assumption #2: the expected value of the error term is zero:

E (ε) = 0, (3)

and this implies that E (y) = Xβ.
Assumption #3: Spherical variance-covariance error matrix.

var(ε) = E(εε′) = Iσ2 (4)

. In particular:
I the variance of the error term equals σ:

var (ε) = σ2 = var (y) . (5)
I the covariance between any pair of εi and εj is zero”

cov (εi, εj) = 0. (6)

Assumption #4: Exogeneity. The independent variable are not random
and therefore they are not correlated with the error term.

E(Xε) = 0. (7)
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Assumptions of the least squares estimators II

Assumption #5: the full rank of matrix of explanatory variables (there is
no so-called collinearity):

rank(X) = K + 1 ≤ N. (8)

Assumption #6 (optional): the normally distributed error term:

ε ∼ N
(
0, σ2) . (9)
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Gauss-Markov Theorem

Assumptions of the least squares estimators
Under the assumptions A#1-A#5 of the multiple linear regression model,
the least squares estimator β̂OLS has the smallest variance of all linear and
unbiased estimators of β.

β̂OLS is the Best Linear Unbiased Estimators (BLUE) of β.
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The least squares estimator

The least squares estimator

β̂OLS =
(
X′X

)−1 X′y. (10)

The variance of the least square estimator

V ar(β̂OLS) = σ2 (X′X)−1 (11)

If the (optional) assumption about normal distribution of the error
term is satisfied then

β ∼ N
(
β̂OLS , V ar(β̂OLS)

)
. (12)
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Estimating non-linear relationship
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Estimating non-linear relationship

Economic variables are not always related by straight-line relationships. They
display curvilinear forms.
[Example] Wages (w) and experience (exper):

w = β0 + β1exper + β2exper
2 + ε. (13)

In the above model, the quadratic relationship is assumed. Why?
In general, the choice of function form is related to:
1. economic theory,
2. empirical pattern,
3. properties of residuals.

The most popular nonlinear functions:
I quadratic and cubic relationship,
I polynomial equations,
I logs of the dependent and/or independent variable.
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How to interpret coefficients

Marginal effects measures expected instantaneous change in the dependent
variable (y)in a reaction to change in explanatory variable (x):

Marginal effect = ∂E (y)
∂x

(14)

In other words, the marginal effects is the slope of the tangent to the curve
at a particular point.
Elasticity measures the percentage change in y in a reaction to percentage
change in x:

Elasticity = ∂E (y)
∂x

x

y
. (15)

Semi-elasticity measures the percentage change in y in a reaction to a
change in x

Semi-Elasticity = ∂E (y)
∂x

1
y
. (16)
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Some useful functions

Name Function Slope Elasticity
(marginal effects)

Linear y = β0 + β1x β1 β1
x
y

Quadratic y = β0 + β1x
2 2β1x 2β1x

x
y

Quadratic (II) y = β0 + β1x+ β2x
2 β1 + 2β2x (β1 + 2β2x) x

y

Cubic y = β0 + β1x
3 3β1x

2 3β1x
2 x

y

Log-Log ln(y) = β0 + β1 ln(x) β1
y
x

β1
Log-Linear ln(y) = β0 + β1x β1y β1x
a 1 unit change in x leads to (approximately) a 100 β1% change in y
Linear-Log y = β0 + β1 ln(x) β1

1
x

β1
1
y

a 1 % change in x leads to (approximately) a β1/100 unit change in y
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Interaction variable

Interaction variable is the product of (at least) two variable involved in
regression and accounts for simultaneous effects of two variables.
[Example] Wages (w), experience (exper) and education (educ):

w = β0 + β1exper + β2exper
2 + β3educ+ β4exper × educ+ ε. (17)

In this case:

Marginal effect of education = ∂E (w)
∂educ

= β3 + β4exper,

Marginal effect of experience = ∂E (w)
∂exper

= β2 + 2β3exper + β4educ.
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Model Specification
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Model Specification

A model could be misspecified when
important explanatory variables are omitted,
irrelevant explanatory variables are included,
a wrong functional form is chosen,
the assumptions of the multiple regression model are not satisfied
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Omitted variables I
Omission of a relevant variable (defined as one whose coefficient is nonzero)
might lead to an estimator that is biased. This bias is known as omitted-
variable bias.
Let’s assume true DGP (data generating process):

y = β0 + β1x1 + β2x2 + ε. (18)

Consider the case when we do not have data on x2.
Equivalently, we impose the restriction that β2 = 0. According to our true
DGP this restriction is invalid.
Then the expected value of the least squares estimator of β1:

E(β̂LS
1 ) = β1 + β2

cov(x1, x2)
var(x2) , (19)

and the omitted variable bias:

bias
(
β̂LS

1
)

= E(β̂LS
1 )− β1 = β2

cov(x1, x2)
var(x2) . (20)

The omitted bias is larger if:
I the true slope on omitted variable β2 is higher,
I the omitted variable (x2) is more correlated with the included variable (x3).

However, there is no bias when the omitted variable is not correlated with
the explanatory variables.
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Irrelevant variables I

Due to omitted-variable bias one might follow strategy to include as many
variable as possible.
However, doing so may also inflate the variance of estimate.
The inclusion of irrelevant variables may reduce the precision of the esti-
mated coefficients for other variables in the equation
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RESET test I
RESET (REgression Specification Error Test) is designed to detect
omitted variables and incorrect functional form.
Consider the multiple linear regression:

y = β0 + β1x1 + . . .+ βkxk + ε. (21)

[Step #1]. Obtain the least square estimates and calculate the fitted values:

ŷ = β̂LS
0 + β̂LS

1 x1 + . . .+ β̂LS
k xk (22)

[Step #2]. Consider the following auxiliary regressions:

Model 1 : y = β0 + β1x1 + . . .+ βkxk + γ1ŷ
2 + ε.

Model 2 : y = β0 + β1x1 + . . .+ βkxk + γ1ŷ
2 + γ2ŷ

3 + ε.

Obtain the least squares estimators of γ1 in Model 1 and/or γ1 and γ2 in
Model 2.
[Step #3]. Consider the following null:

Model 1 : H0 : γ1 = 0,
Model 2 : H0 : γ1 = γ2 = 0,

In both cases the null hypothesis is about misspecification.
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RESET test II

The RESET test is very general test allowing for testing functional form.
However, if we reject the null we do not know what is the source of misspec-
ification.
If a number of observations is large one might replace squared and cubic fitted
values of outcome variable by squared and cubic of explanatory variables.
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Collinearity
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Collinearity I
When data are the result of an uncontrolled experiment, many of the eco-
nomic variables may move together in systematic ways.
This problem is labeled collinearity and explanatory variable are said to be
collinear.
Example: multiple regression with two explanatory variable

y = β0 + β1x1 + β2x2 + ε. (23)

The variance of the least squares estimator for β2:

var
(
β̂LS

2
)

= σ2

(1− r2
12)
∑N

i=1 (xi2 − x̄2)
, (24)

where r12 is the correlation between x1 and x2.
Extreme case: r23 = 1 then the x1 and x2 are perfectly collinear. In this
case the least squares estimator is not defined and we cannot obtain the least
squares estimates.
If r2

12 is large then:
I the standards errors are large =⇒ small (in modulus) t statistics. Typically, it

leads to the conclusion that parameter estimates are not significantly different
from zero,

I estimates may be very sensitive to the inclusion or exclusion of a few observa-
tions,

I estimates may be very sensitive to the exclusion of insignificant variables.
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Identifying and mitigating collinearity

Detecting collinearity:
I pairwise correlation between explanatory variables,
I variance inflation factor (VIF) which is calculated for each explanatory

variable. The VIF is a function of R2 from auxiliary regression of the selected
explanatory variable on the remaining explanatory variables:

V IFi =
1

1−R2
i

. (25)

The values above 10 suggests collinearity.
Dealing with collinearity:
I Obtaining more infromation.
I Using non-sample information, i.e., restrictions on parameters.
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Normality of the error term
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Normality of the error term

The assumption of the error term is crucial to test the hypothesis. However,
the error term is random variable and , therefore, is not unobservable.
The normality of the error term can be justified on the basis of the residuals
properties.
The assessment of this assumption bases on:
I the residuals histogram,
I results of the Jarque-Berra test.

But if the sample is sufficiently large then, according to a central limit the-
orem, the distribution of least squares estimator can be approximated by
normal distribution.
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The Jarque-Berra test

In general, the Jarque-Berra test allows to investigate whether sample
data have the skewness and kurtosis that match to normal distribution.
The skewness (S) and kurtosis (K) of residuals (êi)

S =

1
N

N∑
i=1

(
êi − ˆ̄e

)3

(
1
N

N∑
i=1

(
êi − ˆ̄e

)2

) 3
2

and K =

1
N

N∑
i=1

(ei − ē)4

(
1
N

N∑
i=1

(
êi − ˆ̄e

)2

)2 − 3

The test statistics:

JB = N

6

(
S2 + 1

4(K − 3)2
)
∼ χ2

(2). (26)
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Goodness-of -fit
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Goodness-of -fit I
The observed values (yi) of dependent variable can be decomposed into the
fitted values (ŷi) and the residuals (êi):

yi = ŷi + êi, (27)

subtracting the sample mean (ȳ) from both sides:

yi − ȳ = ŷi − ȳ + êi. (28)

Squaring and summing both sides of above equation:

N∑
i=1

(yi − ȳ)2 =
N∑

i=1

(ŷi − ȳ)2 +
N∑

i=1

ê2
i , (29)

In the above expression we use assumption that
∑N

i=1 (ŷi − ȳ) êi = 0 since
the x1, . . . , xK are not random.
The decomposition of total variation in dependent variable:

SST = SSR+ SSE, (30)

where
I SST is the sum of squares and SST =

∑N

i=1 (yi − ȳ)2,
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Goodness-of -fit II

I SSR is the sum of squares due to regression and SSR =
∑N

i=1 (ŷi − ȳ)2,
I SSE is the sum of squares due to regression and SSE =

∑N

i=1 ê
2
i .

Coefficient of determination R2 is the proportion of variation that can
be explained by independent variables:

R2 = SSR

SST
= 1− SSE

SST
, (31)

R2 ∈< 0, 1 >.
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Correlation coefficient and R2

The correlation coefficient ρxy between x and y is defined by:

ρxy = cov(x, y)√
var(x)

√
var(y)

= σxy

σxσy
, (32)

and the sample correlation coefficient

rxy = sxy

sxsy
, (33)

takes the values between −1 and 1.
In simple linear regression: the relationship between R2 and rxy is as
follows:

R2 = r2
xy, (34)

and, therefore, the R2 can also be computed as the square of the sample
correlation coefficient between yi and ŷi = β̂0 + β̂1xi .
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Adjusted R2

The coefficient of determination R2 is always higher if we include additional
explanatory variable even if the added variable is not justified/ relevant.
The adjusted coefficient of determination R̄2:

R̄2 = 1− SSE

SST

(N − 1)
(N −K) , (35)

where SSE is the sum of squared errors and SST is the sum of squares.
With the adjusted coefficient of determination we account for a decrease in
degree of freedoms: (N − 1)/(N −K).
However, it has no convenient interpretation.
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Information Criteria

Information criteria are alternative measures of goodness-of-fit. They have
no interpretation but, like adjusted R2, account for a decrease in degrees of
freedom.
The Akaike information criterion (AIC):

AIC = ln
(
SSE

N

)
+ 2K

N
. (36)

The Bayesian information criterion (SIC):

SIC = ln
(
SSE

N

)
+ K ln(K)

N
. (37)

Using the above criteria, the lower values of AIC/BIC signals better fit to
data.
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