1 / 31

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Verifying key assumptions: normality, collinearity and functional form. Goodness-of-fit.

Jakub Mućk SGH Warsaw School of Economics

Least squares estimator

• Least squares estimator :

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_K x_K + \varepsilon \tag{1}$$

where

- \blacktriangleright y is the (outcome) dependent variable;
- x_1, x_2, \ldots, x_K is the set of independent variables;
- \triangleright ε is the error term.
- The dependent variable is explained with the components that vary with the the dependent variable and the error term.
- $\ \beta_0$ is the intercept.
- $\beta_1, \beta_2, \ldots, \beta_K$ are the coefficients (slopes) on x_1, x_2, \ldots, x_K .

э

3 / 31

• Least squares estimator :

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_K x_K + \varepsilon \tag{1}$$

where

- \blacktriangleright y is the (outcome) dependent variable;
- x_1, x_2, \ldots, x_K is the set of independent variables;
- \triangleright ε is the error term.
- The dependent variable is explained with the components that vary with the the dependent variable and the error term.
- $\ \beta_0$ is the intercept.
- $\beta_1, \beta_2, \ldots, \beta_K$ are the coefficients (slopes) on x_1, x_2, \ldots, x_K .

 $\beta_1, \beta_2, \ldots, \beta_K$ measure the effect of change in x_1, x_2, \ldots, x_K upon the expected value of y (*ceteris paribus*).

Assumptions of the least squares estimators I

• Assumption #1: true DGP (data generating process):

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}.\tag{2}$$

Assumption #2: the expected value of the error term is zero:

$$\mathbb{E}\left(\varepsilon\right) = 0,\tag{3}$$

and this implies that $\mathbb{E}(y) = \mathbf{X}\beta$.

Assumption #3: Spherical variance-covariance error matrix.

$$var(\varepsilon) = \mathbb{E}(\varepsilon\varepsilon') = I\sigma^2 \tag{4}$$

. In particular:

• the variance of the error term equals σ :

$$var\left(\varepsilon\right) = \sigma^{2} = var\left(y\right). \tag{5}$$

• the covariance between any pair of ε_i and ε_j is zero"

$$cov\left(\varepsilon_{i},\varepsilon_{j}\right) = 0. \tag{6}$$

• Assumption #4: Exogeneity. The independent variable are not random and therefore they are not correlated with the error term.

$$\mathbb{E}(\mathbf{X}\varepsilon) = 0.$$

• Assumption #5: the full rank of matrix of explanatory variables (there is no so-called collinearity):

$$rank(\mathbf{X}) = K + 1 \le N. \tag{8}$$

• Assumption #6 (optional): the normally distributed error term:

$$\varepsilon \sim \mathcal{N}\left(0,\sigma^2\right).$$
 (9)

イロト イヨト イヨト イヨト

æ

5 / 31

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS OLS ESTIMATOR: VERIFYING ASSUMPTIONS LEAST SQUARES ESTIMATOR

6 / 31

Assumptions of the least squares estimators

Under the assumptions A#1-A#5 of the multiple linear regression model, the least squares estimator $\hat{\beta}^{OLS}$ has the smallest variance of all linear and unbiased estimators of β .

 $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimators (BLUE) of β .

■ The least squares estimator

$$\hat{\boldsymbol{\beta}}^{OLS} = \left(\mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{y}.$$
(10)

• The variance of the least square estimator

$$Var(\hat{\beta}^{OLS}) = \sigma^2 \left(\mathbf{X}' \mathbf{X} \right)^{-1}$$
(11)

• If the (optional) assumption about normal distribution of the error term is satisfied then

$$\beta \sim \mathcal{N}\left(\hat{\beta}^{OLS}, Var(\hat{\beta}^{OLS})\right).$$
(12)

æ

7 / 31

Estimating non-linear relationship

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS OLS ESTIMATOR: VERIFYING ASSUMPTIONS ESTIMATING NON-LINEAR RELATIONSHIP

- Economic variables are not always related by straight-line relationships. They display **curvilinear forms**.
- [Example] Wages (w) and experience (exper):

$$w = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \varepsilon.$$
(13)

(日) (四) (日) (日) (日)

In the above model, the quadratic relationship is assumed. Why?

- In general, the choice of function form is related to:
 - 1. economic theory,
 - 2. empirical pattern,
 - 3. properties of residuals.
- The most popular nonlinear functions:
 - quadratic and cubic relationship,
 - polynomial equations,
 - logs of the dependent and/or independent variable.

✓ □ ▶ < □ ▶ < ≡ ▶ < ≡ ▶
 Estimating non-linear relationship

æ

æ

Advanced Applied Econometrics OLS estimator: verifying assumptions ESTIMATING NON-LINEAR RELATIONSHIP

E

イロト イヨト イヨト イヨト

Jakub Mućk

E

• Marginal effects measures expected instantaneous change in the dependent variable (y) in a reaction to change in explanatory variable (x):

Marginal effect =
$$\frac{\partial \mathbb{E}(y)}{\partial x}$$
 (14)

In other words, the marginal effects is the slope of the tangent to the curve at a particular point.

• Elasticity measures the percentage change in y in a reaction to percentage change in x:

Elasticity =
$$\frac{\partial \mathbb{E}(y)}{\partial x} \frac{x}{y}$$
. (15)

• Semi-elasticity measures the percentage change in y in a reaction to a change in x

Semi-Elasticity =
$$\frac{\partial \mathbb{E}(y)}{\partial x} \frac{1}{y}$$
. (16)

Name	Function	Slope	Elasticity
		(marginal effects)	
Linear	$y = \beta_0 + \beta_1 x$	β_1	$\beta_1 \frac{x}{y}$
Quadratic	$y = \beta_0 + \beta_1 x^2$	$2\beta_1 x$	$2\beta_1 x \frac{x}{y}$
Quadratic (II)	$y = \beta_0 + \beta_1 x + \beta_2 x^2$	$\beta_1 + 2\beta_2 x$	$(\beta_1 + 2\beta_2 x) \frac{x}{y}$
Cubic	$y = \beta_0 + \beta_1 x^3$	$3\beta_1 x^2$	$3\beta_1 x^2 \frac{x}{y}$
Log-Log	$\ln(y) = \beta_0 + \beta_1 \ln(x)$	$\beta_1 \frac{y}{x}$	β_1
Log-Linear	$\ln(y) = \beta_0 + \beta_1 x$	$ar{eta_1 y}$	$\beta_1 x$
a 1 unit change in x leads to (approximately) a 100 β_1 % change in y			
Linear-Log	$y = \beta_0 + \beta_1 \ln(x)$	$\beta_1 \frac{1}{x}$	$\beta_1 \frac{1}{y}$
a 1 % change in x leads to (approximately) a $\beta_1/100$ unit change in y			

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS OLS ESTIMATOR: VERIFYING ASSUMPTIONS ESTIMATING NON-LINEAR RELATIONSHIP

・ロ・・四・・ヨ・・ヨ・・日・

- **Interaction variable** is the product of (at least) two variable involved in regression and accounts for simultaneous effects of two variables.
- [Example] Wages (w), experience (*exper*) and education (*educ*):

$$w = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 educ + \frac{\beta_4 exper}{\epsilon} \times educ + \epsilon.$$
(17)

In this case:

Marginal effect of education =
$$\frac{\partial \mathbb{E}(w)}{\partial educ} = \beta_3 + \beta_4 exper$$
,
Marginal effect of experience = $\frac{\partial \mathbb{E}(w)}{\partial exper} = \beta_2 + 2\beta_3 exper + \beta_4 educ$.

臣

イロト イヨト イヨト イヨト

Model Specification

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS OLS ESTIMATOR: VERIFYING ASSUMPTIONS

Model Specification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A model could be misspecified when

- important explanatory variables are omitted,
- irrelevant explanatory variables are included,
- a wrong functional form is chosen,
- the assumptions of the multiple regression model are not satisfied

æ

Omitted variables I

- Omission of a relevant variable (defined as one whose coefficient is nonzero) might lead to an estimator that is biased. This bias is known as **omitted-variable bias**.
- Let's assume true DGP (data generating process):

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon. \tag{18}$$

- Consider the case when we do not have data on x_2 . Equivalently, we impose the restriction that $\beta_2 = 0$. According to our true DGP this restriction is invalid.
- Then the expected value of the least squares estimator of β_1 :

$$\mathbb{E}(\hat{\beta}_1^{LS}) = \beta_1 + \beta_2 \frac{cov(x_1, x_2)}{var(x_2)},\tag{19}$$

and the omitted variable bias:

$$bias\left(\hat{\beta}_{1}^{LS}\right) = \mathbb{E}(\hat{\beta}_{1}^{LS}) - \beta_{1} = \beta_{2} \frac{cov(x_{1}, x_{2})}{var(x_{2})}.$$
(20)

- The omitted bias is larger if:
 - the true slope on omitted variable β_2 is higher,
 - the omitted variable (x_2) is more correlated with the included variable (x_3) .
- However, there is no bias when the omitted variable is not correlated with the explanatory variables.

- Due to omitted-variable bias one might follow strategy to include as many variable as possible.
- However, doing so may also inflate the variance of estimate.
- The inclusion of **irrelevant variables** may reduce the precision of the estimated coefficients for other variables in the equation

э

RESET test I

- **RESET** (**REgression Specification Error Test**) is designed to detect omitted variables and incorrect functional form.
- Consider the multiple linear regression:

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \varepsilon.$$
(21)

Step #1. Obtain the least square estimates and calculate the fitted values:

$$\hat{y} = \hat{\beta}_0^{LS} + \hat{\beta}_1^{LS} x_1 + \ldots + \hat{\beta}_k^{LS} x_k$$
(22)

Step #2. Consider the following auxiliary regressions:

Model 1:
$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \gamma_1 \hat{y}^2 + \varepsilon.$$

Model 2:
$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \gamma_1 \hat{y}^2 + \gamma_2 \hat{y}^3 + \varepsilon.$$

Obtain the least squares estimators of γ_1 in Model 1 and/or γ_1 and γ_2 in Model 2.

Step #3]. Consider the following null:

Model 1 :
$$\mathcal{H}_0$$
 : $\gamma_1 = 0$,
Model 2 : \mathcal{H}_0 : $\gamma_1 = \gamma_2 = 0$

In both cases the null hypothesis is about **misspecification**.

- The RESET test is very general test allowing for testing functional form. However, if we reject the null we do not know what is the source of misspecification.
- If a number of observations is large one might replace squared and cubic fitted values of outcome variable by squared and cubic of explanatory variables.

20 / 31

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ● ●

Collinearity

Collinearity

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS OLS ESTIMATOR: VERIFYING ASSUMPTIONS

Collinearity I

- When data are the result of an uncontrolled experiment, many of the economic variables may move together in systematic ways.
- This problem is labeled **collinearity** and explanatory variable are said to be **collinear**.
- Example: multiple regression with two explanatory variable

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon. \tag{23}$$

The variance of the least squares estimator for β_2 :

$$var\left(\hat{\beta}_{2}^{LS}\right) = \frac{\sigma^{2}}{\left(1 - r_{12}^{2}\right)\sum_{i=1}^{N}\left(x_{i2} - \bar{x}_{2}\right)},$$
(24)

where r_{12} is the correlation between x_1 and x_2 .

- Extreme case: $r_{23} = 1$ then the x_1 and x_2 are perfectly collinear. In this case the least squares estimator is not defined and we cannot obtain the least squares estimates.
- If r_{12}^2 is large then:
 - the standards errors are large \implies small (in modulus) t statistics. Typically, it leads to the conclusion that parameter estimates are not significantly different from zero,
 - estimates may be very sensitive to the inclusion or exclusion of a few observations,
 - estimates may be very sensitive to the exclusion of insignificant variables.

22 / 31

• Detecting collinearity:

- pairwise correlation between explanatory variables,
- variance inflation factor (VIF) which is calculated for each explanatory variable. The VIF is a function of R^2 from auxiliary regression of the selected explanatory variable on the remaining explanatory variables:

$$VIF_{i} = \frac{1}{1 - R_{i}^{2}}.$$
(25)

COLLINEARITY

The values above 10 suggests collinearity.

Dealing with collinearity:

- Obtaining more infromation.
- ▶ Using non-sample information, i.e., restrictions on parameters.

Normality of the error term

- The assumption of the error term is crucial to test the hypothesis. However, the error term is random variable and , therefore, is not unobservable.
- The normality of the error term can be justified on the basis of the residuals properties.
- The assessment of this assumption bases on:
 - ▶ the residuals histogram,
 - results of the Jarque-Berra test.
- But if the sample is *sufficiently* large then, according to a central limit theorem, the distribution of least squares estimator can be approximated by normal distribution.

- In general, the Jarque-Berra test allows to investigate whether sample data have the skewness and kurtosis that match to normal distribution.
- The skewness (\mathcal{S}) and kurtosis (\mathcal{K}) of residuals (\hat{e}_i)

$$S = \frac{\frac{1}{N} \sum_{i=1}^{N} (\hat{e}_i - \hat{e})^3}{\left(\frac{1}{N} \sum_{i=1}^{N} (\hat{e}_i - \hat{e})^2\right)^{\frac{3}{2}}} \quad \text{and} \quad \mathcal{K} = \frac{\frac{1}{N} \sum_{i=1}^{N} (e_i - \bar{e})^4}{\left(\frac{1}{N} \sum_{i=1}^{N} (\hat{e}_i - \hat{e})^2\right)^2} - 3$$

• The test statistics:

$$\mathcal{JB} = \frac{N}{6} \left(S^2 + \frac{1}{4} (\mathcal{K} - 3)^2 \right) \sim \chi^2_{(2)}.$$
 (26)

æ

26 / 31

Goodness-of -fit

JAKUB MUĆK ADVANCED APPLIED ECONOMETRICS OLS ESTIMATOR: VERIFYING ASSUMPTIONS

GOODNESS-OF -FIT

Goodness-of -fit I

• The observed values (y_i) of dependent variable can be decomposed into the fitted values (\hat{y}_i) and the residuals (\hat{e}_i) :

$$y_i = \hat{y}_i + \hat{e}_i, \tag{27}$$

• subtracting the sample mean (\bar{y}) from both sides:

$$y_i - \bar{y} = \hat{y}_i - \bar{y} + \hat{e}_i.$$
 (28)

• Squaring and summing both sides of above equation:

$$\sum_{i=1}^{N} (y_i - \bar{y})^2 = \sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{N} \hat{e}_i^2,$$
(29)

In the above expression we use assumption that $\sum_{i=1}^{N} (\hat{y}_i - \bar{y}) \hat{e}_i = 0$ since the x_1, \ldots, x_K are not random.

• The decomposition of total variation in dependent variable:

$$SST = SSR + SSE, \tag{30}$$

where

► SST is the sum of squares and
$$SST = \sum_{i=1}^{N} (y_i - \bar{y})^2$$
,

- ► SSR is the sum of squares due to regression and $SSR = \sum_{i=1}^{N} (\hat{y}_i \bar{y})^2$,
- ► SSE is the sum of squares due to regression and $SSE = \sum_{i=1}^{N} \hat{e}_i^2$.
- **Coefficient of determination** R^2 is the proportion of variation that can be explained by independent variables:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST},\tag{31}$$

 $R^2 \in <0, 1>.$

臣

• The correlation coefficient ρ_{xy} between x and y is defined by:

$$\rho_{xy} = \frac{cov(x,y)}{\sqrt{var(x)}\sqrt{var(y)}} = \frac{\sigma_{xy}}{\sigma_x\sigma_y},\tag{32}$$

and the sample correlation coefficient

$$r_{xy} = \frac{s_{xy}}{s_x s_y},\tag{33}$$

takes the values between -1 and 1.

In simple linear regression: the relationship between R^2 and r_{xy} is as follows:

$$R^2 = r_{xy}^2,\tag{34}$$

and, therefore, the R^2 can also be computed as the square of the sample correlation coefficient between y_i and $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.

- The coefficient of determination R^2 is always higher if we include additional explanatory variable even if the added variable is not justified/ relevant.
- The adjusted coefficient of determination \bar{R}^2 :

$$\bar{R}^2 = 1 - \frac{SSE}{SST} \frac{(N-1)}{(N-K)},$$
(35)

where SSE is the sum of squared errors and SST is the sum of squares.

- With the adjusted coefficient of determination we account for a decrease in degree of freedoms: (N-1)/(N-K).
- However, it has no convenient interpretation.

3

30 / 31

- Information criteria are alternative measures of goodness-of-fit. They have no interpretation but, like adjusted R^2 , account for a decrease in degrees of freedom.
- The Akaike information criterion (AIC):

$$AIC = \ln\left(\frac{SSE}{N}\right) + \frac{2K}{N}.$$
(36)

• The Bayesian information criterion (SIC):

$$SIC = \ln\left(\frac{SSE}{N}\right) + \frac{K\ln(K)}{N}.$$
(37)

• Using the above criteria, the lower values of AIC/BIC signals better fit to data.