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Dynamic panel data models

Dynamic linear panel data model:

yit = γyit−1 + x′itβ + uit, (1)

where
I uit = µi + εit and εit ∼ N (0, σ2

ε),
I γ is the autoregressive parameter,
I yit−1 is the lagged dependent variable,
I xit is the vector of independent variables.

Remarks:
I We assume that yit is the stable (conditional on xit) process =⇒ |γ| < 1. In

other words, the effect of idiosyncratic shock (εit) dies out.
I The independent variables (xit) are assumed to be strictly exogenous.
I µi is the individual-specific (random or fixed) effect.
I Each observation can be written as:

yit = γtyi0 +
t∑

j=0

γjβ′xit−j +
1− γt

1− γ
µi +

t−1∑
j=0

γjuit−j , (2)

where yi0 is the (non-stochastic) initial value.
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Dynamic panel data models– bias of the FE estimators

The demeaning transformation used to get the within estimator new creates
new independent variables that are correlated with the error term. As a
result, the standard OLS estimator is inconsistent.
General intuition:
I The within estimator for the panel AR(1) model:

yit − ȳi = (µi − µi) + γ (yit−1 − ȳi−1) + (εit − ε̄i) , (3)

where ȳi−1 = 1/(T − 1)
∑T

t=2 yit−1.
I The mean of the lagged dependent variable (ȳi−1) is correlated with ε̄i even if

the error term is not autocorrelated. The average ε̄i contains the lagged error
term εit−1 and, therefore, it is correlated with yit−1.

Taking the probability limit (plim) of the FE estimator (as N →∞):

plimγ̂FE = γ +
1
NT

(yit−1 − ȳi−1) (εit − ε̄i)
1
NT

(yit−1 − ȳi−1)2 (4)

it can be observed that the correlations between the lagged dependent vari-
able (ȳi−1) and error term will lead to inconsistency of the OLS estimator.
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Dynamic panel data models– bias of the FE estimators

Nickell’s (1981) bias. The small T bias of the FE estimator as N →∞:

plim
(
γ̂

F E − γ
)

= −
(1 + γ)
T

(
1 −

1
T

1 − γT

1 − γ

)[
1 −

1
T

−
2γ

(1 − γ)T

(
1 −

1
T

1 − γT

1 − γ

)]−1

(5)

The bias of the FE estimator depends on T as well as γ.
For reasonably large T it can be approximated:

plim
(
γ̂FE − γ

)
≈ − (1 + γ)

T − 1 (6)

but when T = 2 then

plim
(
γ̂FE − γ

)
≈ − (1 + γ)

2 (7)

The bias in the dynamic fixed effect model is caused by elimination of the
individual-specific effect from each observation. It creates a correlation of
order 1/T between explanatory variables and error term.
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Dynamic panel data models– bias of the RE estimators

Consider the RE AR(1) model:

yit = γyit−1 + εit + µi, (8)

where εit ∼ N (0, σ2
ε) and µit ∼ N (0, σ2

µ).
In the RE model, the quasi-demeaning also leads to correlation between
the transformed lagged dependent variable (ỹit−1 = yit−1 − θȳi−1) and the
transformed error term (ε̃it = εit− θε̄i). Therefore, the RE estimates will be
biased.
For t− 1 the dependent variable:

yit−1 = γyit−2 + εit−1 + µi, (9)

also depends on the random individual-specific effect. If so, then the assump-
tion that the individual effects are independent of the explanatory variable
(in our case also yit−1) is not satisfied and

E (µi|yit−1) 6= 0. (10)
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Dynamic panel data models– bias of the FD estimators

The FD AR(1) estimator:

yit − yit−1 = (µi − µi) + γ (yit−1 − yit−2) + εit − εit−1 (11)

is also biased.
To illustrate the bias of the FD estimator it’s useful to recall yi,t−1.

yit−1 = γyit−2 + εit−1 + µi + εit−1. (12)

In the (12) yit−1 depends on the error term εit−1. At the same time, in the
(11) yit−1 is the explanatory variable and the error term, given by εit−εit−1,
contains the lagged error term from the non-transformed model. Therefore,
the lagged dependent variable is correlated with the error term also in the
FD model.
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The MC exercise

To illustrate the magnitude of the Nickell’s bias we run the MC simulations.
Let’s assume that the true DGP (data generating process) is a simple panel
AR(1) process:

yit = γyit−1 + uit, (13)

where the error component is quite standard:

uit = µi + εit (14)

where µi ∼ N (0, σ2
µ) and εit ∼ N (0, σ2

ε).
We will consider the FE estimator.
The MC settings:
I γ = 0.9 ( in the second exercise also 0.5 and 0.95)
I T ∈ {3, 5, 10, 30}.
I σµ = 0.5 and σε = 0.25.
I N = 100 (the cross-sectional dimension).
I 1000 replications.
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Dynamic panel data models

The standard estimators (FE, RE, FD) fail to account for dynamics in the
dynamic panel data models. This is due to the fact that the lagged dependent
variable becomes endogenous (correlated with error term).
The dynamic panel data (DPD) models are designed to account for this
endogeneity.
It is important when T is relatively small =⇒ micro data.
I When T is large the Nickell’s bias is relatively small. Which T is sufficiently

large to ignore the Nickell’s bias?
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The Anderson and Hsiao estimator
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The Anderson and Hsiao estimator I
Anderson and Hsiao (1981) propose estimator that simply uses the IV.
Starting point: the FD estimator:

∆yti = γ∆yti−1 + β1∆x1ti + . . .+ βk∆xkti + ∆εit. (15)

Problem: ∆yti−1 is correlated with the error term ∆εit = εit − εit−1.
Use twice lagged level of dependent variable yit−2 as an instrument for
∆yti−1. By construction, yit−2 is not correlated with the error term ∆εit
but is correlated with endogenous variable, i.e. ∆yti−1.
In general, one might use the twice lagged differences ∆yti−2 = yti−2− yti−3
as a valid instrument for endogenous variable ∆yti−1. But:
I Using yti−2 as the instrumental variable =⇒ more data.
I Using ∆yti−2 as the instrumental variable =⇒ larger asymptotic variance of

estimator.
The AH estimator delivers consistent but not efficient estimates of the pa-
rameters in the model. This is due to the fact that the IV doesn’t exploit all
the available moments conditions.
The IV estimator also ignores the structure of the error component in the
transformed model.
I The autocorrelation in the first differences errors leads to inconsistency of the

IV estimates.
The IV estimates would be inconsistent when other regressors are correlated
with the error term.
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The Arellano Bond estimator
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The Arellano Bond estimator

Arellano and Bond (1991) suggest using a GMM approach based on all avail-
able conditions.
Starting point: the FD estimator:

∆yit = γ∆yit−1 + β′∆xit + ∆εit (16)

Valid instruments:
I [t=2 or t=1]: no instruments,
I [t=3]: the valid instrument for ∆yi2 = (yi2 − yi1) is yi1,
I [t=4]: the valid instruments for ∆yi3 = (yi3 − yi2) is yi2 as well as yi1,
I [t=5]: the valid instruments for ∆yi4 = (yi4−yi3) is yi3 as well as yi2 and yi1,
I [t=6]: the valid instruments for ∆yi5 = (yi5 − yi4) is yi4 as well as yi3, yi2

and yi1,
I [t=T]: the valid instruments for ∆yiT−1 = (yiT−1 − yiT−2) is yiT−2 as well

as yiT−3, . . ., yi1.

Hence, there is a total of (T − 1)(T − 2)/2 available instruments or moment
conditions for ∆yit−1. In general, it can be written as:

E
[
yis
(
∆yit − γ∆yit−1 − β′∆xit

)]
= 0 for s = 0, . . . , t−2 and t = 2, . . . , T

(17)
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The Arellano Bond estimator

Consider the following specification:

∆yi. = γ∆yi.−1 + ∆Xi.β + ∆εi., (18)

where

∆yi. =


∆yi2
∆yi3
...

∆yiT

 ,∆yi.−1 =


∆yi1
∆yi2
...

∆yiT−1

 ,∆Xi. =


∆x′i2
∆x′i3
...

∆x′iT

 ,∆εi. =


∆εi2
∆εi3
...

∆εiT

 .
The corresponding matrix of instruments for the lagged difference:

Wi =


yi1 0 . . . 0
0 yi1, yi2 . . . 0
...

...
. . .

...
0 0 . . . yi1, yi2, . . . , yiT−2

 ,
Then the moment conditions can be described as:

E
[
W ′i∆εi.

]
= 0 (19)
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The Arellano Bond estimator

Finally, the GMM estimator that takes into account the formulated moment
conditions can be applied:

λ̂GMM =
(
G′ZSNZ

′G
)−1

G′ZSNZ
′∆y (20)

where
I λ̂GMM =

[
γ̂GMM β̂GMM

]′
,

I G = (∆y−1,∆X),
I Z = (W,∆X).
I SN is the optimal weighting matrix.

The matrix SN is usually calculated from initial estimates, e.g., IV estimates.

SN =

(
N∑
i=1

Z′i.êi.ê
′
i.Zi.

)−1

, (21)

where êi. stands for the residuals from the initial estimates.
The above procedure refers to two-step GMM estimator. Alternatively, one-
step estimator can be applied. One-step estimator takes into account the
dynamic structure of the error term.
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The Arellano Bond estimator– general remarks

The Arellano-Bond (AB) estimator is usually called difference GMM.
The AB estimator deteriorates when:
I yit exhibits a substantial persistence, i.e., γ is close to unity.
I the variance of unit-specific error component (σµ) increases relatively to the

variance of the idiosyncratic error term (σε).

Note that for long panel (large T ) the number of instruments increases dra-
matically, i.e., r = T/(T − 1)/2.
Consistency of the GMM estimator bases on the assumption that the trans-
formed error term is not serially correlated, i.e., E (∆ε,i,t ,∆ε,i,t−2 ) = 0.

I It’s crucially to test whether the second-order autocorrelation is zero for all
periods in the sample. Conventionally, test bases on residuals from the first
difference equation.
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A system GMM estimator
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A system GMM estimator I

Blundell and Bond (1998) propose to include additional moment restrictions.

I These additional moment restrictions are imposed on the distribution of initial
values, i.e., yi0.

I This set of restrictions is important when γ is close to unity and/or when
σµ/σε becomes large.

Consider simply panel AR(1) without regressors. Then,

yi0 = µi
1− γ + εi0 for i = 1, . . . , N. (22)

under the following assumption:

E (∆yi1µi) = 0 (23)

It can be show that if the above condition is satisfied then the following T −1
moment conditions can be used:

E [(yit − γyit−1) ∆yit−1] = 0. (24)

Note that the system estimator combines the standard AB estimator and
equation for levels (with the corresponding T − 1 moment conditions).
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A system GMM estimator II

The instrument matrix:

Z =


ZAB 0 0 . . . 0

0 ∆yi2 0 . . . 0
0 0 ∆yi3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ∆yiT−1

 (25)

where ZAB is the instrument matrix from the Arellano-Bond estimator.

Jakub Mućk Advanced Applied Econometrics Dynamic panel data models A system GMM estimator 21 / 21


	Dynamic panel data models
	The Anderson and Hsiao estimator
	The Arellano Bond estimator
	A system GMM estimator

