
Limited dependent variable. Models for binary and
multinomial outcome variable. Panel data and limited

dependent variable.

Jakub Mućk
SGH Warsaw School of Economics

Jakub Mućk Advanced Applied Econometrics Limited dependent variable 1 / 31



Introduction

Jakub Mućk Advanced Applied Econometrics Limited dependent variable Introduction 2 / 31



Introduction I

In previous meetings, we have dealt with models in which the range of de-
pendent variable is unbounded.
The common cases when the response (dependent) variable is restricted:
I binary: y ∈ {0, 1},
I multinomial: y ∈ {0, 1, 2, . . . , k},
I integer: y ∈ {0, 1, 2, . . .},
I censored: y ∈ {y∗ if y > y∗}.
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Binary dependent variable
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For binary outcome data the dependent variable y takes one of two values:

y =
{

1 with probability p
0 with probability (1− p) . (1)

The binary choice variable y is restricted and the binary outcome is Bernoulli
distributed.
The probability (p) is not observed (latent variable).
Examples:
I dummy variables indicating whether some loan application is accepted (y = 1)

or not (y = 0),
I dummy variables indicating whether individual decided to work (y = 1) or not

(y = 0),
I binary variable indicating whether individual takes the second or third job

(y = 1) or not (y = 0),
I dummy variable indicating whether the birthweight was low, i.e., below 2500

g, (y = 1) or not (y = 0).
Models for binary dependent variable
I linear probability model (LMP);
I logistic regression (logit);
I probit regression (ptobit).
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Linear Probability Model (LMP) I
Linear Probability Model (LMP) is the OLS regression of y on X that ignores
the discreteness of the dependent variable. Moreover, the LMP does not
constrain predicted probabilities to be between zero and one.
In general, it is assumed that the (conditional to a set of covariates) proba-
bility is as follows:

Prob(y = 1|X) = F (X,β), (2)
Prob(y = 0|X) = 1− F (X,β). (3)

If the function F (X,β) is assumed to linear, i.e., F (X,β) = X ′β, then

y = E(y|X,β)︸ ︷︷ ︸
Prob(y=1|X)

+ (1− E(y|X,β))︸ ︷︷ ︸
Prob(y=0|X)

= F (X,β) = X ′β + ε. (4)

Finally, the LMP can be estimated by OLS:

y = X ′β + ε. (5)

where ε is the error term.
Shortcomings of the LMP:

1. The predicted values of the dependent variable are not constrained to be be-
tween zero and one.
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Linear Probability Model (LMP) II

2. It is assumed that the probability is linearly related to some continuous ex-
planatory variable.

3. The problem of the error heteroskedasticity. By construction, errors vary with
the explanatory variables:

V ar(ε|x) = Prob(y = 1|X)
(
1−X′β

)2
+ Prob(y = 0|X)

(
−X′β

)2

= X′β
(
1−X′β

)2
+
(
1−X′β

) (
−X′β

)2

= X′β
(
1−X′β

)
.

As a consequence, the estimated variance-covariance matrix are biased (also
standard errors, t statistics, F statistic, etc.). To challenge this issue one might
apply:

I robust standard errors;
I feasible GLS estimation that accounts for heteroskedastic residuals.

4. By construction, error term is also not normally distributed.
I The statistical inference in small samples is not reliable.
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Logit I

In the logit model, the conditional (to X) probability is described by the
cumulative logistic distribution (conditional to some explanatory variables
X):

p = Prob(y = 1|X) = exp (X ′β)
1 + exp (X ′β) . (6)

The predicted probabilities are always between zero and one.
It can be shown that the logit (log of odds):

ln
(

p

1− p

)
= X ′β. (7)

The parameters of β are estimated using the maximum likelihood (ML)
method. In general, the log likelihood for the logit model can be written
as:

lnL =
N∑
i=1

[yi ln (F (X,β)) + (1− yi) ln (1− F (X,β))] , (8)

where L is the likelihood function, the index i stands for observation and
F (X,β) = exp(X ′β)/(1 + exp(X ′β)).
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Logit II
The Log Likelihood, given by (8), is maximized using some optimization
methods.
The Likelihood test for the significance of parameters. The null hypothesis:

H0 : β1 = β2 = . . . = βk = 0, (9)

and the test statistics (LR) bases on the log-likelihood difference between
the considered model (L) and the model with only intercept (L0)):

LR = 2(L − L0), (10)

where LR is χ2 distributed with k (number of explanatory variables) degrees
of freedom.
The logit model is nonlinear. The sign of the estimates informs only about the
direction of the relationship between explanatory variable and probability.
To interpret the logit estimates it is useful to introduce the odds ratio. The
odds is an exponential function of fitted F (X,β). For instance, the odds
ratio for x1 variable can be described as:

OR = exp (β0 + β1(x1 + 1) + . . .+ βkxk)
exp (β0 + β1x1 + . . .+ βkxk) = exp(β1), (11)

so an 1-unit increase in x1 multiplies the odds ratio by exp(β1).
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Logit III

In nonlinear models, more common approach is to use marginal effects. In
the logit model, the marginal effect for the k-th explanatory variable can be
written:

MFX(xk) = ∂p

∂xk
= βkp(1− p) = exp (β0 + β1x1 + . . .+ βkxk)

[exp (β0 + β1x1 + . . .+ βkxk)]2
βk. (12)

Some remarks about the marginal effects:
I The marginal effects vary for different values of explanatory variables.

I The usual approach is to calculate the marginal effects for the average ex-
planatory variables, i.e., x̄1, . . . , x̄k.

I However, the marginal effects for the mean explanatory variables are not rea-
sonable when we are interested in the effect of some dummy variable on the
probability. In such cases, one should calculated the marginal effect when this
indicator variable is set to 0.

I Apart from the point estimates, it is essentially to analyze confidence intervals
or standard errors for the estimated marginal effects are useful.
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Probit

In the probit model, the conditional (to X) probability is described by the
cumulative standard normal distribution (conditional to some explanatory
variables X):

p = Prob(y = 1|X) = Φ(X ′β), (13)

where Φ(X ′β) is the cumulative distribution function for the standard nor-
mal.
Alternatively,

p = Prob(y = 1|X) =
∫ X′β

−∞
(2π)−

1
2 exp

(
−z2/2

)
dz, (14)

The marginal effects for the k-th explanatory variable:

MFX(xk) = ∂p

∂xk
= φ (β0 + β1x1 + . . . βkxk)βk, (15)

where φ (· · · ) denotes the density for the standard normal distribution.
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Multinomial Logit
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Multinomial Logit I

Key assumption: several (K) possible outcomes/exclusive alternatives:

pi1 + p2i + . . .+ pKi = 1, (16)

where pij is the probability of the j-th alternative for i-th observation/unit.
Assuming the logistic distribution:

pij = Prob(y = j|X) = exp(X ′βj)∑K

k=1 exp(X ′βj)
, (17)

where βj are alternative specific parameters while X is a set of explanatory
variables that are not varying between alternatives.
Since the probabilities of exclusive alternatives sum to one the normalization
of parameters is required. Taking the first possible outcome (j = 1) it is
restricted that β0 is set at zero. This implies that

pij =


1∑K

k=2
exp(X′βj )

if j = 1,
exp(X′βj )∑K

k=2
exp(X′βj )

if j. 6= 1
(18)

The parameters β2, . . . , βK can be estimated with the standard MLE.
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Multinomial Logit II

Interpretation is relative. Note that:

Prob(y = j|X)
Prob(y = 1|X) = exp

(
X ′βj

)
, (19)

is the probability ratio.
the exponentiated value of a single estimate is the the relative-risk ratio for
a unit change in a given explanatory variables.
The cross-equation restriction can be imposed and test with the LR tests.
Further issues:
I Conditional logit.
I Mixed multinomial models.
I Ordered mulinomial models.
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Count data
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Count data is a special data when observations take only non-negative inte-
ger.
The dependent variable is a count of the number of occurrences of an event,
i.e., y ∈ {0, 1, 2, . . .}.
In many empirical applications, the sample of such dependent variable is
concentrated on a few small discrete values, i.e., 0, 1, 2.
Examples:
I The number of children in a household.
I The number of alcoholic drinks a college student takes in a week.
I The number of patents.
I The number of new products introduced in market.
I The number of doctor visits.

Models:
I Poisson regression model.
I Negative binomial model.
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The Poisson regression model I
The natural stochastic environment for counted variable is a Poisson point process
for occurrence of the event of interest. The probability function for a Poisson
distribution:

Prob(Y = y) =
exp(−µ)µy

y!
, y = 0, 1, 2, . . . (20)

where µ denotes the intensity parameter.
It can be shown that the Poisson distribution has the equidispersion property:

E(y) = µ,

V ar(y) = µ.

In the Poisson regression, the intensity parameter captures the relationship between
the dependent variable and explanatory variables. Usually, the exponential mean
parameterization is assumed:

µ = exp(x′β) (21)
Estimation: the pseudo maximum likelihood (PML) or quasi maximum likelihood
(QML) estimation.
Interpretation: marginal effects:

MFX(xj) =
∂E(y|X)
∂xj

= βj exp(X′β). (22)

The Poisson regression bases on the very restrictive assumption that E(y) = V ar(y).

I Very often, the variance is far from the mean.
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The Poisson regression model II

I In many empirical application, a Poisson density underpredicts the zero count.
There are several test statistics designed to verify the hypothesis that mean equals
variance. General idea bases on the following relationship:

V ar(y) = µ+ αg(µ), (23)

where g(·) is some known function (g(µ) = µ or g(µ) = µ2).
Having fitted values (µ̂ = exp(X′β))from the Poisson model the following OLS
regression can be run to test null (α = 0):

(y − µ̂)2 − y
µ̂

= α
g(µ̂)
µ̂

+ u (24)

where u is the error term.
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The negative binomial regression I

The negative binomial regression is an extension of the Poisson regression
that accounts for overdispersion, i.e., extra variation that is not included in
the standard Poisson process.
In the negative binomial regression, the following moments can be assumed

E(y) = µ,

V ar(y) = µ (1 + αµ) .

Where α > 0. Note that if α = 0 then it is standard Poisson regression. α is
the overdispersion parameter.
Estimation: PML or QML.
Interpretation: marginal effects:
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Censored data and tobit regression
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Censored data

Usual causes of incompletely observed data are truncation and censoring.
I truncated data =⇒ some observations on both dependent and explanatory

variables are missing;
I censored data =⇒ some observations on dependent variable are missing but

information on explanatory variables are complete.

Censoring can be perceived as a feature of data-gathering process. For in-
stance, for confidentiality reasons the income of high-income workers may be
top-coded (higher than 200k USD).
Examples:
I Ticket sales to some event. We want to explain (latent, unobservable) demand

for tickets to some sport events. Sometimes all tickets are sold out and (unob-
servable) demand can be higher than the total number of available tickets but
we observe only the number of tickets that were sold out.

Model:
I Tobit model.
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Censoring Mechanism

When data are censored we always observe the explanatory variables.
Our dependent variable is the latent variable y∗ for which we have incomplete
observations (y).
y∗ may be censored from below/left. Then we observe:

y =
{

y∗ if y∗ > L
L if y∗ ≤ L .

y∗ may be censored from above/right. Then we observe:

y =
{

y∗ if y∗ < U
U if y∗ ≥ U .

It it possible to consider more sophisticated censoring mechanisms.
The OLS estimates in such cases are not consistent.
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Tobit model

In the censored regression, information on censoring is included.
Consider the following example:

y
∗ = X

′
β + ε, (25)

y = 0 if y∗ ≤ 0, (26)
y = y

∗ if y∗ > 0. (27)
Then the conditional expected value of y:

E(y|x) = Φ
(
X′β

σ

)(
X
′
β + σλ

)
, (28)

where Φ(·) is the probability density function of normal distribution and λ stands for
the Mills ratio, (λ = φ(X′β/σ)/Φ(X′β/σ)).
Estimation: MLE.
Interpretation: marginal effects:
I For a latent variable (y∗), marginal effects are constant:

MFX(xj) =
∂E(y∗|x)
∂xj

= βj . (29)

but y∗ in unobserved.
I For the observed variable y, the marginal effects become more sophisticated:

MFX(xj) =
∂E(y|x)
∂xj

= βjΦ
(
X′β

σ

)
. (30)
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The Binary Outcomes Models & Panel Data
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The Pooled models

We can use logit or probit binary response function:

Pr(yit = 1|xit) = G
(
x′itβ

)
, (31)

where G(·) is a known function taking on values in the open unit interval.
Note that in the (31) we assume that our model is dynamically complete. In
other words, we don’t assume that the scores (latent variable =⇒ proba-
bilities) is serially correlated or contains the individual-specific component.
For instance,

Pr(yit = 1|xit) = Pr(yit = 1|xit, xit−1, xit−2) (32)

Some useful procedures to test dynamic completeness:
I Add the lagged dependent variable/ independent variables to considered model

and test their significance.
I Make a pooled probit/logit regression. Based on the pooled estimates make

prediction and include lagged fitted values (scores) in basic model. Then, test
its significance.

To account for an unobserved heterogeneity it is useful to apply robust stan-
dard errors.
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The Binary Outcomes Models & Panel Data

The fixed effect logit model:

Pr(yit = 1) = Pr(y∗it > 0) = F (x′itβ), (33)

where F is the logistic cumulative distribution function and

y∗it = x′itβ + µi + εit, (34)

where µi is the individual-specific intercept and εit denotes the idiosyncratic
error.
Natural way to estimate the parameters of the FE logit model is to include
dummy variables and perform ML estimation but ...
Incidental parameters problem. As N → ∞ for the fixed T , the number of
parameters capturing fixed effecst increases with T. As a result, µi cannot
be consistently estimated for a fixed T .
The above problem can be overcome by using conditional likelihood function.
It is assumed that the fixed effects and explantory variables are not correlated
with error term.
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The Binary Outcomes Models & Panel Data– conditional likelihood
function I

Conditional likelihood function:

LC =
N∏
i=1

Pr

(
yi1, . . . , yiT /

T∑
t=1

yit

)
. (35)

Let’s illustrate for T = 2.
I For T = 2, the sum

∑T

t=1 yit can be 0, 1 or 2.
I But if the sum

∑T

t=1 yit is 0 (or 2) then both yi1 and yi2 are 0 (or 1). These
cases are irrelevant for the lnLC because ln(1) = 0.

I Two remaining cases (when sum equals 1). Let’s start with the sum that equals
unity:

Pr(yi1 + yi2 = 1) = Pr(yi1 = 0, yi2 = 1) + Pr(yi1 = 1, yi2 = 0) (36)
I General probability:

Pr(yi1 = 1) = exp(µi + x′itβ)/
[
1 + exp(µi + x′itβ)

]
Pr(yi1 = 0) = 1− exp(µi + x′itβ)/

[
1 + exp(µi + x′itβ)

]
= 1/

[
1 + exp(µi + x′itβ)

]
.
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The Binary Outcomes Models & Panel Data– conditional likelihood
function II

I Conditional probability in the second period:

Pr(yi1 = 1, yi2 = 0) =
exp(µi + x′i1β)

1 + exp(µi + x′i1β)
·

1
1 + exp(µi + x′i2β)

Pr(yi1 = 0, yi2 = 1) =
1

1 + exp(µi + x′i1β)
·

exp(µi + x′i2β)
1 + exp(µi + x′i2β)

As a result:

Pr(yi1 + yi2 = 1) = Pr(yi1 = 0, yi2 = 1) + Pr(yi1 = 1, yi2 = 0)

=
exp(µi + x′i1β) + exp(µi + x′i2β)(

1 + exp(µi + x′i1β)
) (

1 + exp(µi + x′i2β)
) ,

and

Pr(yi1 = 1, yi2 = 0|yi1 + yi2 = 1) =
Pr(yi1 = 1, yi2 = 0)
Pr(yi1 + yi2 = 1)

=

exp(µi + x′i1β)
exp(µi + x′i1β) + exp(µi + x′i2β)

=
exp(x′i1β)

exp(x′i1β) + exp(x′i2β)

Finally,

Pr(yi1 = 1, yi2 = 0|yi1 + yi2 = 1) =
1

1 + exp(xi2 − xi1)′β
(37)
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The Binary Outcomes Models & Panel Data– conditional likelihood
function III

and analogously for the remaining case:

Pr(yi1 = 1, yi2 = 0|yi1 + yi2 = 1) =
exp(xi2 − xi1)′β

1 + exp(xi2 − xi1)′β
. (38)

Using the conditional likelihood we eliminate the fixed effect (individual-
specific intercept). Apart from that, all time invariant explanatory variables
are also wiped out from the estimation.
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Random Effects Binary Models I

The random effects binary outcomes models assume that the individ-
ual effects are normally distributed, i.e. µi ∼ N (0, σ2

µ).
This yields:

Pr(yit = 1|xit, β, µi) =
{

Λ(µi + x′itβ) for logit model,
Φ(µi + x′itβ) for probit model, (39)

where Λ(·) and Φ(·) is the logistic and standard normal cumulative distribu-
tion, respectively.
The underlying parameters (β) and the variance of random unit-specific ef-
fects (σ2

µ) can be estimated with the Maximum Likelihood estimation (MLE).
The MLE of β and σ2

µ maximizes the log-likelihood, i.e.,
∑N

i=1 ln f(yi|Xi, β, σ2
µ),

where

f(yi|Xi, β, σ2
µ) =

∫
f(yi|Xi, β) 1√

2πσ2
µ

exp
(
−µi
2σ2

µ

)
dµi, (40)

where f(yi|Xi, β) is the considered probability distribution function (logistic
or standard normal).
The MLE estimates are calculated numerically using quadrature method.
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Random Effects Binary Models II

We can test the presence of cross-sectional heterogeneity. The standard like-
lihood test are designed to verify the following null hypothesis:

H0 : σ2
µ = 0. (41)

Unlike the FE logit the random effects logit/probit models use variables that
are constant over time.
In analogous fashion to the linear FE models, it is assumed that individual
effects are independent of the explanatory variables.
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