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Topics I

1. Linear regression. Least squares estimator. Asymptotic properties.
Gauss-Markov theorem

2. Testing economic hypotheses. Multiple hypothesis testing. Linear and
non-linear hypotheses. Confidence intervals. Delta method.

3. Verifying key assumptions: normality, colinearity and functional form.
Godness-of-fit.

4. Heteroskedasticity and serial correlation. Generalized least squares
estimator. Weighted least squares. Robust and clustered standard
errors.

5. Endogeneity. Instrumental variables estimation. Properties of
instrumental variables.

6. Simultaneous equations model. Parameter identification problem.
Estimation method for SEM.

7. Time series. Stationarity, spurious regression and cointegration.
8. Autoregressive distributed lags models. Vector Autoregression (VAR)

models. Structural VAR.
9. Panel data. Between and within variation. Random and fixed effects

models. Between regression. Hausman-Taylor estimator.
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Topics II

10. Limited dependent variable. Models for binary and multinomial
outcome variable. ML estimator. Panel data and limited dependent
variable.

11. Count data models. Tobit regression.
12. Generalized method of moments. Selected applications
13. Dynamic panel data models. Nickell’s Bias. Anderson-Hsiao estimator.

Arellano-Bond estimator. System GMM estimator.
14. Estimating treatment effect. Difference-in-difference.
15. Regression discontinuity design
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Literature

Econometrics textbooks:
1. Wooldridge J. M., Econometric Analysis of Cross Section and Panel Data.
2. Pesaran M. H., Time Series and Panel Data Econometrics.
3. Greene W. H., Econometric Analysis.
4. Hall R. C., Griffiths W. E., Lim G. C., Principles of Econometrics.
5. Wooldridge J. M., Introductory Econometrics: A Modern Approach.

Software
Stata.
R.
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Evaluation

Exam
Homework (× 2-3) and classroom activity.
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Introduction to Econometrics
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What is econometrics about

Econometrics
is an application of statistical techniques to economics in the study of
problems, the analysis of data, and the development and testing of theories
and models.

We use econometrics
to estimate economic parameters (e.g. elasticities),
to forecast economic outcomes,
to verify economic hypotheses.
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Econometric model

Economic model represents quantitative relationships between set of eco-
nomic variables. For instance, the marginal propensity to consume:

C = β0 + β1Y (1)

where C is the consumption expenditures and Y is the disposable income.
Econometric model is additionally extended by stochastic component:

C = β0 + β1Y + ε, (2)

where ε is the (disturbance) error term.
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Econometric model

The general single-equation linear econometric model:

yi = β0 + β1x1i + β1x2i + . . .+ βkxki + εi i = 1, 2, . . . , N (3)

where
yi a dependent (outcome) variable,
x1i, . . . , xki is a set of k explanatory (independent) variables,
β0, β1, . . . , βk are the model parameters,
εi is error term,
i is an index of observation.
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Types of data

Cross-section data are collected across sample units (individuals) in a
particular time period.
yi where
i ∈ {1, . . . , N}.
Time series: are collected over discrete intervals of time:
yt where
t ∈ {1, . . . , T}.
Panel or longitudinal data is are collected across individual units over
time:
yit where
i ∈ {1, . . . , N}
t ∈ {1, . . . , T}.
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Types of data

Experimental data
Microeconomic data
Macroeconomic data
Financial data
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Research process

1. Formulation of research hypotheses. Based on research problem and a
literature review.

2. Choice of economic model that leads to econometric model. This includes
choosing the functional form as well as set of explanatory variables.

3. Data collection. Obtain sample and select method that allow to apply
statistical interference.

4. Estimating parameters.
5. Model diagnostics. Check the validity of assumptions.
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Simply Linear Regression Model
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The starting point – conditional distribution of Y given X.

y

f(
y|

x)

µy|a

f(y|x=a)
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x

E
(y

|x
)

∆x

∆E(y|x)

β1=
∆E(y|x)

∆x

Simply Regression:

E (y|x) = β0 + β1x
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Simply Linear Regression Model

Simply Linear Regression Model :

y = β0 + β1x+ ε (4)

where
I y is the (outcome) dependent variable;
I x is independent variable;
I ε is the error term.

The dependent variable is explained with the components that vary with the
the dependent variable and the error term.
β0 is the intercept.
β1 is the coefficient (slope) on x.

β1 measures the effect of change in x upon the expected value of y (ceteris
paribus).
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The least squares (LS) estimator
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How to estimate the slope and intercept?
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Assumptions of the least squares estimators
Assumption #1: true DGP (data generating process):

y = β0 + β1x+ ε. (5)

Assumption #2: the expected value of the error term is zero:

E (ε) = 0, (6)

and this implies that E (y) = β0 + β1x.
Assumption #3: the constant variance of the error term and zero covari-
ance between observations. In particular:
I the variance of the error term equals σ:

var (ε) = σ2 = var (y) . (7)
I the covariance between any pair of εi and εj is zero”

cov (εi, εj) = 0. (8)

Assumption #4: Exogeneity. The independent variable is not random
and therefore it is not correlated with the error term.
Assumption #5: the independent variable takes at least two values.
Assumption #6 (optional): the normally distributed error term:

ε ∼ N
(
0, σ2) . (9)
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Fitted values and residuals

The fitted values of dependent variable (ŷi):

ŷi = β̂0 + β̂1xi (10)

where β̂0 and β̂1 are estimates of intercept and slope, respectively.
The residuals (êi):

êi = yi − ŷi = yi − β̂0 − β̂1xi, (11)

are residuals between observed (empirical) and fitted values of dependent
variable.
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Assumptions of the least squares estimators

The sum of squared residuals (SSE):

SSE =
N∑
i

ê2
i =

N∑
i

(yi − ŷi)2 . (12)

The SSE can be expressed as function of the parameters β0 and β1:

SSE (β0, β1) =
N∑
i

ê2
i =

N∑
i

(
yi − β̂0 − β̂1xi

)2
. (13)

The least squares principle is a method of the parameter selection that
provides the lowest SSE:

min
β0,β1

N∑
i

(
yi − β̂0 − β̂1xi

)2
. (14)

In other words, the least squares principle minimizes the SSE.
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The least squares estimator
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The LS estimators minimizes the sum of squared residuals (SSE).
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The least squares estimators

The least squares estimator for the simple regression model:

β̂LS0 = ȳ − β̂LS1 x̄, (15)

β̂LS1 =
∑N

i
(xi − x̄) (yi − ȳ)∑N

i
(xi − x̄)2 . (16)

where ȳ and x̄ are the sample averages of dependent and independent vari-
ables, respectively.
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Gauss-Markov Theorem

Gauss-Markov Theorem
Under the assumptions A#1-A#5 of the simple linear regression model, the
least squares estimators β̂LS0 and β̂LS1 have the smallest variance of all
linear and unbiased estimators of β0 and β1.

β̂LS0 and β̂LS1 are the Best Linear Unbiased Estimators (BLUE) of β0 and
β1.
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Remarks on the Gauss-Markov Theorem I

1. The estimators β̂LS0 and β̂LS1 are best when compared to linear and
unbiased estimators.
Based on the Gauss-Markov theorem we cannot claim that the estimators
β̂LS0 and β̂LS1 are the best of all possible estimators.

2. Why the estimators β̂LS0 and β̂LS1 are best?
Because they have the minimum variance.

3. The Gauss-Markov theorem holds if assumptions A#1-A#5 are satisfied.
If not, then β̂LS0 and β̂LS1 are not BLUE.

4. The Gauss-Markov theorem does not require the assumption of normality
(A#6)

5. Apart from that, the least squares estimator is consistent if assumptions
A#1-A#5 are satisfied.
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Linearity of estimator

The least squares estimator of β1:

β̂LS1 =
∑N

i
(xi − x̄) (yi − ȳ)∑N

i
(xi − x̄)2 (17)

can be rewritten as:

β̂LS1 =
N∑
i=1

wiyi, (18)

where wi = (xi − x̄) /
∑

(xi − x̄)2 .
After manipulation we get:

β̂LS1 = β1 +
N∑
i=1

wiεi. (19)

Since the wi are known this is linear function of random variable (ε).
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Unbiasedness

The estimator is unbiased if its expected value equals the true value, i.e.,

E
(
β̂
)

= β. (20)

For the least squares estimator:

E
(
β̂LS1

)
= E

(
β1 +

N∑
i=1

wiεi

)
= E (β1) + E

(
N∑
i=1

wiεi

)

= β1 +
N∑
i=1

wiE (εi) = β1.

In the above manipulation, we take the advantage of two assumption: (i)
E(εi) = 0, and (ii) E(wiεi) = wiE(εi). The latter assumption is equivalent
the exogeneity of the independent variable.
The unbiasedness is mostly about the average of our estimates from many
samples (drawn form the same population).
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Example: unbiased estimator
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Example: biased estimator
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The variance and covariance of the LS estimators
In general, variance measures efficiency.
If the assumption A#1-A#5 are satisfied then:

var
(
β̂LS0

)
= σ2

[ ∑N

i=1 x
2
i

N
∑N

i=1 (xi − x̄)2

]

var
(
β̂LS1

)
= σ2∑N

i=1 (xi − x̄)2

cov
(
β̂LS0 , βLS1

)
= σ2

[
−x̄

(xi − x̄)2

]
The greater the variance of the error term (σ2), i.e., the larger role of the
error term, the larger variance and covariance of estimates.
The larger variability of the dependent variable

∑N

i=1 (xi − x̄)2, the smaller
variance of the least squares estimators.
The larger sample size (N) the smaller variance of the least squares estima-
tors.
The larger

∑N

i=1 x
2
i the greater variance of the intercept estimator

The covariance of estimator has a sign opposite to that of x̄ and if x̄ is larger
then the covariance is greater.
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The probability distribution of the least squares estimators

If the assumption of normality is satisfied then:

β̂LS0 ∼ N
(
β̂LS0 , var(β̂LS0 )

)
(21)

β̂LS1 ∼ N
(
β̂LS1 , var(β̂LS1 )

)
(22)

What if the assumption of normality does not hold?
If assumptions A#1-A#5 are satisfied and if the sample (N) is sufficiently
large, the least squares estimators, i.e., βLS0 and βLS1 , have distribution that
approximates the normal distributions described above.
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Estimating the variance of the error term

The variance of the error term:

var(εi) = σ2 = E [εi − E(εi)]2 = E(εi)2 (23)

since we have assumed that E(εi) = 0.
The estimates of the error term variance based on the residuals:

σ̂2 = 1
N − 2

N∑
i=1

ê2
i . (24)

where êi = y − ŷi.
The σ̂2 can be directly used to estimates the variance/covariance of the least
squares estimator.
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Estimating the variance of the least squares estimators

To obtain estimates of the var(β̂LS0 ) and var(β̂LS1 ) the estimated variance of
the error term is used (σ̂2):

ˆvar
(
β̂LS0

)
= σ̂2

[ ∑N

i=1 x
2
i

N
∑N

i=1 (xi − x̄)2

]

ˆvar
(
β̂LS1

)
= σ̂2∑N

i=1 (xi − x̄)2

ˆcov
(
β̂LS0 , βLS1

)
= σ̂2

[
−x̄

(xi − x̄)2

]
Based on the variance we can calculate the standard errors are simply the
standard deviation of the estimators:

ŝe
(
β̂LS0

)
=
√

ˆvar
(
β̂LS0

)
and ŝe

(
β̂LS1

)
=
√

ˆvar
(
β̂LS1

)
. (25)
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Multiple regression
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Multiple regression

Multiple regression :

y = β0 + β1x1 + β2x2 + . . .+ βKxK + ε (26)

where
I y is the (outcome) dependent variable;
I x1, x2, . . . , xK is the set of independent variables;
I ε is the error term.

The dependent variable is explained with the components that vary with the
the dependent variable and the error term.
β0 is the intercept.
β1, β2, . . . , βK are the coefficients (slopes) on x1, x2, . . . , xK .

β1, β2, . . . , βK measure the effect of change in x1, x2, . . . , xK upon the
expected value of y (ceteris paribus).
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General and matrix form

General form:
y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε. (27)

Matrix form:
y = Xβ + ε (28)

where

y =


y1
y2
...
yN


N×1

, X =


1 x1,1 x1,2 . . . x1,K
1 x2,1 x2,2 . . . x2,K
...

...
...

...
...

1 xN,1 xN,2 . . . xN,k


N×(K+1)

,

β =


β0
β1
...
βK


(K+1)×1

, ε =


ε1
ε2
...
εN


N×1

,

K – the number of explanatory variables; N – the number of observations.
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Assumptions of the least squares estimators (multiple regression) I

Assumption #1: true DGP (data generating process):

y = Xβ + ε. (29)

Assumption #2: the expected value of the error term is zero:

E (ε) = 0, (30)

and this implies that E (y) = Xβ.
Assumption #3: Spherical variance-covariance error matrix.

var(ε) = E(εε′) = Iσ2 (31)

. In particular:
I the variance of the error term equals σ:

var (ε) = σ2 = var (y) . (32)
I the covariance between any pair of εi and εj is zero”

cov (εi, εj) = 0. (33)

Assumption #4: Exogeneity. The independent variable are not random
and therefore they are not correlated with the error term.

E(Xε) = 0. (34)
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Assumptions of the least squares estimators (multiple regression) II

Assumption #5: the full rank of matrix of explanatory variables (there is
no so-called collinearity):

rank(X) = K + 1 ≤ N. (35)

Assumption #6 (optional): the normally distributed error term:

ε ∼ N
(
0, σ2) . (36)

Jakub Mućk Advanced Applied Econometrics Linear regression Multiple regression 39 / 64



Derivation of the least squares estimator I

The starting point is the DGP:

y = Xβ + ε, (37)

As previously, the least square estimator is obtained by minimizing the sum
of squared residuals:

β̂OLS = arg min
β

e′e, (38)

where e = y− ŷ = y−Xβ̂.
The SSE can be expressed as a function of unknown parameters:

SSE(β) = eT e = (y− ŷ)′ (y− ŷ) = (y−Xβ)′ (y−Xβ) , (39)

After manipulating (39) we get:

SSE(β) = yy′ − 2y′Xβ + β′X′Xβ, (40)

The FOC (first order condition) for (40):

∂SSE(β)
∂β

= −2X′y + 2X′Xβ, (41)
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Derivation of the least squares estimator II

after manipulations
X′y = X′Xβ, (42)

Finally, using assumption about full rank of X we get:

β̂OLS =
(
X′X

)−1 X′y. (43)
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Variance of the least squares estimator

General variance of the least square estimator (β̂OLS):

V ar(β̂OLS) = E
[(
β̂OLS − β

) (
β̂OLS − β

)′]
. (44)

Let rewrite the least square estimator:

β̂OLS =
(
X′X

)−1 X′y =
(
X′X

)−1 X′ (Xβ + ε) = β +
(
X′X

)−1 X′ε, (45)

then

V ar(β̂OLS) = E
[(

X′X
)−1 X′ε

((
X′X

)−1 X′ε
)′]

= E
[(

X′X
)−1 X′εε′X

(
X′X

)−1
]

=
(
X′X

)−1 X′E
[
εε′
]

X
(
X′X

)−1

If the assumption #3 about spherical variance-covariance error matrix,
i.e.. E(εε′) = σ2I, the above expression can be simplified and written as:

V ar(β̂OLS) = σ2 (X′X)−1
. (46)
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Estimating variance-covariance

The variance of the OLS estimator can be calculated with the estimates of
the variance of the error term (S2

ε):

V ar(β̂OLS) = S2
ε(X′X)−1, (47)

where
S2
ε = e′e

N − (K + 1) = SSE(β̂OLS)
df

(48)

where SSE(β̂OLS) is the sum of squared residuals, and df stands for degree
of freedom.
Diagonal elements of the variance-covariance matrix (denotes as d̂ii) measure
the variance of respective parameters. Then standard error:

S(β̂i) =
√
dii. (49)

Relative standard errors ∣∣∣∣S(β̂i)
β̂i

∣∣∣∣ . (50)
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Gauss-Markov Theorem

Gauss-Markov Theorem
Under the assumptions A#1-A#5 of the multiple linear regression model,
the least squares estimator β̂OLS has the smallest variance of all linear and
unbiased estimators of β.

β̂OLS is the Best Linear Unbiased Estimators (BLUE) of β.

Asymptotic properties ..
are discussed in Appendix.
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Appendix. Probability Primer
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Random variable

Random variable
is a variable whose value is unknown until it is observed

Discrete random variable – takes only limited and countable
numbers of values
Indicator random variable – takes only the values 1 or 0.
Continuous random variable – can take any value.
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The probability density function

The probability density function (pdf ) of random variable summarizes
the information concerning the possible outcomes of random variable and the
corresponding probabilities.
The pdf discrete random variable X :

f(x) = P (X = x), (51)

and
∑k

i
f(xi) = 1.

Because for continuous random variables P (X = x) = 0 the pdf for continu-
ous random variable can be expressed only for a range of values:

P (a ≤ X ≤ b) =
∫ b

a

f(x)dx, (52)

and
∫∞
−∞ f(x)dx = 1.
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The cumulative distribution function

The cumulative distribution function (cdf) is an alternative way to
represent probabilities. For any value x the cdf:

F (x) = P (X ≤ x). (53)

I For a discrete random variables, the cdf is obtained by summing the pdf over
all values xi.

I For a continuous random variable, F (x) is the area under the pdf to the left of
the point x.

The cdf is useful in calculating probabilities. For instance:

P (X > x) = 1− P (X ≤ x) = 1− F (x), (54)
P (a < X ≤ b) = F (b)− F (a). (55)
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Joint density, marginal and conditional distribution I

For a set (at least two) of random variables it is useful to analyse joint
distribution.
The joint probability density function summarize the information con-
cerning the possible outcomes of (at least two) random variables and the
corresponding probabilities. For discrete random variables

f(x, y) = P (X = x, Y = y), (56)

and for continuous random variables,

P (a ≤ X ≤ b, c ≤ X ≤ d) =
∫ b

a

∫ d

c

f(x, y)dydx. (57)

The marginal distribution allows to get distribution of individual random
variable:

fX(x) = P (X = x) =
∑
y

f(x, y). (58)

The conditional distribution is the probability distribution of Y when
the value of X is known:

f(x|y) = P (Y = y|X = x) = f(x, y)
fX(x) . (59)
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Joint density, marginal and conditional distribution II

Random variables are independent if and only if they joint pdf is the product
of the individuals pdfs. For, two random variables:

f(x, y) = fX(x)fY (y). (60)
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Expected value I

The expected value (expectation) of a random variable X is a weighted
(by probability density) average of all possible outcomes of X.
For the discrete random variable X, the expected value can be expressed as:

E (X) =
N∑
i=1

Xif (xi) , (61)

where f (x) is the probability density function of X.
The expected value can be called the population mean ( 6= sample average).
For the continuous random variable X, E (X) could be defined as:

E (X) =
∫ ∞
−∞

xf(x)dx. (62)

Properties of the expected value:
1. For any constant c:

E (c) = c. (63)
2. For any constants a and b:

E (aX + b) = aE (X) + b. (64)
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Expected value II
3. For any constant a1, . . ., ak and random variables X1, . . .Xk:

E

(
k∑
i

aiXi

)
=

k∑
i

aiE (Xi) , (65)

and when ai = 1 for all i then the expected value of the sum is exactly the
sum of expected values.

4. For a function creating new random variable g(·):

E (g(X)) =
k∑
i

g(xi)fx(xi), (66)

and for continuous random variable:

E (g(X)) =
∫ ∞
−∞

g(xi)fx(xi), (67)

In the context of joint distribution, the conditional expected value is the
expected value of X when the value of Y is known. For discrete random
variables:

E(X|Y = y) =
k∑
i=1

xif(xi, y). (68)
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Variance & Covariance I

The variance is one the measure of variability:

var(X) = E
[
(X − µ)2] , (69)

where E(X) = µ.
The variance is usually denoted σ2 (or σ2

X for X).
Alternatively, the variance can be expressed:

var(X) = E
(
X2 − 2Xµ+ µ2) = E(X2)− 2µE(X)− µ2

= E
(
X2)− µ2.

For any constants a and b:

var(aX + b) = a2var(X). (70)

The standard deviation (sd) is the square root of the variance is

sd(X) =
√
var(X) (71)

For any constants a and b:

var(aX + bY ) = a2var(X) + b2var(Y ) + cov(X,Y ). (72)
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Variance & Covariance II
The covariance is the measure of association between random variables.
For random variables X and Y :

cov (X,Y ) = E [(X − µX) (Y − µY )] , (73)

where E(Y ) = µY and E(X) = µX .
The covariance between X and Y is sometimes denoted σXY .
The covariance can be further expressed as follows:

cov (X,Y ) = E [(X − µX) (Y − µY )]E [X (Y − µY )]
= E [(X − µX)Y ] = E (XY )− µXµY

Importantly, whenX and Y are independent then cov(X,Y ) = 0 and E(XY ) =
E(X)E(Y ).
Based on the covariance it is hard to assess the magnitude of association
between two random variables. However, the correlation (ρ) accounts for
differences in variances:

ρ = cov(X,Y )√
var(X)

√
var(Y )

= σXY
σXσY

, (74)

and ρ ∈< 0, 1 >.
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The Normal Distribution

If X is a normally distributed random variable with mean µ and variance σ2,
i.e. X ∼ N (0, σ2) then the pdf of X:

f(x) = 1√
2πσ2

exp
[
−(x− µ)2

2σ2

]
, −∞ < x <∞. (75)

A standard normal distribution takes place if µ = 1 and σ2 = 1.
Standardization. When X ∼ N (0, σ2) then

Z = X − µ
σ

∼ N (0, 1). (76)

Example:

P (a ≤ X ≤ b) = F (b)− F (a) = Φ
(
X − b
σ

)
− Φ

(
X − a
σ

)
, (77)

where Φ(·) is the cdf for standard normally distributed Z.
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χ2 and t distributions

Let Z1, . . ., Zk are independent, standard normal random variable. Then,
the sum of squared random variable is χ2 distributed

V = Z2
1 + . . .+ Z2

k ∼ χ2(k), (78)

where k denotes the number of degree of freedom. Importantly,

E(V ) = k

var(V ) = 2k.

If Z is standard normal random variable and V ∼ χ2(k) then

t = Z√
V/k

∼ tm. (79)
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Appendix. Asymptotic properties of the OLS estimator
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Unbiasedness of the OLS estimator
Unbiasedness of estimator:

E
(
β̂OLS

)
= β. (80)

Using true DGP, i.e., y = Xβ + ε we can rewrite the least square estimator:

β̂OLS = (X′X)−1X′y = (X′X)−1X′ (Xβ + ε) . (81)

Using (X′X)−1X′X = I:

β̂OLS = β + (X′X)−1X′ε. (82)

The expected value

E
(
β̂OLS

)
= E (β) + E

[
(X′X)−1X′ε

]
, (83)

Using a fact that E (β) = β and assumption that explanatory variables are
not random, i.e., E (X) = X:

E
(
β̂OLS

)
= β + (X′X)−1X′E(ε), (84)

under the assumption that E(εX) = 0 we get

E
(
β̂OLS

)
= β. (85)
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Linearity of the OLS estimator

Using previous derivations

β̂OLS = β + (X′X)−1X′ε. (86)

Let us assume that A = (X′X)−1X′. Then

β̂OLS = β + Aε, (87)

so β̂OLS is the linear function of the error term which is the random variable.
As a result, the estimator β̂OLS is linear.
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Efficiency of the OLS estimator I

Let us introduce with some unbiased linear estimator β, eg. B̂ = Cy. Then

E(B̂) = E (CXβ + Cε) = β (88)

It can be observed that CX = I.
Variance of the estimator B̂:

V ar(B̂) = σ2CC′. (89)

Let us introduce D = C − (X′X)−1 X′.
Variance of the estimator B̂:

V ar(B̂) = σ2
[(
D +

(
X′X

)−1 X′
)(

D +
(
X′X

)−1
X ′
)′]

, (90)

DX = 0 since
CX = I = DX + (X′X)−1 (X′X). The variance can be written as:

V ar(B̂) = σ2 (X′X)−1 + σ2DD′ = V ar(β̂OLS) + σ2DD′. (91)

If D is zero matrix then the variance of B̂ is the lowest. But then we consider
the least square estimator.
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Example – efficiency
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Consistency of the OLS estimator I
Consistent estimator converges in probability to the true value of the un-
known parameter.
Consistency of the OLS estimator

plimN→∞β̂
OLS = β (92)

Using previous derivations (E
(
β̂OLS

)
= β + (X′X)−1X′E(ε)):

plimN→∞β̂
OLS = β + plimN→∞(X′X)−1X′E(ε). (93)

Let us multiply by one, i.e., 1 = 1/N ×N :

plimN→∞β̂
OLS = β + plimN→∞

( 1
N

X′X
)−1 1

N
X′E(ε). (94)

Using the assumption on exogeneity:

plimN→∞
1
N

X′E(ε) = 0, (95)

It is hard to limit the expression plimN→∞(X′X) but the expression
plimN→∞(1/NX′X) can be limited by some C. Then:

plimN→∞β̂
OLS = β + C × 0 = β. (96)
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Example – consistency of estimator
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