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Abstract

We introduce fertility choice into an R&D-based semi-endogenous growth
model so that the economy’s long-run growth rate is again fully en-
dogenously determined. The ultimate growth engine is located in the
population equation of the model (“people reproduce in proportion to
their number”), and R&D carries sustained population growth forward
to GDP growth. We indicate the problems stemming from the fact that
in the considered class of models, population size ought to enter the
utility functional multiplicatively. In particular, we show that second
order optimality conditions need not hold and flow utility is required
to be positive (levels of utility matter). A simplified “Barro–Becker–
Jones” model which we put forward, reconciles these problems, yields
an asymptotic long-run fertility rate along an asymptotic BGP, and is
open to further generalizations.
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1 Introduction

One of the most often discussed features of R&D-based models of semi-endo-
genous growth is that they imply a strong link between long-run economic
growth and population growth. This link has been questioned for many rea-
sons (e.g. “people become skillful researchers by education rather than birth”
– Strulik, 2005), but the semi-endogenous theory remains one of the most
prominent contemporary growth theories nevertheless. However, ever since
the Jones’ (1995) pathbreaking article, authors of semi-endogenous growth
models have been customarily assuming population growth to be exponen-
tial and exogenous. On the one hand, the linear population equation of form
Ṅ = nN is a natural assumption – as opposed to other linearity assumptions
put forward in literature which are much more difficult to interpret – since
“it is a biological fact of nature, that people reproduce in proportion to their
number” (Jones, 2003), and policy and the economy are believed not to affect
the population growth rate n much. On the other hand, it effectively pushes
the endogenous growth mechanism out of these models.

Moreover, the assumption of sustained exogenous population growth may
soon be at odds with evidence. Modern demographic trends, notably the
Second Demographic Transition, already present in all developed countries
(see van de Kaa, 1997), put the exponential population growth assumption
into severe doubt.

Several ideas on how population growth can be endogenized are already
present in the literature. Becker was probably the first to doubt the Malthusian
(1798) claim, that “the passion between the sexes has appeared in every age to
be so nearly the same, that it may always be considered, in algebraic language
as a given quantity”, and his ideas have influenced many economic theories
(see e.g. Becker, 1981; and more notably, the growth theory of Barro and
Becker, 1989) – semi-endogenous growth theories as well.1

The main point raised in this paper is that semi-endogenous growth models
with the “naturally linear” population equation Ṅ = nN and endogenous
fertility have the potential to generate sustained endogenous growth without

1Another question is whether perpetual population growth is, in fact, a desirable out-
come. Mainstream semi-endogenous growth theories take into account neither finiteness of
Earth nor the fact that production of goods depends on various kinds of natural resources,
exhaustible resources in particular. If one believes that finiteness of Earth will ultimately
put a limit to population growth (see Pimentel et al., 1999, for a survey on this “interdis-
ciplinary” strand of literature), she will probably be not too pleased with the prediction of
the semi-endogenous theory that growth in per capita wealth will also cease. Here, however,
we only point at this problem, and do not consider it any further.
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unmotivated knife-edge assumptions, as long as explicit limits such as finiteness
of Earth or dependence of production on exhaustible resources are assumed
out.

The article starts with a survey of the multiple ways to set up R&D-based
growth models with endogenous fertility. For clarity of the discussion, we
reduce to the necessary minimum the components of economic frameworks
which do not influence their long-run dynamics. We present the decisive as-
sumptions that various authors make, compute the weights attached by their
optimizing agents to consecutive generations, and indicate the problems with
second order conditions.

It is argued here that there exists a particular feature of growth models
with endogenous fertility which has not received the necessary attention yet:
population size enters the utility functional multiplicatively. Thus, the level
of flow utility enters the first order conditions (not just marginal utility), its
sign matters, and the second order optimality conditions are no longer au-
tomatically satisfied. Hence, numerous authors preferred to get rid of this
uneasy feature of endongenous-fertility models by writing the (logarithm of)
population size as an additive component in the utility functional (Barro and
Sala-i-Martin, 1995, Chapter 9; Jones, 2003; Connolly and Peretto, 2003)2 or
by considering a static optimization problem instead (Jones, 2001). By provid-
ing an analysis of the case where population size enters the utility functional
multiplicatively, we fill a gap in the literature.

In the quest to reconcile all the problems outlined above, we put forward
a bare-bones model with infinite-horizon (“dynastic”) optimization, endoge-
nous fertility choice, R&D-based semi-endogenous growth, and population size
entering the utility functional multiplicatively. The dynasty’s optimization
problem where consumption and fertility are the only sources of utility (the
Barro–Becker approach), has been given the most attention. A detailed dis-
cussion of first order, second order and auxilliary conditions, as well as the
long-run dynamics of the model, is the most important contribution of this
paper. In particular, we identify and characterize the model’s asymptotic
balanced growth path (analogous to the one in Jones, 2001). We also find
that the restriction on the value of the intertemporal elasticity of substitu-
tion (IES hereafter) in consumption is crucial for the long-run outcome of
semi-endogenous growth models with endogenous fertility.

The main results obtained in this article are expected to hold also if one ex-

2Existence of long-run growth in these three models relies upon the weakly motivated
knife-edge assumption that the intertemporal elasticity of substitution (IES) in consumption
be exactly unity (the logarithmic case).
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pands our basic model so that it allows for physical or human capital accumu-
lation, endogenous labor allocation, imperfect competition in the production
sector, and the like. The long-run behavior of R&D-based semi-endogenous
growth models where population growth is exogenous, is typically qualitatively
different to the behavior of models with endogenous fertility. In addition, more
stringent conditions have to be imposed.

In section 2, we present the specific features of growth models with en-
dogenous fertility which are not shared by models with exogenous fertility. In
section 3, we lay out and solve the basic model. In section 4, we discuss the
requirements for the IES in consumption, imposed by this model as well as by
the alternative ones put forward in literature. Section 5 concludes.

2 Exogenous vs endogenous fertility in growth

models

2.1 Writing down the utility functional

Prior to reading any involved literature, one would expect the mathematical
treatment of demographics in economic growth models to be the same re-
gardless of whether fertility is exogenous or endogenous: after all, it is just
the population growth rate n that is endogenized. However, it is not the case.
Even more curiously, the difference strikes usually already in the first equation:
the objective functional of the model.

The usual growth model with infinite-horizon optimization and exogenous
fertility would have population size entering the objective functional multi-
plicatively : the social planner or representative household would maximize
U0 =

∫∞
0
Ntu(ct)e

−ρtdt, where Nt = N0e
nt denotes the population size at time

t, n is the exogenous population growth rate, ct denotes per capita consump-
tion at time t, and u is the flow utility function. One can then rewrite the
utility functional U0 as U0 = N0

∫∞
0
u(ct)e

−(ρ−n)tdt, from which it follows im-
mediately that population growth provides a drag on the discount rate ρ. The
effective discount rate is computed as ρ − n: the difference between the pure
time preference rate and the population growth rate.

If fertility is endogenous, the objective functional gets changed, for tech-
nical reasons rather than conceptual (as we shall see shortly). In particular,
Barro and Becker (1989) replace Nt in U0 with N θ

t , with θ ∈ (0, 1), thereby
allowing for “incomplete altruism” – larger generations’ (“vintages”) utility is
embedded in U0 with a decreasing marginal share. The effective discount rate
becomes ρ − θn. Although the Barro and Becker’s assumption is relatively
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easily interpretable, one ought to know that its introduction is also necessary
to assure that the second order conditions for optimality hold. This formula-
tion will be our preferred one throughout the paper. We admit, however, that
there is a number of drawbacks of this approach. We shall discuss one of them
in the next subsection 2.2.

There are strands of literature which deal with endogenous fertility differ-
ently than Barro and Becker do. In particular, it is widespread3 to use the
following trick: to redefine the objective functional U0 as U0 =

∫∞
0

[u(ct, bt) +
εv(Nt)]e

−ρtdt, where bt is the per capita fertility rate (having children may be
a source of utility). In this specification, population size enters U0 additively.
We note that the above expression can be split into a sum of two integrals,
U0 =

∫∞
0
u(ct, bt)e

−ρtdt+ ε
∫∞

0
v(Nt)e

−ρtdt.
Two facts should be mentioned here. First, the impact of births on agents’

utility through an increasing population size is neglected. Thus, the channel
of intertemporal substitution via the effective discount rate is switched off:
the effective discount rate remains just ρ. One still treats population size as a
normal good, but no longer considers it to be related to the marginal utility of
consumption. Second, all involved models rely upon the knife-edge assumption
that v is a logarithmic function: v(Nt) = lnNt – the IES in population size is
exactly unity.

Another way to simplify matters is to disregard any impact of births on
population size whatsoever. One disposes then of all dynamic tradeoffs as-
sociated with the evolution of endogenously determined population size over
time. This approach was taken in the previous, discussion-paper version of this
article (Growiec, 2006). Similarily, Jones (2001) prefers to exchange the orig-
inal dynamic setup for a static one where by definition, no dynamic tradeoffs
attached to fertility decisions are present.

2.2 Weighting the generations

Let us now write down the general form of the objective functional as

U0 =

∫ ∞

0

Ntωtu(ct, bt)e
−ρtdt. (1)

By ωt, we denote the weight function of generation t. We shall simply purge
all differences between alternative setups into ωt.

In the “complete altruism” (or “egalitarian”) case, characteristic for models
with exogenous fertility, the weight function is ωt ≡ 1. The aggregate level

3See Barro and Sala-i-Martin (1995), Chapter 9, Jones (2003), and Connolly and Peretto
(2003).
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of utility is just the sum of individuals’ utility levels. We take this result as
benchmark.

In the Barro and Becker’s (1989) “incomplete altruism” case, ωt = N θ−1
t .

Thus, individuals in larger generations are systematically less taken care of
than individuals in smaller generations. This implies in particular, that if
population is increasing over time, later generations are less taken care of
than earlier ones.4

In the case where population size enters U0 additively, it can be shown

that ωt = 1
Nt

(
1 + v(Nt)

u(ct,bt)

)
and thus the weight of each generation depends on:

(i) its level of per capita consumption, (ii) its size, and (iii) its fertility rate.
Moreover, it does so in a rather unintuitive and complex way. In particular, it
matters if the levels of u(ct, bt) and v(Nt) – flow utilities – are positive or neg-
ative. We see that the “degree of altruism” in this case exhibits no systematic
pattern,5 which is a serious drawback of this methodology in comparison to
the Barro and Becker’s one.

2.3 Special features of models with endogenous fertility

Incorporating endongenous fertility in economic growth models with infinite-
horizon optimization requires us to think about several of its characteristics,
which would be of less significance if fertility were to remain exogenous. The
list of such characteristics goes as follows.

1. The natural specification of the population equation of motion is the
linear one: Ṅt = ntNt = (bt − dt)Nt, where bt is the birth rate and
dt is the death rate. This provides a potential for fully endogenous
sustained growth (as opposed to other endogenous growth models where
the linearity assumption is ad hoc rather than natural: see the detailed
discussion in Jones, 2003).

2. The fact that population size enters the dynasty’s utility functional
multiplicatively, U0 =

∫∞
0
N θ
t u(ct, bt)e

−ρtdt, implies that the flow util-

ity needs to be always positive: ∂U0

∂Nt
= θN θ−1

t u(ct, bt)e
−ρt > 0 only if

u(ct, bt) > 0. Otherwise, utility (and in general, life) would be a painful

4Please note that we do not insist that population size be increasing over time. It may
be well constant or decreasing.

5For instance, it is obtained that ωc,t ≡ ∂ωt

∂ct
= −v(Nt)u

′(ct)
Ntu2(ct,bt)

and thus, ωc,t ≶ 0 if and only
if v(Nt) ≷ 0. It is a mystery why the direction of the impact of per capita consumption on
the weight attached to a generation should depend on whether flow utility from population
size is positive or negative.
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burden rather than a blessing and the benevolent dynastic head would
not impose such burden on her descendants. In other words, if flow util-
ity is negative, it always pays to lower fertility: the utility functional is
then closer to zero and thus greater.6

3. Another consequence of the fact that population size enters the utility
functional multiplicatively is that levels of flow utility enter the first order
and second order conditions. The utility function loses one of its “text-
book” properties: its ordinal character. The utility function becomes a
cardinal measure instead; the agent’s decisions cease to be invariant to
affine transformations of her utility function. Adding a constant to it and
multiplying it by a positive constant changes the first order conditions.

4. Population growth provides a drag on the effective discount rate. Thus,
a problem of endogenous fertility may be understood as a problem of
endogenous discounting (see e.g. Becker and Mulligan, 1997; Das, 2003
on this issue).

5. There are substantial costs of childrearing, ranging from financial to time
(opportunity) costs. In particular, time devoted to bringing up children
has to be deducted from the total time spent on productive activities (in
our case, production and R&D).

6. Population growth rate adds to the depreciation rate of accumulated
stocks (per capita capital, per capita stock of exhaustible resources, etc.),
thus creating the “effective” depreciation rate. This is due to the fact
that total stocks have to distributed among an increasing number of
people.

7. Individuals may (but may not) receive utility from having children. In
most fertility models discussed in literature, the birth rate bt does enter
the flow utility function u(ct, bt).

We deal with most of these points when solving our basic model in section 3.

2.4 Problems with second order conditions

Having population size as a multiplicative factor in the utility functional can
cause problems with second order conditions. To explain this claim, let us first

6I am grateful to Charles Jones for this point. The same result applies to models with
health status which affects the survival probability (Hall and Jones, 2007).
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write down the following “generic” optimization problem:

max
Nt,bt,...

∫ ∞

0

N θ
t u(ct, bt, ...)e

−ρtdt s.t. Ṅt = (bt − dt)Nt, ... (2)

Three dots denote further variables and further equations which can be freely
added to the optimization problem under the condition that the population
size Nt does not enter any of these equations (in particular, it implies that the
production function ought to have constant returns to scale). The resulting
Hamiltonian reads:

H(Nt, bt, ...) = N θ
t u(ct, bt, ...)e

−ρt + Λt(bt − dt)Nt + ... (3)

We write Nt as the first argument of the Hamiltonian for convenience – the
term ∂2H

∂N2
t

becomes then the first minor of its Hessian. We shall maintain this

order throughout the paper.
Now, let us remind ourselves that for the FOCs to describe a maximum of

the Hamiltonian, it is necessary that its Hessian is non-positive definite. This
implies that there are no positive elements on the main diagonal.

However, it is quickly verified that

∂2H
∂N2

t

= θ(θ − 1)N θ−2
t u(ct, bt, ...)e

−ρt, (4)

and thus ∂2H
∂N2 is positive if θ ∈ (0, 1) and the flow utility u(ct, bt, ...) is negative.

For the sake of optimality, we must rule this case out. Therefore, flow utility
must be positive in models with endogenous fertility.

To emphasize the importance of this result, let us now restrict our attention
to the class of CRRA utility functions, which is probably the one most often

used by economists. The simplest CRRA functions are defined as u(ct) =
c1−γt

1−γ .
If γ > 1, then flow utility is always negative and thus cannot be used in models
with endogenous fertility. However, γ > 1 implies that the IES in consumption
is less than unity – a result endorsed by a multiplicity of empirical works (see
the review in the section 4). Accordingly, the same negativity result holds for

generalized CRRA utility functions of form u(ct, bt) = µ0 + µ1
c1−γt

1−γ + µ2
b1−ηt

1−η
where γ, η > 1, µ0 ≤ 0, and µ1, µ2 > 0. Even adding an arbitrarily large
positive constant µ0 > 0 to flow utility cannot help dispose of the negativity
problem for small values of ct, since limc→0 u(c, b) = −∞ for any µ0. We note
that for CRRA utility functions, u can be everywhere positive only if γ < 1.
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3 The basic model

We shall now analyze a simplified R&D-based semi-endogenous growth model
with population size entering the utility functional multiplicatively. We shall
keep in mind the remarks of above subsections, in particular of section 2.3
where we have listed the special features of such models.

3.1 Setup

3.1.1 Demographics

To give the demographics of the model an explicit treatment, we shall make
use of a continuous-time overlapping-generations setup with indeterministic
lifespan. For mathematical simplicity, we assume that Nt – population at
time t ≥ 0 – is in fact not the integer number of individuals, but rather the
measure of an interval, populated by a continuum of agents. Thus, although
the lifespan of each individual is random, the Law of Large Numbers enables
us to treat the death rate at each instant of time as deterministic. For each
individual, we shall introduce a survival function m : R+ → [0, 1] such that
m(0) = 1, limt→∞m(t) = 0, and m is decreasing. The total number of births
at time t is denoted Bt ≡ btNt, with bt being the birth rate. The size of
generation t at time z ≥ t is equal to

Sz,t = Btm(z − t), (5)

and the total population at time t is

Nt =

∫ t

0

Bzm(t− z)dz. (6)

The population growth rate can be calculated as

nt =
Ṅt

Nt

=
Btm(0)

Nt

+

∫ t
0
Bzm

′(t− z)dz

Nt

≡ bt︸︷︷︸
birth rate

− dt︸︷︷︸
death rate

. (7)

Instead of maintaining the general form of the survival function m through-
out the paper, we shall simplify the analysis by limiting ourselves to the “per-
petual youth” case. Namely, we shall take the exponential function m imply-
ing a constant probability of death d at all ages x ≥ 0, conditional on having
reached the age x. This assumption reads:

m(x) = e−dx ⇒ dx ≡ d, where d > 0. (8)
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It is possible for some individuals to live forever, although such probability can
well be neglected. For simplicity, we also neglect the impact of technological
progress and increasing per capita wealth on the survival function m.7

3.1.2 Production and R&D

The production function of the single consumption good is assumed to be
Cobb-Douglas with constant returns to scale in labor L, and increasing returns
to scale, once the technology level A is included as well, which reflects the
concept of non-rivalry of ideas (see Jones, 2005, for a discussion):

Yt = Aσt Lt = Aσt (1− β(bt))Nt, σ > 0, (9)

where β(bt) describes the time cost of childrearing. For reasons which we shall
describe later in more detail, we assume that the function β : R+ → R+ is twice
continuously differentiable, increasing and convex (β′ > 0 and β′′ > 0), and
such that β(0) = 0. We are going to assume out all other forms of childrearing
costs.

By taking (9) as our production function, we assume out physical capi-
tal accumulation. This assumption is made to ease the exposition – further
derivations, focused on the endogenous fertility component, are more trans-
parent without capital – but is not necessary. Indeed, one would make this
model more realistic by considering capital accumulation as well.

Ideas are accumulated according to the Jones’ (1995) R&D equation

Ȧt = νLλtA
φ
t , 0 < λ < 1, 0 < φ < 1, ν > 0. (10)

We assume that the spillovers in idea production are positive (the “standing-
on-shoulders” effect) but not sufficiently strong for fully-endogenous R&D-
driven growth (φ < 1).

The above Cobb-Douglas assumptions are standard for the associated lit-
erature (see Jones, 2005, for a justification). At the same time, they greatly
facilitate obtaining balanced growth. In this paper, we think of this prop-
erty as desirable, because we shall emphasize different (population-side, not
production-side) barriers to endogenous balanced growth.

It is assumed that the whole working population is employed both in R&D
and in the production sector. To keep things as simple as possible, we do
not consider the allocation of labor between these two sectors explicitly. In
our setup, people receive remuneration for their production work but not for

7Provided that we rule out the possibility that the expected lifespan be growing without
bound, this assumption does not change our results qualitatively.
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their research. Thus, R&D is considered here an inevitable side-effect of pro-
duction, rather than a distinct sector of the economy.8 Despite the fact that
this model may be interpreted a model of “learning by doing” in the Arrow’s
(1962) tradition (or better: “inventing by doing”), all the long-run results we
are discussing would have clearly gone through if we had endogenized labor al-
location and allowed for an explicit treatment of the R&D outlay. We abstract
from these issues only to simplify exposition.

3.1.3 Households

The representative agent maximizes discounted utility of her dynasty, born at
time 0. Her altruism is imperfect : the representative agent does not explicitly
take into account the fact that some members of the dynasty are born, and
some die at each instant of time, but she systematically attaches smaller weight
to bigger generations. Utility is derived from consumption and the number of
children (as in Barro and Becker, 1989):

max
{bt}∞t=0

∫ ∞

0

N θ
t u(yt, bt)e

−ρtdt, ρ > 0, (11)

subject to the population equation of motion Ṅt = (bt − d)Nt and the per
capita production function yt = Aσt (1 − β(bt)). Since no savings are allowed,
all production is immediately consumed and thus ct = yt for all t.

Moreover, we shall assume that the flow utility function is of the argument-
separable CRRA form with a non-negative constant:

u(yt, bt) = µ0 + µ1
y1−γ
t

1− γ
+ µ2

b1−ηt

1− η
, (12)

where µ0 ≥ 0, µ1, µ2 > 0, and γ, η ∈ (0, 1).9 This closes the setup of our basic
model.

8This is an admittedly heroic assumption. However, it does not change the results
qualitatively, because in the long run, the ratio of researchers is expected to approach a
constant. We assure it by trivially setting it to a constant – i.e. endowing each individual
with a constant amount of time for production work and for research. Then, we say that
the long-run research/production effort ratio is already included in ν and A0.

9The assumption that γ, η ∈ (0, 1) assures that flow utility is always positive. In fact,
we could have been less stringent here. It would suffice if u were positive just for the
values of variables actually realized along the time path of the economy. One would then
have to be very careful with the choice of initial conditions and parameter values, though.
We acknowledge that the case with γ > 1 and (despite that) u > 0 is a cumbersome but
potentially very useful case to analyze. We leave it for future work.
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3.2 The asymptotic balanced growth path

Before we start actually solving the model, we shall describe the necessary
properties of the balanced growth path (BGP), or alternatively, the asymptotic
BGP. These will be helpful in the subsequent derivations.

We shall define the balanced growth path as a sequence of time paths
{At, Nt, yt}∞t=0, along which all economic variables grow at constant non-nega-
tive rates, possibly zero. It implies that the birth rate {bt}∞t=0 must be constant
along the BGP.

Similarily, we shall say that the model approaches an asymptotic BGP if
the growth rates of variables approach constant values. Please note that this
happens only as the levels of At, Nt, yt diverge to infinity. In such case no
proper BGP exists – there is no exponential solution to the dynamical system
at hand.

We shall claim that in our model no BGP exists, but under an appropriate
parameter configuration, an asymptotic BGP is converged to as time goes to
infinity. In the following subsections, we shall derive the conditions under
which the birth rate approaches a constant b̄ implying that the population
growth rate also approaches a constant n̄ = b̄ − d. Consequently, the growth
rate of knowledge stock and the economic growth rate approach constants as
well.

From the R&D equation (10), it is obtained that along an asymptotic BGP,
necessarily

Ȧt
At

=
λn̄

1− φ
, (13)

where n̄ = b̄ − d is the endogenously determined long-run population growth
rate.

This implies that the economic growth rate approaches:

g ≡ ẏt
yt

= σ
Ȧt
At

=
σλn̄

1− φ
. (14)

Please note that although the childrearing cost β(bt) imposes a significant
level effect on production and R&D output, no long-run growth effects should
be expected.

3.3 Optimization

To solve the households’ optimization problem, we set up the Hamiltonian:

H(Nt, bt) = N θ
t u(yt, bt)e

−ρt + Λt(bt − d)Nt, (15)
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where Λt is the shadow price of population size. bt is the only control variable
in this setup, and Nt is the only state variable. Thanks to our prior simplifying
assumptions, the accumulation of knowledge At is considered external to the
household and no savings decision is allowed.

When dealing with transversality and summability conditions, we shall uti-
lize the properties of the asymptotic BGP, derived in the previous subsection.
For a time being, we assume that the asymptotic BGP is indeed approached;
in the next subsection we shall prove it, and thus prove that the transversal-
ity and summability conditions hold. But of course, we shall begin with the
FOCs.

3.3.1 First order conditions

The first derivatives of the Hamiltonian read:

∂H
∂Nt

= θN θ−1
t u(yt, bt)e

−ρt + Λt(bt − d) = −Λ̇t, (16)

∂H
∂bt

= N θ
t [ub(yt, bt)− uy(yt, bt)A

σ
t β

′(bt)]e
−ρt + ΛtNt = 0. (17)

Substituting the suitable expression for the shadow price Λt from the sec-
ond FOC into the first FOC (Λt = −N θ−1

t [ub(yt, bt) − uy(yt, bt)A
σ
t β

′(bt)]e
−ρt),

using additive separability of u as apparent in (12), and rearranging yields the
following equation of motion of the birth rate:10

ḃt

(
ubb + uyyA

2σ
t (β′(bt))

2 − uyA
σ
t β

′′(bt)
)

︸ ︷︷ ︸
Left-hand side ≡Ψ

= θu−
(
θ(bt − d)− ρ

)
ub+︸ ︷︷ ︸

Right-hand side ≡Φ

+uyA
σ
t β

′(bt)
(
θ(bt − d)− ρ+ σ

Ȧ

A

)
+ uyyA

2σ
t σ

Ȧ

A
(1− β(bt))β

′(bt)︸ ︷︷ ︸
Right-hand side ≡Φ

. (18)

We shall describe the properties of this rather complicated expression in
subsection 3.4. We shall denote its left-hand side (apart from ḃt) as Ψ and the
right-hand side as Φ.

3.3.2 Transversality condition

The transversality condition requires that the shadow value of population size
tends to zero as time approaches infinity. For the condition limt→∞ ΛtNt = 0 to

10By ux, we denote the derivative of u with respect to x. We omit the arguments of u
and its derivatives for convenience.
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hold, it suffices that from some time on, the growth rate of ΛtNt is uniformly
negative. Solving for this growth rate and taking an asymptotic balanced
growth path approximation (which implies that the positive growth rate of
population is n̄, the economy grows at a rate g, and the marginal utility of
consumption declines at a rate γg), we can write the transversality condition
as:

Λ̇t

Λt

+
Ṅt

Nt

= θn̄+ (1− γ)g − ρ =

(
θ + (1− γ)

σλ

1− φ

)
n̄− ρ < 0. (19)

In other words, the discount rate should be large enough compared to the
population growth rate. Condition (19) is identical to the restriction of a
positive effective discount rate in exogenous fertility models.

3.3.3 Summability condition

The summability condition requires that the integral (11) converges. To satisfy
this requirement, it suffices that along the asymptotic BGP, the growth rate
of the product N θ

t y
1−γe−ρt is negative. This implies that in our setup, the

transversality condition and the summability condition coincide.

3.3.4 Second order conditions

Let us now proceed to the second order (sufficiency) conditions which would
guarantee that the FOCs describe an actual maximum of the Hamiltonian.
We are going to be conscientious here since we have already shown that in
models where endogenous fertility enters the utility functional multiplicatively,
satisfaction of second order conditions is not automatic. This step is typically
omitted in the literature, though.

It turns out that assuming u > 0 is necessary for optimality, but by no
means sufficient. The following proposition holds.

Proposition 1 In the vicinity of the asymptotic BGP, the first order condi-
tion (18) describes a maximum of the Hamiltonian (15) if

β′′(b̄)(1− β(b̄))

(β′(b̄))2
>

1− γ − θ

θ
, (20)

where b̄ denotes the asymptotic steady-state birth rate.

Proof. See Appendix. �
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3.4 Existence of the solution and dynamics

We shall now characterize the conditions which have to be satisfied for the
birth rate bt to approach a constant b̄ as time goes to infinity, thus yielding an
asymptotic BGP. First, we shall derive the steady-state birth rate b̄ (in most
cases it will be unique, but we will not rule out the possibility of multiple
solutions). The next step will be to analyze the dynamics of the model around
its asymptotic BGP.

The existence issue must be addressed first. The following propositions
hold.

Proposition 2 The steady-state birth rate b̄ is defined as a solution to the
implicit equation:

θ

1− γ

(
1− β(b̄)

β′(b̄)

)
= ρ−

(
θ + (1− γ)

σλ

1− φ

)
(b̄− d). (21)

Proof. See Appendix. �

Proposition 3 A solution to the implicit equation (21) is guaranteed to exist
if

β′(0) <
θ

(1− γ)
(
ρ+

(
θ + (1− γ) σλ

1−φ

)
d
) (22)

and

ρ >

(
θ + (1− γ)

σλ

1− φ

)
(β−1(1)− d), (23)

or if the signs in (22) and (23) are simultaneously reversed.

Proof. See Appendix. �
Equation (21) in proposition 2 is central to this paper: by defining the

endogenous asymptotic steady-state birth rate, it also pins down the long-run
growth rate of the economy.

Please note that the parameters η, µ0, µ1, µ2 have disappeared in the course
of taking limits. They play their roles during the transition, but not along the
asymptotic BGP.

Imposing an upper bound on β′(0) such as in (22) and a lower bound on
ρ as in (23) closes the existence issue. The roots of (21) can be evaluated
numerically, and we shall do so in the following subsection. Moreover, the
sufficiency conditions (22)–(23) can be substantially weakened: it is enough to
show that for some b ∈ [0, β−1(1)], the left-hand side of (21) is greater than
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the right-hand side, and for some other b, it is smaller, and the intermediate
value theorem argument used in the proof of proposition 3 still goes through.

Let us pass on to the question of stability. The following proposition holds.

Proposition 4 The steady-state birth rate b̄, implicitly defined in (21), is
asymptotically stable if in the vicinity of b̄,

θ

1− γ

(
1− β(b̄)

β′(b̄)

)
< ρ−

(
θ + (1− γ)

σλ

1− φ

)
(b̄− d) (24)

for b < b̄, and the inequality (24) is reversed for b > b̄. Otherwise, the steady-
state birth rate is unstable.

If the steady-state birth rate is unstable but 1− θ − γ > 0, then no transi-
tional adjustments in bt are possible and the birth rate is always set so as to
assure ḃt = 0. Otherwise, a solution that has bt → β−1(1) may also be chosen
by the representative household (depending on initial conditions).

Proof. See Appendix. �
Summarizing, the following conditions should be checked before one could

be sure that a given b̄ is the asymptotic steady-state birth rate delivered by
our model, giving rise to an asymptotic BGP:

1. The necessary condition for optimality combined with the asymptotic
steady-state requirement, summarized by the implicit equation (21).

2. The transversality/summability condition, given by (19).

3. The sufficient condition for optimality, given by (20).

Local dynamics around the asymptotic BGP may then be studied using propo-
sition 4. In this respect, it must be noted that if the asymptotic steady-state
birth rate proves to be unstable, then in many cases, there will be no transi-
tional adjustments in bt.

11 The logic is the following. The birth rate bt is a
control variable so it can always be set such that ḃt = 0; setting it at a different
value might lead to an eventual violation of the transversality condition or of
the second order optimality condition (as apparent in the proof of proposition
4). One has to bear in mind, however, that no proper BGP exists here. Thus,
if the solution that has bt → β−1(1) is ruled out, then it must be the case that
ḃt = 0 at all times, so that Φ(bt) = 0 at all times, but since ub/u → 0 and

11Such instability results may also be found in endogenous-fertility growth models of Barro
and Sala-i-Martin (1995), Chapter 9, and Connolly and Peretto (2003).
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u
y1−γ

→ µ1

1−γ only gradually, then also bt will approach b̄ only gradually. In the
end, there will be some transition dynamics here even though the asymptotic
birth rate is unstable and divergence is ruled out. These will not be driven by
purposeful dynamic adjustments in bt, though.

Let us also comment on the following: we have been using asymptotic
steady-state approximations when deriving all above inequalities. Thus, we
have been implicitly assuming that the initial population size and the initial
knowledge stock are large enough for the approximations to be valid. Using
the continuity argument, one could claim that what is quite important here
is the margins by which our approximate inequality conditions are satisfied.
The narrower is the margin, the larger has to be the initial population size
as well as the initial knowledge stock (which are our only stock variables) in
order for a given condition in its precise form to be satisfied as well.

3.5 The case of a linear childrearing cost function

The case of a linear childrearing cost function is a particularly tractable one.
Indeed, if such functional form is assumed, the steady-state birth rate may be
derived explicitly: it is straightforward to show that if β(b) = κb, with κ > 0,
then there exists a unique asymptotic steady-state birth rate b̄ given by:

b̄ =

θ
1−γ

1
κ
−
(
θ + (1− γ) σλ

1−φ

)
d− ρ

γθ
1−γ − (1− γ) σλ

1−φ
, (25)

provided that κ is small enough to guarantee b̄ ≥ 0. Consequently, the steady-
state population growth rate n̄ = b̄− d equals:

n̄ =

θ
1−γ

(
1
κ
− d
)
− ρ

γθ
1−γ − (1− γ) σλ

1−φ
. (26)

The model at hand is able to deliver the prediction that the steady-state
birth rate b̄ decreases with ρ, κ, and d, quite in line with intuition.12 In order
to obtain such plausible comparative statics, however, one must impose that
the denominator in (25) be positive.

It can be checked that the population growth rate over the long run is
positive – and thus the economic growth rate is positive as well – provided

12The last relationship is perhaps the least intuitive, but one has to bear in mind that in
our model, a greater death rate means not only a shorter lifespan of the children but also
of the parents, and that people here have children at a constant rate thoughout their lives.
A shorter life leaves them with less time to be allocated to childrearing.
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that:
θ

1− γ

(
1

κ
− d

)
> ρ. (27)

As far as the auxilliary conditions are concerned, the transversality condi-
tion can be now rewritten, inserting (26) into (19), as:(

θ + (1− γ)
σλ

1− φ

)(
1

κ
− d

)
< ρ. (28)

Since β′′(b̄) = 0, the second order condition for optimality simplifies radically
in the linear case. It becomes:

θ > 1− γ. (29)

For the sake of an illustration that for several plausible parameter values,
the above described asymptotic steady-state birth rate indeed exists, we pro-
ceed by means of a numerical example. The parameter values are going to
be fixed at some plausible benchmark levels. We require them to fall into
appropriate intervals, but we do not intend to make any direct connections to
the empirically observed values whatsoever. Our benchmark set of parameter
values is summarized in table 1.

γ κ φ σ λ ρ d θ
0.8 25 0.7 0.5 0.8 0.04 0.02 0.8

Table 1: The benchmark parameter values. The linear case.

Please note that since the values of η, µ0, µ1, and µ2 do not play any role
along the asymptotic BGP, we do not have to fix them.

It is straightforwardly checked that under this parametrization, conditions
(27) through (29) are satisfied and the denominator in (25) is positive. Further-
more, the asymptotic steady-state value of the endogenous birth rate is equal
to b̄ = 0.0336, which implies a steady population growth rate of n̄ = 0.0136.
The economic growth rate approaches g = 0.0182, with a fraction of time
(1 − β(b̄)) = 0.1591 allocated to productive activity and the remaining frac-
tion β(b̄) = 0.8409 to childrearing.

The asymptotic birth rate is unstable in the current case: ḃt as a function
of bt crosses the zero line at b̄ from below. This instability result implies here
that there are either (i) no transitional adjustments in bt apart from those
necessary to converge to the asymptotic BGP (so that ub/u→ 0, ubb/u→ 0),
or (ii) transitional dynamics implying gradual divergence of childrearing costs:
b→ β−1(1).
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3.6 Numerical example with a non-linear childrearing
cost function

Let us now posit a different functional form for the increasing childrearing cost
function β. We shall assume that

β(bt) = κbψt , κ > 0, ψ 6= 1. (30)

Using the definition of function β in (30), we note the following. First, the
plausibility condition b̄ ≤ β−1(1) becomes b ≤ (1/κ)1/ψ. Second, the sufficient
condition for optimality (20) is automatically satisfied if ψ > 1; if ψ < 1,
however, then (20) is satisfied only if

b̄ >

(
1

κ+ 1−γ−θ
θ

ψ
ψ−1

) 1
ψ

. (31)

The obvious next step is to fix the parameter values again. Just like in the
linear case above, we shall fix them at some plausible benchmark levels without
intending to make connections to the empirically observed values. This set of
parameter values is summarized in table 2.

γ κ ψ φ σ λ ρ d θ
0.8 40 1.2 0.7 0.5 0.8 0.08 0.02 0.8

Table 2: The benchmark parameter values. The non-linear case.

Using a numerical routine to find the root of Φ defined in (21) (in this case,
it is unique), we arrive at a result that the endogenous birth rate approaches an
asymptotic steady-state value of b̄ = 0.0296, which implies a steady population
growth rate of n̄ = 0.0096. The economic growth rate approaches g = 0.0128,
with a fraction of time (1 − β(b̄)) = 0.4140 allocated to productive activity
and remaining fraction β(b̄) = 0.5860 to childrearing.

A simple numerical check of the transversality/summability condition (19)
and the second order optimality condition (20) confirms that they both hold
along the asymptotic BGP.

The dynamics of the birth rate are depicted in figure 1.13 We see that
the asymptotic steady-state birth rate is again unstable. Since in the current
example, 1 − γ − θ < 0, the solution implying bt → β−1(1) cannot be ruled
out.

13We have used the parameter choices given in table 2 when producing this figure.
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Figure 1: Unstable asymptotic steady-state birth rate.

This numerical example ends the qualitative analysis of our simplified
“Barro–Becker–Jones” model. We proceed now to discuss one of the major
drawbacks of the methodology we used: it requires the IES in consumption to
be greater than one (γ < 1) which is an empirically doubtful assumption.

4 The IES in consumption

Several growth models with endogenous fertility discussed in literature (no-
tably in Barro and Sala-i-Martin, 1995, Chapter 9; Connolly and Peretto,
2003; Jones, 2003), as long as their long-run dynamics are concerned, rely on
the knife-edge assumption that the IES in consumption 1/γ equals exactly
unity. The γ = 1 assumption is necessary for the results obtained in those
works, but it is quite questionable as well. In our setup (as well as in Jones’,
2001), this assumption has been substituted with a much less stringent as-
sumption that γ < 1 – that is, that the IES in consumption exceeds unity.
Empirical studies suggest the opposite assumption to be much more plausible,
however. We provide a short summary of this literature below. Please note
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that since the magnitude of the true IES in consumption has been estimated
in a wide range of empirical works, we can name just a small percentage of all
contributions here.

The discussion began with the work of Hall (1988) who concluded that the
IES in consumption in the United States were very small, and possibly zero –
that is, that for sure γ > 1.

Patterson and Pesaran (1992) upgraded Hall’s methodology by assuming
that the slope coefficient of the MA process, governing per capita consumption,
is not known a priori, as Hall presumed. This modification helped them obtain
the result of the American IES being around 0,213 and significantly different
from zero.

Hall’s results have also been criticized on other grounds. It has been ar-
gued that the Euler equation he estimated was misspecified, and unsuitable
for the country-level aggregate data whatsoever. Beaudry and van Wincoop
(1996) used a panel of U.S. states instead (spanning 1953-1991, or in the other
estimation round, 1978-1991), and modified the Hall’s original Euler equa-
tion. They have achieved a large improvement in the estimation precision,
and obtained a result of IES being around 0.7-1.1 (depending on the estima-
tion method and the set of instrumental variables): clearly different from zero
and not significantly different from one.

Guvenen (2006) added another dimension to this discussion, pointing out
that in reality, as opposed to most theoretical approaches, agents are heteroge-
nous. In particular, a large fraction of households does not participate in stock
markets at all. Moreover, the IES in consumption varies significantly across
individuals, increasing with income. Consumption is much more evenly dis-
tributed than wealth. This asymmetry accounts, according to Guvenen, for a
serious underestimation of the IES in all previous studies. He concludes, that
among non-stockholders, IES is indeed around 0.1 (as e.g. Hall suggested);
but among stockholders, it is rather expected to fall into the interval (0.8,
1.2). And it is the stockholders who effectively determine the real interest
rate of the economy. This makes the variant IES=1 again possible. However,
Guvenen himself states that “a plausible range for this parameter is possibly
(0,1)”.

Favero (2005) merged the Euler equation with the (linearized) budget con-
straint of the households, and used the resultant equation to estimate the IES.
He obtained IES=0.78, with a standard deviation of 0.11 (i.e. clearly smaller
than one).

Harashima (2005) went in a different direction. He overthrew the assump-
tion that in the estimated Euler equation, the real interest rate is taken as
given (the “endowment” economy assumption). Instead, he proposed to con-
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sider a closed “production” economy, in which the IES is obtained directly
from some version of Euler equation. He concluded, that in such case, the IES
would be again very low, around 0.09.14

The above literature review is by no means complete; it is included here to
point out, that although the assumption of γ = 1 is knife-edge and disputable,
the alternative assumption of γ < 1 is also quite troublesome. Empirical
investigations bring somewhat convincing evidence, that γ > 1.

A proposed solution to this problem would be then to get out of the CRRA
framework and to disconnect the curvature of the flow utility function from
its sign. The fact is that for CRRA functions, γ > 1 is associated with high
curvature and negative sign, and γ < 1 – with low curvature and positive sign.
However, we insist that this identification should not be taken too far: the
research focus varies from study to study. In the empirical works, the main
focus is on curvature; in our analysis, necessity for γ < 1 stems from the sign
requirement imposed on the utility function rather than from its curvature.

5 Conclusion

In this paper, we have studied the dynamic behavior of R&D-based semi-
endogenous growth models with endogenous fertility. The number of knife-
edge conditions required for sustained growth in this model is just one, and
a naturally interpretable one: we just assume that people reproduce in pro-
portion to their number, and thus that the population equation is linear. Per
capita GDP growth is obtained here, however, thanks to R&D – in particular,
thanks to constantly increasing numbers of researchers.

We have argued that in the involved literature, endogenous fertility is usu-
ally treated differently than exogenous fertility is. This is probably because
the assumption of population size entering the utility functional multiplica-
tively brings about cumbersome complications which researchers would rather
prefer to omit. We have provided a detailed treatment of the case at hand and
thus filled a gap in the literature.

We have analyzed a bare-bones “Barro–Becker–Jones” model that fea-
tures infinite-horizon (“dynastic”) optimization, fertility choice and R&D-
based semi-endogenous growth. We have shown that it has the capacity to
produce an asymptotic steady-state birth rate, and thus an asymptotic BGP.
The long-run growth rate of the economy is fully endogenous and the ultimate

14Harashima just calibrated his theoretical growth model, and did not use any econometric
methods.
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factor driving growth is fertility.15

The paper ends with a brief review of empirical literature quantifying the
IES in consumption that is required to exceed unity in the class of R&D-
based growth models with endogenous fertility and CRRA utility. Since the
empirical evidence favors the opposite case of IES<1, we arrive at a puzzle
that calls for a resolution.

A Mathematical appendix

Proof of Proposition 1. The second derivatives of the Hamiltonian (15),
after substituting the appropriate expression for Λt, read:

∂2H
∂N2

t

= θ(θ − 1)N θ−2
t ue−ρt, (32)

∂2H
∂Nt∂bt

= (θ − 1)N θ−1
t [ub − uyA

σ
t β

′(bt)]e
−ρt, (33)

∂2H
∂b2t

= N θ
t [ubb − uyA

σ
t β

′′(bt) + uyyA
2σ
t (β′(bt))

2]e−ρt. (34)

The Hessian is negative definite if ∂2H
∂N2

t
< 0 (which is the case since θ ∈ (0, 1)

and u > 0) and its determinant det(D2H) is positive. The latter statement
can be rewritten as:

det(D2H) = N2θ−2
t e−2ρt(θ − 1)× (35)(

θu(ubb − uyA
σ
t β

′′(bt) + uyyA
2σ
t (β′(bt))2)− (θ − 1)(ub − uyA

σ
t β

′(bt))2
)

> 0.

Thus, the determinant is positive if the expression in big parentheses is neg-
ative. Taking the asymptotic BGP approximation: limt→∞

uyAσt
u

= 1−γ
(1−β(b̄))

;

limt→∞
uyyA2σ

t

u
= − (1−γ)γ

(1−β(b̄))2
and rearranging transforms this requirement to a

condition that
β′′(b̄)(1− β(b̄))

(β′(b̄))2
>

1− γ − θ

θ
. � (36)

15Of course, we have completely set aside the issue of policy effectiveness in our model.
Without developing these arguments any further, we indicate here that by saying that
growth is “fully endogenous,” we mean that there is a possibility for public interventions
(and more systematic public policies) to change the long-run growth rate of the economy.
By saying that fertility is the “ultimate factor driving growth,” we mean that the only way a
policymaker can influence the long-run economic growth rate, is by influencing the long-run
fertility rate.
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Proof of Proposition 2. Dividing (18) sidewise by u > 0 (which makes
both sides of the equation asymptotically stationary), equating ḃt to zero and
taking the limits limt→∞ ub/u = limt→∞ ubb/u = 0 yields:

θ − uyA
σ
t β

′(b̄)

u

(
ρ−

(
θ +

σλ

1− φ

)
(b̄− d)

)
+

+
uyyA

2σ
t (1− β(b̄))β′(b̄)

u

σλ

1− φ
(b̄− d) = 0. (37)

Taking further limits: limt→∞
uyAσt
u

= 1−γ
(1−β(b̄))

; limt→∞
uyyA2σ

t

u
= − (1−γ)γ

(1−β(b̄))2
,

makes us rewrite the steady-state equation (37) as an equation in a single
variable b̄. It reads:

θ

1− γ

(
1− β(b̄)

β′(b̄)

)
= ρ−

(
θ + (1− γ)

σλ

1− φ

)
(b̄− d). � (38)

Proof of Proposition 3. Note that both sides of (21) are continuous for
b̄ ∈ [0, β−1(1)]. Denote:

Φ(b̄) =
θ

1− γ

(
1− β(b̄)

β′(b̄)

)
− ρ+

(
θ + (1− γ)

σλ

1− φ

)
(b̄− d). (39)

At the steady state, Φ(b̄) = 0. The boundary values of Φ are as follows:

Φ(0) =
θ

1− γ

1

β′(0)
− ρ−

(
θ + (1− γ)

σλ

1− φ

)
d, (40)

Φ(β−1(1)) = −ρ+

(
θ + (1− γ)

σλ

1− φ

)
(β−1(1)− d). (41)

Thus, existence of at least one root follows from the intermediate value theorem
if (i) Φ(0) > 0 and Φ(β−1(1)) < 0 or if (ii) Φ(0) < 0 and Φ(β−1(1)) > 0. In
case (i), these two conditions are equivalent to (22) and (23), respectively. In
case (ii), one has to reverse the signs of both inequalities. �
Proof of Proposition 4. To assure local asymptotic stability in the single-
dimensional setup, we have to show that ḃt as a function of bt crosses the zero
line from above.

The left-hand side of (18), Ψ, divided by u > 0, reads:

Ψ̄(b̄) = −γ(β
′(b̄))2 + (1− β(b̄))β′′(b̄)

(1− β(b̄))2
< 0. (42)

24



Negativity of Ψ̄ at the steady state, equivalent to (1−β(b̄))β′′(b̄)
(β′(b̄))2

> −γ, follows

from the second order condition:

(1− β(b̄))β′′(b̄)

(β′(b̄))2
>

1− γ − θ

θ
> −γ, (43)

because the last inequality is equivalent to the trivial (1− θ)(1− γ) > 0.
It follows that ḃt crosses the zero line from above if the right-hand side of

(18), Φ, divided by u > 0, crosses the zero line from below, as in (24).
One final remark is due here: if (22) and (23) hold, we know that Φ crosses

the zero line from above at least once (it is surely true for the first and last
time it crosses zero), but it doesn’t have to cross the zero line from below. If
the signs in (22) and (23) are reversed, then Φ crosses the zero line from below
at least once so there exists at least one asympotically stable steady-state birth
rate.

In the case the steady state is unstable, we obtain the following. Unless
the knife-edge value of bt implying ḃt = 0 is chosen, two possibilities may
emerge. First, if b → 0 implying ub → ∞, then Λ < 0 and Λ̇ < 0 (note that
Λ̇/Λ + Ṅ/N = θu

ub−uyAσt β′(bt)
> 0 as ub →∞). In consequence, limt→∞ ΛN < 0

so the transversality condition is violated. Second, if b → β−1(1) implying
y → 0, uyA

σ
t →∞, then

lim
b→β−1(1)

γβ′(b)

1− β(b)
ḃ = ρ−

(
θ + (1− γ)

σλ

1− φ

)
(β−1(1)− d), (44)

and thus

Λ̇

Λ
+
Ṅ

N
=

(
θ + (1− γ)

σλ

1− φ

)
(β−1(1)− d)− ρ+

γβ′(b)

1− β(b)
→ 0. (45)

Since we also have that Λ̇/Λ + Ṅ/N > 0, the transversality condition holds.
The second order condition can be analyzed as follows: dividing the deter-
minant of D2H as defined in (35) by uyA

σ
t and taking the limit b → β−1(1)

simplifies the formula inside the parentheses in (35) as β′(β−1(1))2
(

1−θ−γ
1−γ

)
.

This means that the second order condition fails if 1− θ − γ is positive.
Otherwise, the solution implying b → β−1(1) cannot be ruled out of the

analysis. �
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