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Chapter 1

Metric spaces

1.1 Metric spaces

In this chapter, we will extend the result presented in Chapter 2 from Euclidean
spaces to metric spaces. A particular case of metric spaces are normed linear
spaces. So, all the results apply to normed linear spaces. In the next chapter,
we will provide some additional results concerning specifically the normed linear
spaces.

Keep in mind that, even if we can extend many definitions and results from
Euclidean spaces to normed linear spaces or metric spaces, there are a lot of
traps since key topological properties of Euclidean spaces are no more true. So
be very careful in applying some well-known results for finite dimensional spaces
to infinite dimensional spaces. In the following, we put in red some warnings to
help the reader to detect the most common traps.

For many applications, we are considering data which are not structured as a
linear spaces on which addition and multiplication by a scalar are defined. For
example, we can optimise on a graph, on a discrete set of persons, of words, of
integers, on the Grassmannian set of all linear subspaces of a given dimension,
of the set of closed sets of a compact sets, on the sphere, ... So, we will define
the notion of distance between two elements of a sets and extending the notion
of convergence, continuity, completeness presented in Euclidean spaces.

Definition 1 Let X be a set. A distance d on X is a function from X ×X to R
satisfying the following properties:

∀(x, y) ∈ X ×X, d(x, y) ≥ 0;

∀(x, y) ∈ X ×X, d(x, y) = 0 if and only if x = y;

∀(x, y, z)) ∈ X ×X ×X, d(x, z) ≤ d(x, y) + d(y, z).

Remark 1 A normed linear space (E,N) is a metric space with the distance
d(x, y) = N(x − y). If X is a set, the function d from X × X to R defined by
d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y is a distance on X. So we can
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define a distance on any set. This particular distance is the atomic distance. If
G is a connected graph, we can define a distance on the set of nodes of the graph
by considering the shortest path between two nodes and defining the distance
as the number of edges crossed by the shortest path. If X is the set of one
dimensional linear subspaces (lines) of a norm vector spaces, we can define the
distance between to lines L and L′ as the minimum of ‖u − u′‖ and ‖u + u′‖,
where u ∈ L, ‖u‖ = 1 and u′ ∈ L, ‖u′‖ = 1.

Remark 2 For a given setX, which is not a singleton, there is an infinite number
of distance on X. So, it is important to recall the one that we consider if the
context is not obvious.

From the triangular inequality, we deduces the following inequality which is
useful in many proofs.

Proposition 1 Let (X, d) be a metric space. Then, for all (x, y, z) ∈ X×X×X,

|d(x, z)− d(y, z)| ≤ d(x, y)

Remark 3 Let (X, d) be a metric space. Then if Y is a subset of X, the function
δ, which is the restriction of d to Y × Y is a distance on Y and (Y, δ) is a metric
space.

Exercise 1 Let ϕ be a concave, continuous, strictly increasing function from R+

to R+ satisfying ϕ(0) = 0.
1) Show that for all (t, t′) ∈ R+ × R+, such that 0 < t < t′,

ϕ(t′)

t′
≥ ϕ(t′)− ϕ(t)

t′ − t
≥ ϕ(t+ t′)− ϕ(t)

t′

and deduce that ϕ(t+ t′) ≤ ϕ(t) + ϕ(t′).
2) Let (X, d) be a metric space. Show that ϕ ◦ d is a distance on X.
3) Let ϕ(t) = t

1+t
defined on R+. Show that ϕ satisfies the assumptions of the

exercise.
4) Let (X, d) be a metric space. Show that δ from X × X to R+ defined by
δ(x, y) = d(x,y)

1+d(x,y)
is a distance on X.

Let ((X i, di)pi=1 be p metric spaces. Let X be the product of this spaces
X =

∏p
i=1 X

i. Then one can define a distance d on X as follows: for all (x =
(xi), y = (yi)) ∈ X ×X,

d(x, y) =

p∑
i=1

di(xi, yi)

We can define many other distances on X as in the following exercise. Later,
we will show that the topological properties of X are the same, whatever is the
chosen distance according to the procedure below.
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Exercise 2 Let ((X i, di)pi=1 be p metric spaces. Let N be a norm on Rp such
that for all (ξ, ζ) ∈ Rp

+ × Rp
+, if ξ ≥ ζ, that is ξi ≥ ζi for all i = 1, . . . , p, then

N(ξ) ≥ N(ζ). Show that the function δN defined by: for all (x = (xi), y = (yi)) ∈
X ×X,

δ(x, y) = N
(
(di(xi, yi))pi=1

)
is a distance on X.

Metric on a countable product of bounded metric spaces
Let ((X i, di)i∈N be a countable family of metric spaces. Let X be the product

of this spaces X =
∏

i∈NX
i. We assume that the metric spaces are bounded

in the sense that for all i, for all (xi, yi) ∈ X i × X i, there exists M i ∈ R such
that di(xi, yi) ≤ M i. Then one can define a distance d on X as follows: for all
(x = (xi)i∈N, y = (yi)i∈N) ∈ X ×X,

d(x, y) =
∞∑
i=0

1

2iM i
di(xi, yi)

The definitions and results presented below are exactly the same as the ones
presented for Euclidean spaces where the distance replaces the norm. The proofs
are very similar.

Definition 2 Let (X, d) be a metric space. Let r be a non-negative real number
and x̄ an element of X.

a) the closed ball of center x̄ and radius r is the set

B̄(x̄, r) = {x ∈ X | d(x, x̄) ≤ r}

b) the open ball of center x̄ and radius r is the set

B(x̄, r) = {x ∈ X | d(x, x̄) < r}

Remark 4 Contrary to a normed vector space, the closed ball of center x̄ and
radius r may not be the closure of the open ball of center x̄ and radius r and,
conversely the open ball of center x̄ and radius r may not be the interior of the
closed ball of center x̄ and radius r. Indeed, take X with more than one element
and d be the atomic distance, which is d(x, y) = 1 if x 6= y and 0 otherwise.
Then, the closure of the open ball B(x̄, 1) is itself, that is the singleton {x̄} and
the interior of the closed ball B̄(x̄, 1) is itself, that is the set X, whereas the open
ball B(x̄, 1) is the singleton {x̄} 6= X.

1.2 Sequences

Definition 3 Let (X, d) be a metric space. A sequence is a mapping from N to
X.
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A sequence is often denoted (uν) where uν is the image of ν ∈ N.

Definition 4 Let (X, d) be a metric space. A sequence (uν) is bounded if there
exists x̄ ∈ X and r > 0 such that for all ν ∈ N, uν ∈ B̄(x̄, r).

A sequence (uν) converges to a limit ` ∈ X if for all r > 0, there exists an
integer νr ∈ N such that for all ν ≥ νr, uν ∈ B(`, r) or equivalently d(uν , `) < r.

If a sequence converges to a limit, we say that it is convergent and the limit is
denoted by limν→∞ uν .

Proposition 2 (i) If a sequence is convergent, it has unique limit.
(ii) The sequence (uν) converges to the limit ` if and only if the real sequence

(d(uν , `)) converges to 0.
(iii) If the sequence (uν) is convergent, then it is bounded.

Proposition 3 Let ((X i, di)pi=1 be p metric spaces and d the distance defined
above on X =

∏p
i=1X

i. Let (uν = (uiν)) be a sequence of X. Then the sequences
(uν) converges for the distance d if and only if the p sequences (uiν) converges for
the distance di.

Proposition 4 Let ((X i, di)i∈N be a countable family of bounded metric spaces.
Let X be the product of this spaces and d be the distance defined above on X, that
is: for all (x = (xi)i∈N, y = (yi)i∈N) ∈ X ×X,

d(x, y) =
∞∑
i=0

1

2iM i
di(xi, yi)

A sequence (uν = (uiν)i∈N is convergent in X for the distance d if and only if for
all i ∈ N, the sequence (uiν) is convergent in X i for the distance di.

Proof. Let (uν = (uiν)i∈N) be a convergent sequence of X and ū = (ūi)i∈N
its limit. Then for all i, di(uiν , ūi) ≤ 2iM id(uν , ūν). So, since the real sequence
(d(uν , ū)) converges to 0, the real sequence (di(uiν , ū

i)) converges to 0, that is the
sequence (uiν) converges to ūi in X i for the distance di.

Conversely, assume that each sequence (uiν) is convergent inX i for the distance
di and let us denote ūi its limit. let ū = (ūi)i∈N ∈ X. We show that the sequence
(uν) converges to ū.

Let r > 0. Since the series ( 1
2i

) is absolutely convergent in R, there exists
k̄ ∈ N such that

∑∞
i=k̄

1
2i
< r/2. For all i = 0, . . . , k̄ − 1, the sequence (di(uiν , ū

i))

converges to 0. So the sequence (
∑k̄−1

i=0
1

2iM id
i(uiν , ū

i)) converges to 0 in R. So,
there exists ν̄ ∈ N, such that for all ν ≥ ν̄,

∑k̄−1
i=0

1
2iM id

i(uiν , ū
i) < r/2. Gathering

these inequalities, we get for all ν ≥ ν̄,

d(uν , ū) =
∞∑
i=0

1

2iM i
di(uiν , ū

i) ≤
k̄−1∑
i=0

1

2iM i
di(uiν , ū

i) +
∞∑
i=k̄

1

2i
< r
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Since the above inequality if true for all r > 0 for a suitable choice of ν̄, one
concludes that the sequence (d(uν , ū)) converges to 0, which means that the
sequence (uν) converges to ū in X. �

Exercise 3 Let X be a set and d be the distance defined by d(x, y) = 0 if x = y
and d(x, y) = 1 if x 6= y. Show that a sequence is convergent for this distance if
and only if it is constant after a given rank, that is, for a sequence (uν), there
exists ν ∈ N such that for all ν ≥ ν, uν = uν .

Cauchy Criterion: We can extend the Cauchy Criterion to a metric space:

Definition 5 A sequence (uν) of a metric space (X, d) satisfies the Cauchy Cri-
terion if :

∀r > 0,∃νr ∈ N, ∀ν, µ ≥ νr, d(uνuµ) ≤ r

Proposition 5 Let ((X i, di)pi=1 be p metric spaces and d the distance defined
above on X =

∏p
i=1X

i. Let (uν = (uiν)) be a sequence of X. Then the sequences
(uν) satisfies the Cauchy Criterion for the distance d if and only if the p sequences
(uiν) satisfy the Cauchy Criterion for the distance di.

Proposition 6 A sequence (uν) of a metric space (X, d) satisfying the Cauchy
Criterion is bounded.

Proposition 7 If a sequence (uν) of a metric space (X, d) is convergent, it sat-
isfies the Cauchy criterion.

Remark 5 A fundamental difference between a general metric space and an
Euclidean space is the fact that a sequence satisfying the Cauchy criterion may
not converge.

For example, let us consider the set `0 of real sequences with a finite number of
non zero terms. We define a norm on this linear space by N1((uν)) =

∑
ν∈N

1
2ν
|uν |

and the associated distance. For all i ∈ N, let ui be the real sequence such that
the i+1 first terms are equal to 1 and the remaining ones are equal to 0. Clearly,
for all i < j, N1(uj − ui) =

∑j
ν=i+1

1
2ν
≤ 1

2i
, so the sequence (ui)i∈N satisfies

the Cauchy criterion. But, this sequence (ui)i∈N of `0 does not have a limit in
`0. Indeed, if v ∈ `0, then there exists an integer k such that vν = 0 for all
ν ≥ k. So, for all i ≥ k, N1(ui − v) ≥

∑j
ν∈k

1
2ν
≥ 1

2k
> 0. So, the real sequence

(N1(ui − v)) does not converges to 0 and consequently the sequence (ui)i∈N of `0

does not converge to v in `0.

Definition 6 A metric space such that all sequences satisfying the Cauchy cri-
terion is convergent is called a complete metric space.

Proposition 8 Let (X, d) be a complete metric space and F be a closed subset
of X. Then F with the distance dF , which is the restriction of d to F × F , is a
complete metric space.
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Exercise 4 Let X be a set and d be the distance defined by d(x, y) = 0 if x = y
and d(x, y) = 1 if x 6= y. Show that (X, d) is a complete metric space.

We now consider a space X and a complete metric space (Y, d). We denote
by B(X, Y ) the set of bounded mappings from X to Y , that is the mapping f
from X to Y such that there exists an element ȳ ∈ Y and r > 0 such that for all
x ∈ X, f(x) ∈ B̄(ȳ, r). Then we define the uniform distance d∞ on B(X, Y ) as
follows:

d∞(f, g) = sup{d(f(x), g(x)) | x ∈ X}

We have the important following result, which combined with the previous propo-
sition, is a suitable way to prove the completeness of many metric spaces.

Proposition 9 The space (B(X, Y ), d∞) is complete.

Proof. Let (fν) be a sequence of B(X, Y ) satisfying the Cauchy criterion.
Then, one easily shows that for all x ∈ X, the sequence (fν(x)) of Y satisfies the
Cauchy criterion. As Y is complete, the sequence (fν(x)) is convergent in Y and
we denote by f̄(x) its limit.

Since (fν) satisfies the Cauchy criterion, it is bounded. So, there exists ḡ ∈
B(X, Y ) and r̄ > 0 such that for all ν ∈ N, fν ∈ B̄(ḡ, r̄). Then for all x ∈ X and
for all ν ∈ N, fν(x) ∈ B̄(ḡ(x), r̄) and the limit f̄(x) belongs also to B̄(ḡ(x), r̄).
Since ḡ is bounded, there exists ȳ0 ∈ Y and r0 > 0 such that for all x ∈ X,
ḡ(x) ∈ B̄(ȳ0, r0). Consequently, f̄(x) ∈ B̄(ȳ0, r0 + r̄), which shows that f̄ is
bounded.

To complete the proof, we now show that the real sequence (d∞(fν , f̄)) con-
verges to 0. Let r > 0. Since (fν) satisfies the Cauchy criterion, there exists ν̄,
such that for ν, µ satisfying ν̄ ≤ ν < µ, d∞(fν , fµ) ≤ r. This implies that for all
x ∈ X, d(fν(x), fµ(x)) ≤ r. Keeping ν constant and taken the limit for µ at ∞,
we get that d(fν(x), f̄(x)) ≤ r. Since, this is true for all x ∈ X, d∞(fν , f̄) ≤ r.
We remark that this inequality holds true for all ν ≥ ν̄. Hence, we have proved
that limν→∞ d∞(fν , f̄) = 0. �

Exercise 5 Let `∞ be the set of bounded real sequences. We define the norm on
`∞ as follows: ‖(uν)‖∞ = sup{|uν | | ν ∈ N}. Show that (`∞, ‖ · ‖∞) is a complete
metric space.

Exercise 6 Let us now consider the following norm N on `∞:

N((uν)) =
∞∑
ν=0

1

2ν
|uν |

The purpose of the exercise is to show that `∞ is not complete for the norm N .
Let us consider the sequence (ui = (uiν)ν∈N)i∈N of `∞ defined by: for all i ∈ N,

uiν = ν if ν ≤ i, i otherwise
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1) Show that this sequence satisfies the Cauchy criterion for the norm N .
2) Show that for all v ∈ `∞, the real sequence N(ui − v) is bounded below by a
non negative number for all i large enough and conclude that the sequence (ui)
is not convergent for the norm N .

Subsequences
From a given sequence (uν), we can build many others by picking only some

terms of it.

Definition 7 Let (uν) be a sequence of a metric space (X, d). A subsequence of
(uν) is a sequence (vν) defined by a strictly increasing mapping ϕ from N to itself
and for all ν ∈ N, vν = uϕ(ν).

Proposition 10 If (uν) is a converging sequence of a metric space (X, d), then
all subsequences of (uν) are convergent and they are converging to the same limit.

Remark 6 A fundamental difference between a general metric space and an
Euclidean space is the fact that the bounded sequence may not have a convergent
subsequence. So, the closed ball may not be compact.

For example, let us consider the set `0 of real sequences with a finite number of
non zero terms. We define a norm on this linear space by ‖(uν)‖∞ = max{|uν | |
ν ∈ N} and the associated distance. For all i ∈ N, let vi be the real sequence
such that all terms are equal to 0 but the ith one which is equal to 1. Clearly
‖(vi)‖∞ = 1, so the sequence (vi)i∈N in `0 is a bounded sequence. But we remark
that the distance between two different elements of this sequence ‖(vi − vj)‖∞ is
also equal to 1. So, no subsequence of (vi)i∈N can satisfy the Cauchy criterion.
Indeed, if ϕ is a strictly increasing function from N to N, then for all (i, j) ∈ N×N,
i 6= j, ‖vϕ(i) − vϕ(j)‖ = 1.

Definition 8 Let (uν) be a sequence of a metric space (X, d). x ∈ X is a cluster
point of (uν) if for all r > 0, the set {ν ∈ N | uν ∈ B(c, r)} is infinite.

Proposition 11 Let (uν) be a sequence of a metric space (X, d). x ∈ X is a
cluster point of (uν) if and only if there exists a convergent subsequence (vν) of
(uν) such that x is the limit of (vν).

1.3 Basic topology of a metric space

Definition 9 a) A subset F of a metric space (X, d) is closed if for all convergent
sequences (uν) such that uν ∈ F for all ν ∈ N, then the limit of (uν) belongs
to F .

b) A subset U of a metric space (X, d) is open if for all convergent sequences
(uν) such that the limit belongs to U , then there exists ν0 ∈ N such that
uν ∈ U for all ν ≥ ν0.
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Remark 7 A closed ball is closed. An open ball is open. Let ((X i, di)pi=1 be
p metric spaces and d the distance defined above on X =

∏p
i=1X

i. If for all
i = 1, . . . , p, F i is a closed subset of X i, then

∏p
i=1 F

i is a closed subset of X. If
for all i = 1, . . . , p, U i is an open subset of X i, then

∏p
i=1 U

i is an open subset of
X.

Proposition 12 a) A subset F of a metric space (X, d) is closed if and only if
F c, its complement in X, is open.

b) A subset U of a metric space (X, d) is open if and only if U c, its complement
in X, is closed.

c) A subset U of a metric space (X, d) is open if and only if for all x ∈ U , there
exists r > 0 such that B(x, r) ⊂ U .

Proposition 13 a) A finite union of closed sets is closed.

b) An intersection of finitely many or infinitely many closed sets is closed.

c) A finite intersection of open sets is open.

d) A union of finitely many or infinitely many open sets is open.

Definition 10 Let A be a subset of a metric space (X, d).

a) The closure of A is the set of vectors x ∈ X such that there exists a sequence
(uν) converging to x and satisfying uν ∈ A for all ν ∈ N. The closure of A
is denoted clA or A.

b)The interior of A is the set a ∈ A for which there exists r > 0 such that

B(a, r) ⊂ A. The interior of A is denoted intA or
◦
A.

Proposition 14 Let A be a subset of a metric space (X, d).

a) A ⊂ A;

b) A is a closed subset of X;

c) A is the smallest closed subset of X containing A, that is, if F is closed and
A ⊂ F , then A ⊂ F ;

d) A is the intersection of all closed subsets of X containing A.

Proposition 15 Let A be a subset of Rn.

a) intA ⊂ A;

b) intA is an open subset of X;

c) intA is the largest open subset of X included in A, that is, if U is open and
U ⊂ A, then U ⊂ intA;
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d) intA is the union of all open subsets of X included in A.

Definition 11 Let A be a subset of a metric space (X, d). The boundary of A
denoted bdA is the set A ∩ Ac, that is the intersection of the closure of A with
the closure of the complement of A in X.

Remark 8 An element b belongs to the boundary of A if and only if it is a limit
of a sequence of elements of A and a limit of a sequence of elements not in A.

Proposition 16 Let A be a subset of a metric space (X, d).

a) The boundary of A is a closed set.

b) A is closed if and only if the boundary of A is included in A.

c) A is open if and only if the intersection of the boundary of A and A is empty,
bdA ∩ A = ∅.

1.3.1 Compact metric space

Definition 12 A subset K of a metric space (X, d) is compact if all sequences
of K have a converging subsequence in K.

Proposition 17 Let K be a subset of a metric space (X, d). The set K is com-
pact if one of the following equivalent conditions is satisfied:

If (uν) is a sequence such that uν ∈ K for all ν, then it has a converging
subsequence with a limit in K.

If (Ui)i∈I is a family of open subsets of X such that K ⊂ ∪i∈IUi, there exists a
finite subset J ⊂ I such that K ⊂ ∪i∈JUi.

If (Fi)i∈I is a family of closed subsets of X such that K ∩ (∩i∈IFi) = ∅, there
exists a finite subset J ⊂ I such that K ∩ (∩i∈JFi) = ∅.

Proposition 18 Let K be a compact subset of (X, d). Then K is bounded, closed
and complete.

Remark 9 A fundamental difference between a general metric space and an
Euclidean space is the fact that a bounded closed subset of a metric space may
not be compact.

For an example, it suffices to take the closed unit ball in `0 for the norm
‖ · ‖∞. Indeed, we provide above an example of a sequence in this set having no
convergent subsequence: (ui) is defined by uiν = 0 if ν 6= i and uii = 1. The closed
unit ball is clearly closed and bounded.

Proposition 19 Let K be a compact subset of X and F be a closed subset of X.
Then K ∩ F is a compact subset of X.
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The characterisation of compact subsets in infinite dimensional spaces is a key
issue with a lot of results which are far beyond the scope of this course. Some
results are considering the norm compact sets, some others are considering weaker
topologies to get more compact sets. We provide only one useful result about the
countable product of compact spaces.

Countable product of compact spaces
Let (Ai, di)i∈N be a countable family of compact metric spaces. Since a compact

metric space is bounded, for each i there exists M i > 0 such that for all (ai, bi) ∈
Ai×Ai, di(ai, bi) ≤M i. Let A =

∏
i∈NA

i. We define as above a distance d on A
as follows: for all (a, a′) ∈ A× A,

d(a, a′) =
∞∑
i=0

1

2iM i
di(ai, a′i)

Theorem 1 A is compact for the distance d.

Proof. Let uν = (uiν) ∈ A, be a sequence of A, that is, for all i ∈ N, uiν ∈ Ai.
We prove that this sequence has a converging subsequence.

For i = 0, the sequence (u0
ν) has a converging subsequence (u0

ϕ0(ν)). We de-
note its limit by ū0. For ν = 1, the bounded sequence (u1

ϕ0(ν)) has a converging

subsequence
(
u1
ϕ0◦ϕ1(ν)

)
. We denote its limit by ū1. Iterating the same pro-

cess, for i, the bounded sequence
(
uiϕ0◦ϕ1◦...◦ϕi−1(ν)

)
has a converging subsequence(

uiϕ0◦ϕ1...◦ϕi−1◦ϕi(ν)

)
. We denote its limit by ūi.

We now define ψ(k) = ϕ0◦ϕ1 . . .◦ϕk(k). We check that ψ is a strictly increasing
function from N to N. Indeed, ψ(k+1) = ϕ0 ◦ϕ1 . . .◦ϕk ◦ϕk+1(k+1). Since ϕk+1

is a strictly increasing function from N to N, then ϕk+1(k+1) ≥ k+1. So, since ϕk
is a strictly increasing function from N to N, ϕk(ϕk+1(k+1)) ≥ ϕk(k+1) > ϕk(k).
Hence

ψ(k + 1) = ϕ0 ◦ ϕ1 . . . ◦ ϕk ◦ ϕk+1(k + 1) > ϕ0 ◦ ϕ1 . . . ◦ ϕk(k) = ψ(k)

Let us take a given i ∈ N. We prove that the sequence
(
uiψ(ν)

)
converges to

ūi. Indeed, for all ν > i, then

ψ(ν) = ϕ0 ◦ . . . ◦ ϕi[ϕi+1 ◦ . . . ◦ ϕν(ν)]

With the same argument as above, the mapping k → ϕi+1◦. . .◦ϕk(k) is increasing
for k > i. So, the sequence (uiψ(ν)) is, after a finite number of steps, a subsequence
of the sequence (uiϕ0◦ϕ1...◦ϕi−1◦ϕi(ν)), which converges to ūi. So, (uiψ(ν)) is a con-
verging subsequence and its limit is ūi. From Proposition 4, one concludes that
the sequence (uψ(ν)), which is a subsequence of (uν), converges in A. �

In a complete metric space X, we have a simpler criterion to check that a
closed subset A is compact.
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Proposition 20 Let (X, d) be a complete metric space and A be a closed subset
of X. Then A is compact if and only if for all r > 0, there exists a finite family
(x1, x1, . . . , xk) of A such that A ⊂ ∪kj=1B(xj, r).

Proof. If A is compact, it satisfies the property of finite covering by balls of
radius r since (B(a, r))a∈A is an open covering of A from which one can extract
a finite covering.

Conversely, we show that if (aν) is a sequence of A, it has a convergent subse-
quence. Since A is closed in X complete, A is complete, and then, it suffices to
show that the subsequence satisfies the Cauchy Criterion. From the finite cov-
ering property, for all i ∈ N, there exists ki elements of A, (xi,1, . . . , xi,ki) such
that E ⊂ ∪kik=1B(xi,k, 2−i). So, there exists k0 ∈ {1, . . . , k0} such that an infinite
number of terms of the sequence (aν) belongs to B(x0,k0

, 1). Hence, there exists
ϕ0 strictly increasing from N to itself such that for all ν, aϕ0(ν) ∈ B(x0,k0

, 1).
We repeat the same argument with the sequence (aϕ0(ν)), from which one

deduces that there exists k1 ∈ {1, . . . , k1} and ϕ1 strictly increasing from N to
itself such that for all ν, aϕ0◦ϕ1(ν) ∈ B(x1,k1

, 2−1). Iterating this process, for all
i ∈ N, there exists ki ∈ {1, . . . , ki} and ϕi strictly increasing from N to itself such
that for all ν, aϕ0◦ϕ1◦...ϕi(ν) ∈ B(xi,k

i
, 2−i).

Let ψ from N to itself defined by ψ(i) = ϕ0 ◦ ϕ1 ◦ . . . ϕi(i). As in the proof
of the previous theorem, we show that ψ is strictly increasing. We conclude the
proof by showing that the sequence (aψ(ν)) satisfies the Cauchy criterion. Let i
and j two integers such that i < j. Then

ψ(j) = ϕ0 ◦ . . . ◦ ϕi[ϕi+1 ◦ . . . ◦ ϕj(j)]

so aψ(j) belongs to B(xi,k
i
, 2−i) and aψ(i) also. Hence, d(aψ(j), aψ(i) ≤ 2i−1. This

implies that the sequence
(
aψ(ν)

)
satisfies the Cauchy criterion since for all ν, i,

j in N, if ν ≤ i and ν ≤ j, then d(aψ(j), aψ(i) ≤ 2ν−1. �

Equivalences on distances
To end this section, we provide two definitions of equivalence between distances

on the same setX. The basic idea is to check if two different distances leads to the
same topological structure, convergent sequences, open or closed sets, compact
subsets, ...

Definition 13 Let X be a set, d and δ, two distances on X.

1) d and δ are equivalent if there exists two non negative real numbers a and b
such that for all (x, y) ∈ X ×X,

ad(x, y) ≤ δ(x, y) ≤ bd(x, y)

2) d and δ are topologically equivalent if all open sets U for the distance d is
also open for the distance δ and conversely.

13



Remark 10 One easily shows that if two distances are equivalent, they are topo-
logically equivalent. The converse is not true. On N, we can define the distance
between two integers as d(p, q) = |p − q| and the distance δ by δ(p, q) = 0 if
p = q and 1 otherwise. The two distances are not equivalent since the ratio
d(p,q)
δ(p,q)

= d(p, q) for p 6= q is not upper bounded on N × N. Nevertheless the two
distances are topologically equivalent since all subsets of N are open for both
distances.

Exercise 7 On R, show that the distance d defined by d(x, y) = |x − y| and δ
defined by δ(x, y) = d(x,y)

1+d(x,y)
are not equivalent but topologically equivalent.

Exercise 8 Let X be a set and d and δ two topologically equivalent distances
on X. Show that a sequence (uν) of X is convergent for d if and only if it is
convergent for δ.

Since two equivalent distances leads to the same topological properties, it is
convenient for some problems to choose the most suitable distance among those
which are equivalent.

Remark 11 Be careful of the fact that topological concepts are relative to the
space we consider. If (X, d) is a metric space and Y a subset of X, then Y may
not have the same properties as a subset of X of if we consider the metric space
(Y, dF ) where dF is the restriction of d to Y ×Y . Indeed, in R, the segment [0, 1[
is neither open nor closed. But if we consider the metric space Y = [0, 1[ with
the distance defined by the absolute value restricted to Y , then Y is open and
closed!

1.4 Mappings

In this section, we consider two metric spaces (X, d) and (Y, δ) and we extend
the definition of continuity and the properties of the continuous mappings to the
mapping from U , a subset of X to Y .

Definition 14 Let f be a mapping from U ⊂ X to Y .

The image of U by f is the set {y ∈ Y | ∃x ∈ U, y = f(x)}.

f is bounded if there exists r > 0 and ȳ ∈ Y such that the image of f is included
in B̄Y (ȳ, r).

Limit of a mapping

Definition 15 Let f be a mapping fromX to Y . Let x0 an element of the closure
of U . The function f has a limit y0 at x0 if for all sequences (xν) satisfying xν ∈ U
for all ν and limν→∞ xν = x0, then the sequence (f(xν)) is convergent in Y and
its limit is y0.

14



Proposition 21 Let f be a mapping from U ⊂ X to Y . Let x0 be an element of
the closure of U .

The function f has at most one limit at x0.

The function f has a limit y0 at x0 if for all r > 0, there exists ρ > 0 such that
for all x ∈ BX(x0, ρ) ∩ U , f(x) ∈ BY (y0, r).

Cauchy criterion: if the set Y is complete, the function f has a limit at x0 if
and only if for all r > 0, there exists ρ > 0 such that for all pair (x, x′) in
BX(x0, ρ) ∩ U , δ(f(x), f(x′)) < r.

Limits and closed sets

Proposition 22 Let f be a mapping from U ⊂ X to Y . Let x0 ∈ U . We assume
that f has a limit y0 at x0. If there exists r > 0 and F a closed subset of Y such
that for all x ∈ U ∩BX(x0, r), f(x) ∈ F , then y0 ∈ F .

Limit of the composition of two mappings
We consider a third metric space Z.

Proposition 23 Let f be a mapping on U ⊂ X to Y and x0 ∈ U . Let g be
a mapping on V ⊂ Y to Z. We assume that for all x ∈ U , f(x) ∈ V . Let
y0 = limx→x0 f(x). One easily checks that y0 ∈ V . Let z0 = limy→y0 g(y). Then
the limit of g ◦ f at x0 exists and is equal to z0.

Continuous mappings

Definition 16 Let f be a mapping on U ⊂ X to Y . f is continuous at a point
x0 ∈ U , if the limit of f at x0 exists and is equal to f(x0). f is continuous on U
if f is continuous at every point of U .

Remark 12 For all fixed x̄ in X, the function d(x̄, ·) from X to R is continuous.
The function d from X × X to R is continuous for the distance D on X × X
defined by D((x, y), (x′, y′)) = d(x, x′)+d(y, y′). If d is the distance on X defined
by d(x, y) = 0 if x = y and 1 otherwise, all mappings from X to any metric space
is continuous.

A particular class of continuous mapping is the class of Lipschitzian map-
pings, that is the function f from U ⊂ X to Y such that there exists k ≥ 0, for
all (x, x′) ∈ U × U , δ(f(x), f(x′)) ≤ kd(x, x′).

Proposition 24 Let f be a mapping on U ⊂ X to Y . f is continuous on U if
one of the two equivalent following conditions is satisfied:

For all open set V of Y , the set f−1(V ) = {x ∈ U | f(x) ∈ V } = W ∩ U where
W is an open set of X.
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For all closed set F of Y , the set f−1(F ) = {x ∈ U | f(x) ∈ F} = G ∩ U where
G is a closed set of X.

Proposition 25 Let f and g be two continuous mappings on U ⊂ X to Y . Then
the function x→ δ(f(x), g(x)) is continuous on U .

Proposition 26 Let f be a continuous mapping from U ⊂ X to Y . Let g be a
continuous mapping from V ⊂ Y to Z. We assume that for all x ∈ U , f(x) ∈ V .
Then g ◦ f is continuous on U .

With these basic operations, we are able to show almost always that the usual
functions are continuous.

We now consider the set Cb(X, Y ) of bounded continuous mappings from X to
Y . This set is a subset of the bounded mappings from X to Y . We show that
this set is complete for the uniform distance if Y is complete.

Proposition 27 Let Cb(X, Y ) be the set of bounded continuous mappings from X
to Y . Let d∞ be the distance on Cb(X, Y ) defined by d∞(f, g) = sup{δ(f(x), g(x)) |
x ∈ X}. Then, if Y is complete, Cb(X, Y ) is a complete metric space for the
distance d∞.

Proof. From Propositions 8 and 9, it suffices to show that Cb(X, Y ) is a closed
subset of B(X, Y ). Let (fν) be a sequence of Cb(X, Y ), which converges for the
distance d∞ to f̄ ∈ B(X, Y ). We prove that f̄ is continuous.

Let x̄ ∈ X and (xµ) a sequence of X converging to x̄. Let r > 0. Since
(fν) converges to f̄ , there exists ν̄ ∈ N such that d∞(fν̄ , f̄) < r/3. Since fν̄ is
continuous at x̄, there exists µ0 ∈ N such that for all µ ≥ µ0, δ(fν̄(xµ), fν̄(x̄)) <
r/3. So, for all µ ≥ µ0,

δ(f̄(xµ), f̄(x̄)) ≤ δ(f̄(xµ), fν̄(xµ)) + δ(fν̄(xµ), fν̄(x̄)) + δ(fν̄(x̄), f̄(x̄))

Since, d∞(fν̄ , f̄) < r/3, the first and the third terms of the right side of the
inequality is smaller than r/3 and the term in the middle is also smaller than
r/3. So, one concludes that δ(f̄(xµ), f̄(x̄)) < r for all µ ≥ µ0. So the sequence
(f̄(xµ)) converges to f̄(x̄) which shows that f̄ is continuous. �

Exercise 9 Let (Ai, di)i∈N be a countable family of bounded metric spaces. For
each i, let M i > 0 such that for all (ai, bi) ∈ Ai × Ai, di(ai, bi) ≤ M i. Let A =∏

i∈NA
i. We define as above a distance d on A as follows: for all (a, a′) ∈ A×A,

d(a, a′) =
∞∑
i=0

1

2iM i
di(ai, a′i)

For all i, let gi be a continuous mapping from Ai to a complete normed linear
space (E,N). We assume that there exists a common bound on the mapping
gi, that is a non negative real number M̄ , so that for all i, for all ai ∈ Ai,
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gi(ai) ∈ B̄E(0, M̄). Let β ∈ [0, 1[ be a discount factor. We consider the mapping
g from A to E defined by

g(a) =
∞∑
i=0

βigi(ai)

1) Show that the mapping g is well defined.
2) Show that the mapping g is continuous.

Exercise 10 Let (X, d) be a metric space and F be a nonempty subset of X.
We define the function distance to F , dF , by dF (x) = inf{d(x, y) | y ∈ F}. We
prove that this function is Lipschitz continuous of rank 1.

Let (x, y) ∈ X × X. We assume without any loss of generality that dF (x) ≥
dF (y).
1) Let r > 0. Show that there exists ζ ∈ F such that d(y, ζ) ≤ dF (y) + r.
2) Show that dF (x)− dF (y) ≤ d(x, ζ)− d(y, ζ) + r.
3) Deduce from the previous question that dF (x)− dF (y) ≤ d(x, y) + r.
4) Conclude.

Exercise 11 Let (X, d) be a metric space and F be a nonempty closed subset
of X. We define the function distance to F , dF , by dF (x) = inf{d(x, y) | y ∈ F}.
1) Show that dF (x) = 0 if and only if x ∈ F .

We now assume that the interior of F , intF , is nonempty and F = intF .
We consider the function δF defined by δF (x) = dF (x) − dF c(x) where F c is the
complement of F in X.
2) Show that δF (x) > 0 if x ∈ F c, δF (x) = 0 if x ∈ bdF , the boundary of F , and
δF (x) < 0 if x ∈ intF .

1.5 Continuous function on a compact set

Theorem 2 Let K ⊂ X be a compact subset of X and f be a continuous mapping
from K to Y . Then f(K) is a compact subset of Y .

Corollary 1 Weierstrass Theorem. Let K ⊂ X be a compact subset of X and f
be a continuous mapping from K to R. Then there exists x ∈ K and x ∈ K such
that for all x ∈ K, f(x) ≤ f(x) ≤ f(x).

Theorem 3 Heine’s Theorem Let K ⊂ X be a compact subset of X and f be a
continuous mapping from K to Y . Then f is uniformly continuous on K, which
means that for all r > 0, there exists ρ > 0, such that for all (x, x′) ∈ K × K
such that d(x, x′) ≤ ρ, then δ(f(x), f(x′) ≤ r.

Remark 13 If (X, d) is a compact metric space, then all continuous mappings
are bounded. So if (Y, δ) is a complete metric space, then C(X, Y ), the space
of continuous mapping from X to Y is a complete metric space for the uniform
distance.
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1.6 Banach fixed point theorem

Theorem 4 Let f be a mapping from U ⊂ X to U . We assume that U is
complete and f is a contraction, that is, there exists k ∈ [0, 1[ such that for all
(x, x′) ∈ U × U , d(f(x), f(x′)) ≤ kd(x, x′). Then there exists a unique element
(fixed point) x̄ ∈ U such that f(x̄) = x̄ and for all x0 ∈ U , the sequence (uν)
defined by u0 = x0 and for all ν ∈ N, uν+1 = f(uν) converges to x̄.

Proof. The uniqueness of the fixed point is proved easily by contraposition.
Now, let x0 ∈ U , and the sequence (uν) defined by u0 = x0 and for all ν ∈ N,
uν+1 = f(uν). We prove that this sequence satisfies the Cauchy Criterion. Indeed,
for all ν, d(uν+1, uν) = d(f(uν), f(uν−1)) ≤ kd(uν , uν−1). So, by a backward
induction, one deduces that d(uν+1, uν) ≤ kνd(u1, u0). So, for all integers ν and
µ such that µ > ν, we get:

d(uµ, uν) ≤ d(uµ, uµ−1) + d(uµ1 , uµ−2) + . . .+ d(uν+1, uν)
≤ (kµ−1 + . . .+ kν)d(u1, u0) ≤ kν

1−kd(u1, u0)

Let r > 0 and ν̄ large enough so that kν̄

1−kd(u1, u0) < r. Then for all integers ν
and µ such that µ > ν ≥ ν̄, d(uµ, uν) < r. Hence, the sequence (uν) converges
since it satisfies the Cauchy Criterion and U is complete. Let ū its limit. Then,
since f is continuous, f(ū) = limν→∞ f(uν) = limν→∞ uν+1 = ū. �

The following result provides a sufficient condition on a function on B(X,Rn),
the linear space of bounded functions from X to Rn, to be Lipschitz continuous.
We consider the sup-norm on Rn, that is ‖u‖∞ = max{|ui| | i = 1, . . . , n} and
we define the norm on B(X,Rn) as ‖f‖B = sup{‖f(x)‖∞ | x ∈ X}. We also
use the following notations: if u and v are two vectors of Rn, then u ≤ v means
that ui ≤ vi for all i or equivalently that v − u ∈ Rn

+. Then if g and h are two
mappings of B(X,Rn, h ≤ g means that h(x) ≤ g(x) for all x ∈ X.

We denote by 1n the vector of Rn whose components are equal to 1 and by 1X
the constant mapping from X to Rn such that for all x ∈ X, 1X(x) = 1n.

Theorem 5 (Blackwell’s Theorem) Let F be a mapping from B(X,Rn) to itself.
We posit the following assumptions:

(i) for all (g, h) ∈ B(X,Rn)× B(X,Rn), if h ≤ g then F (h) ≤ F (g);

(ii) there exists k ≥ 0 such that for all g ∈ B(X,Rn), for all t ∈ R+, F (g+t1X) ≤
F (g) + kt1X .

Then F is a Lipschitz continuous mapping of rank k.

In the applications, k is smaller than 1, so F is contracting and we can apply
the Banach fixed point Theorem to F .

Proof. Let (g, h) ∈ B(X,Rn) × B(X,Rn). For all x ∈ X, for all i = 1, . . . , n,
|gi(x)−hi(x)| ≤ ‖g−h‖B. So, g(x) ≤ h(x)+‖g−h‖B1n(x) and h(x) ≤ g(x)+‖g−
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h‖B1n(x). So, from the first assumption on F , F (g) ≤ F (h + ‖g − h‖B1X) and
F (h) ≤ F (g + ‖g − h‖B1X). Thus, from the second assumption, F (g) ≤ F (h) +
k‖g−h‖∞1X and F (h) ≤ F (g)+k‖g−h‖∞1X . Consequently, for all x ∈ X, for all
i = 1, . . . , n, |F (g)i(x)−F (h)i(x)| ≤ k‖g−h‖B, so ‖F (g)−F (h)‖B ≤ k‖g−h‖B.
�

1.7 Normed linear spaces

We consider in this section a linear space E and a distance derived from a norm
N on E. So a normed linear space is a particular case of a metric space. Hence
all results above can be applied to normed linear spaces. Nevertheless, we will
provide some additional properties and some warnings about the possible traps
when we consider infinite dimensional spaces.

First of all, we prove that all norms on a finite dimensional linear space are
equivalent. For this, we consider a particular norm on a finite dimensional space
E and we prove that all other norms are equivalent to it. Let E be a finite
dimensional linear space and (ε1, . . . , εn) be a basis of E. Then, for all u ∈ E, we
let ‖u‖ = max{|ui| | i = 1, . . . , n} where (ui) ∈ Rn are the components of u in
the given basis.

Theorem 6 Let E be a finite dimensional linear space and N a norm on E.
Then N is equivalent to ‖ · ‖.

Proof. For all u ∈ E, N(u) = N(
∑n

i=1 uiε
i) ≤

∑n
i=1 |ui|N(εi) ≤ ‖u‖ (

∑n
i=1N(εi)).

Let k = (
∑n

i=1 N(εi)). Then, for all (u, v) ∈ E×E, from the triangular inequality,
we deduces that |N(u)−N(v)| ≤ N(u−v). So, |N(u)−N(v)| ≤ k‖u−v‖, which
means that N is a Lipschitz continuous function on E. Consequently, since the
sphere S = {u ∈ E | ‖u‖ = 1} is bounded and closed, so compact, there exists
u ∈ S, such that N(u) ≤ N(u) for all u ∈ S. Since u 6= 0, N(u) > 0. From the
positive homogeneity of the norms, one deduces that ‖u‖ ≤ 1

N(u)
N(u). Hence the

two norms are equivalent. �

Remark 14 Let (E,N) be a finite dimensional normed linear space. Let (ε1, . . . , εn)
be a basis of E. Then one can define a norm on Rn by Nn(x) = N(

∑n
i=1 xiε

i).
This norm is equivalent to the Euclidean norm associated to the canonical inner
product on Rn. So all topological properties of Rn with the Euclidean norm are
transposed to (Rn, Nn) and then to (E,N) through the one-to-one onto linear
mapping x→

∑n
i=1 xiε

i which preserves the norm.

We deduce from this result that a finite dimensional subspace of a normed
linear space is closed.

Proposition 28 Let (E,N) be a normed linear space and F be a finite dimen-
sional subspace of E. Then F is closed.
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Proof. Let (uν) be a sequence of elements of F converging to ū ∈ E. Let NF

be the restriction of the norm N to F . One easily check that it is a norm on F
and (F,NF ) is a finite dimensional normed linear space, so it is complete. As a
converging sequence, (uν) satisfies the Cauchy criterion in E, so in F too. Hence
(uν) is converging to v̄ in F . But, this obviously implies that (uν) converges to v̄
in E. Hence, the unicity of the limit implies that ū = v̄, so F is closed. �

Remark 15 This property is not obvious since many subspaces of an infinite
dimensional linear space are not closed, contrary to the finite dimensional case.

Let us consider the space `∞ of bounded real sequences with the norm ‖u‖∞ =
sup{|uν |∞ | ν ∈ N}. Let `0 be the space of real sequences with a finite number of
non-zero terms. One easily checks that `0 is a subspace of `∞ which is not closed.
Indeed, the sequence (ui)i∈N defined by uiν = 1

ν+1
if ν ≤ i and 0 otherwise is a

sequence of `0 and its limit which is the sequence ū defined by ūν = 1
ν+1

for all ν
does not belong to `0.

Exercise 12 Let (E,N) be a normed linear space. We define the norm N2

on E × E by N2(x, y) = N(x) + N(y). We define the norm Ñ on R × E by
Ñ(t, x) = |t|+N(x).
1) Show that the mapping Σ from E × E to E defined by Σ(x, y) = x + y is
continuous for the norms N2 and N .
2) Show that the mapping Π from R×E to E defined by Π(t, x) = tx is continuous
for the norms Ñ and N .

Exercise 13 Exercise 14 Let ((X i, di)pi=1 be p metric spaces. Let N and N ′ be
two norms on Rp such that for all (ξ, ζ) ∈ Rp

+ × Rp
+, if ξ ≥ ζ, that is ξi ≥ ζi for

all i = 1, . . . , p, then N(ξ) ≥ N(ζ) (resp. N ′(ξ) ≥ N ′(ζ)). Let δN and δN ′ be the
two distances on X =

∏p
i=1X

i defined by: for all (x = (xi), y = (yi)) ∈ X ×X,

δ(x, y) = N
(
(di(xi, yi))pi=1

)
, δ′(x, y) = N ′

(
(di(xi, yi))pi=1

)
Show that δ and δ′ are equivalent on X.

A fundamental difference between the finite dimensional case and the infinite
one is the fact that the closed unit ball of an infinite dimensional normed linear
space is never compact. So, it is very important to be particularly cautious when
we try to extend some well known results or reasoning from the finite dimensional
spaces to the infinite ones. Indeed, many results implicitly used the fact that the
closed balls are compact.

Theorem 7 (Riesz) Let (E,N) be an infinite dimensional normed linear space.
Then, B̄(0, 1) is not compact.

Proof. We prove that the ball B̄(0, 1) cannot be covered by a finite union of
open balls of radius 1/2. Indeed, let us assume that B̄(0, 1) ⊂ ∪pj=1B(xj, 1/2).
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We will prove that B̄(0, 1) is included in the space F spanned by the vectors
(xj)

p
j=1, which contradicts that E has an infinite dimension.

Let x ∈ B̄(0, 1), there exists j0 such that N(x − xj0) < 1/2. If x = xj0 , we
stop since x ∈ F . If not, we consider the element y1 = 1

N(x−xj0 )
(x − xj0). There

exists j1 such that N(y1 − xj1) < 1/2. So, we remark that

x = xj0 +N(x− xj0)xj1 +N(x− xj0)(y − xj1)

and N(N(x − xj0)(y − xj1)) < 1/4. This means that there exists a vector in F
at a distance less than 1/4 of x. Repeating the same argument with x − (xj0 +
N(x− xj0)xj1) if this vector is not equal to 0, we find a vector of F at a distance
less than 1/8 of x. By induction, we build a sequence of elements of F which
converges to x. Since F is closed, as proved above, x belongs to F . �

Exercise 15 Mimicking the proof of the theorem, prove the following result. Let
F be a closed subspace of a normed linear space (E,N), with F 6= E. Then, for
all k < 1, there exists v ∈ E such that N(v) = 1, N(v − u) ≥ k for all u ∈ F .

Exercise 16 Let E be a linear space and N1 and N2 two norms on E. We assume
that the associated distances are topologically equivalent. We will show that N1

and N2 are equivalent.
1) Show that there exists r1 > 0 and r2 > 0 such that BN1(0, r1) ⊂ BN2(0, 1) and
BN2(0, r2) ⊂ BN1(0, 1). Hint: BN2(0, 1) is an open set for the topology derived
from N1.
2) Conclude.

Exercise 17 Let (E,N) be a normed linear space and F a linear subspace of E.
Show that F has a nonempty interior if and only if F = E.

Exercise 18 Let us consider the Banach space C([0, 1]) of the continuous func-
tion from [0, 1] to R equipped with the uniform norm ‖f‖∞ = sup{|f(x)| | x ∈
[0, 1]}. The Riesz Theorem tells us that the closed unit ball B̄∞(0, 1) is not com-
pact. Now, we consider the subset C1 of this ball defined as the set of Lipschitz
continuous mapping of rank k ≤ 1. The aim of this exercise is to prove that C1

is compact.
1) Show that C1 is closed and complete.

We now choose ν ∈ N∗ and we prove that we can find a finite family H
of elements of C1 such that C1 ⊂ ∪h∈HB(h, 2ν−1}. For this, we consider the
grid (0, 1

ν
, 2
ν
, . . . , ν−1

ν
, 1) of [0, 1] and the grid (−1,−ν−1

ν
, . . . , 0, 1

ν
, 2
ν
, . . . , ν−1

ν
, 1) on

[−1, 1].
We consider the finite setH of functions hj with j ∈ {−ν,−(ν−1), . . . , 0, 1, . . . , ν}

which are affine on each segment [ i
ν
, i+1
ν

], hj(0) = j
ν
and such that hj( j+1

ν
) is equal

either to hj( iν ), hj( iν ) + 1
ν
or hj( iν ) + 1

ν
.

2) Show that the functions in H are Lipschitz continuous of rank k ≤ 1.
Let g be a function of B̄∞(0, 1) Lispschitz continuous of rank k ≤ 1. We define

the function h ∈ H as follows: for all i = 0, . . . , ν, let jν ∈ {−ν, . . . , 0, . . . , ν}
such that g( i

ν
) ∈ [ jν

ν
, jν+1

ν
[, then h( 1

ν
) = j

ν
.
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3) Check that h belongs to H, that is, for all i, h( j+1
ν

) is equal either to h( i
ν
),

h( i
ν
) + 1

ν
or h( i

ν
) + 1

ν
.

4) Show that ‖g − h‖∞ ≤ 2/ν.
5) Conclude using Proposition 20.

Exercise 19 Let CL([0, 1]) be the space of Lipschitz continuous functions on [0, 1]
and Ck([0, 1]) be the set of Lipschitz continuous functions on [0, 1] of rank less or
equal to k.
1) Show that CL([0, 1]) is not closed in C([0, 1]), the space of the continuous
function from [0, 1] to R equipped with the uniform norm ‖f‖∞ = sup{|f(x)| |
x ∈ [0, 1]}. Hint: Consider the sequence (fν) defined by

fν(t) =

{
t
√
ν + 1 if t ∈ [0, 1

ν+1
]√

t if t ∈ [ 1
ν+1

, 1]
.

2) Show that the space Ck([0, 1]) is closed in C([0, 1]).
3) Using the result of the previous exercise which says that C1 ∩ B̄∞(0, 1) is
compact for the norm ‖ · ‖∞, show that for all k ≥ 0 and for all R > 0, the set
AkR = Ck([0, 1]) ∩ B̄∞(0, R) is compact.

Hint: show that the image of AkR by the mapping f → 1
kR
f is a subset of

C1 ∩ B̄∞(0, 1). Show that this image is compact and prove that AkR is the image
of this compact set by a continuous function.

Exercise 20 Let CL([0, 1]) be the space of Lipschitz continuous functions on [0, 1]
and Ck([0, 1]) be the set of Lipschitz continuous functions on [0, 1] of rank less or
equal to k.

For each f ∈ CL([0, 1]), we let

K(f) = inf{k ≥ 0 | ∀(t, t′) ∈ [0, 1]× [0, 1], |f(t)− f(t′)| ≤ k|t− t′|}

1) Show that K(f) is well defined meaning that it is a non negative real number.
Show that K(f) = 0 if and only if f is constant over [0, 1]. Show that for all
(t, t′) ∈ [0, 1]× [0, 1], |f(t)− f(t′)| ≤ K(f)|t− t′| and |f(t)| ≤ |f(0)|+K(f)t.

We now define the function N from CL([0, 1]) to R+ by N(f) = |f(0)|+K(f).
2) Show that N is a norm on CL([0, 1]).
3) Show that Ck([0, 1]) is a closed subset of CL([0, 1]) for the norm N .
4) Show that for all f ∈ Ck([0, 1]), ‖f‖∞ ≤ N(f). Deduce that if (fν) is a
converging sequence of CL([0, 1]) for the norm N , then it is a converging sequence
for the norm ‖ · ‖∞. Show that the function f → ‖f‖∞ is a Lipschitz continuous
function on CL([0, 1]) for the norm N .
5) Let B̄N(0, 1) be the closed unit ball of CL([0, 1]) for the norm N . Show that
B̄N(0, 1) is a closed subset of B̄∞(0, 1), the closed unit ball of C([0, 1]) for the
norm ‖ · ‖∞. Using Exercise 18, show that B̄N(0, 1) is compact for the norm
‖ · ‖∞. Is B̄N(0, 1) compact for the norm N?

Exercise 21 The purpose of this exercise is to show that CL([0, 1]) with the norm
N is a complete space.
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Let (fν) be a sequence of CL([0, 1]) satisfying the Cauchy criterion for the norm
N .
1) Show that (fν) satisfies the Cauchy criterion for the norm ‖ · ‖∞ and deduce
that the sequence (fν) converges to a limit f̄ in C([0, 1]) for the norm ‖ · ‖∞.
2) Show that the sequence (fν(0)) converges to f̄(0).
3) Show that (N(f ν)) is a Cauchy sequence and converges to a limit denoted k̄.
4) Using the fact that for all (t, t′) ∈ [0, 1]× [0, 1], |f̄(t)− f̄(t′)| = limν→∞ |fν(t)−
fν(t

′)|, show that f is k̄ Lipschitz continuous.
5) Using the fact that (fν) satisfies the Cauchy Criterion, show that for all r >
0, there exists ν ∈ N, such that for all ν ≥ ν, for all (t, t′) ∈ [0, 1] × [0, 1],
|fν(t)− f̄(t)− (fν(t

′)− f̄(t′))| ≤ r|t− t′| and deduces that limν→∞N(fν− f̄) = 0.
6) Conclude that the sequence (fν) converges to a limit f̄ in CL([0, 1]) for the
norm N and that CL([0, 1]) with the norm N is a complete space.

We now study the continuity of the linear mappings. Indeed, all linear map-
pings between finite dimensional spaces are continuous but a linear mapping
from E to F may not be continuous when E is infinite dimensional. Even more,
there always exists a non-continuous linear mapping from E to R when E is
infinite dimensional. Let us consider the following example. Let C([0, 1],R)
be the space of continuous functions from [0, 1] to R. Let N1 be the norm
defined by N1(f) =

∫ 1

0
|f(t)|dt. Then the linear mapping f → f(0) is not

continuous. Indeed, let us consider the sequence of functions (fν) defined by
fν(t) = 1 − (ν + 1)t for t ∈ [0, 1

ν+1
] and fν(t) = 0 otherwise. Then, the real

sequence
(
N1(fν) = 1

2(ν+1)

)
converges to 0, which means that the sequence (fν)

converges to the null function. But the sequence (fν(0) = 1) does not converge
to 0.

A key property of linear mappings is the fact that they are continuous if and
only if they are Lipschitz continuous.

Theorem 8 Let (E,NE) and (F,NF ) two normed linear spaces. Let f be a
linear mapping from E to F . Then f is continuous if and only if it is Lispchitz
continuous.

Proof. We only prove that f is Lipschitz continuous if f is continuous. Since
f is continuous, f−1(BF (0F , 1)) is an open subset of E containing 0E. So, there
exists r > 0 such that BE(0E, r) ⊂ f−1(BF (0F , 1)). Hence, for all u ∈ E, u 6= 0E,

r
2NE(u)

u ∈ BE(0E, r), so f
(

r
2NE(u)

u
)
∈ BF (0F , 1), that is NF

(
f( r

2NE(u)
u
)
< 1,

which implies NF (f(u)) ≤ 2
r
NE(u), so f is Lipschitz continuous with a rank 2

r
.

�

1.7.1 Norm on the space of continuous linear mappings

As we did in finite dimensional spaces, we can define a norm on the set of contin-
uous linear mapping from (E,NE) and (F,NF ) denoted L(E,F ) as follows. Let
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f be a continuous linear mapping from E to F :

NL(f) = sup{NF (f(x)) | x ∈ B̄E(0, 1)}

NL is well defined since f is Lipschitz continuous.
We leave the reader checks that NL is a norm. We just provides two useful

properties of this norm, which are the same as the ones proved for finite dimen-
sional spaces.

Proposition 29 Let f be a continuous linear mapping from E to F . For all
u ∈ E, NF (f(u)) ≤ NL(f)NE(x).

Proposition 30 Let f be a continuous linear mapping from E to F and g be a
continuous linear mapping from F to a normed linear space G. Then, NL(g◦f) ≤
NL(E,F )(f)NL(F,G)(g).

Exercise 22 Let E be a linear space and (F,NF ) and (G,NG) be two linear
subspaces of E with a norm. We assume that E = F ⊕G, that is, for all x ∈ E,
there exists a unique element (y, z) ∈ F × G, such that x = y + z. Then, we
define the mapping N from E to R+ by N(x) = NF (y) +NG(z).
1) Show that N is a norm on E.
2) Show that F and G are closed in E for the norm N .
3) Let (Γ, NΓ) be a normed linear space. Show that a linear mapping f from E
to Γ is continuous if and only if the restrictions of f to F and G are continuous.

Exercise 23 Let E and F be two normed linear spaces and f ∈ L(E,F ). We
assume that f is regular and f−1 ∈ L(F,E). Show that ‖f−1‖L(F,E) ≥ 1

‖f‖L(E,F )
.

Exercise 24 Let (E,NE), (F,NF ) and (G,NG) be 3 normed linear spaces and
ϕ from E × F to G be a bilinear mapping, that is, a mapping satisfying: for all
((x, y), (x′, y′), t) ∈ (E × F )× (E × F )× R,

1) ϕ(x+ x′, y) = ϕ(x, y) + ϕ(x′, y);

2) ϕ(tx, y) = tϕ(x, y);

3) ϕ(x, y + y′) = ϕ(x, y) + ϕ(x, y′);

4) ϕ(x, ty) = tϕ(x, y).

1) Show that ϕ(0E, y) = ϕ(x, 0F ) = 0G for all (x, y) ∈ E × F .
2) Show that ϕ is continuous for the norm NE×F = max{NE(x), NF (y)} if and
only if it exists a constant k ≥ 0 such that for all (x, y) ∈ E × F , NG(ϕ(x, y)) ≤
kNE(x)NF (y). Hint: adapt the proof showing that a continuous linear mapping
is Lipschitz continuous.
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Exercise 25 Let f be a continuous linear mapping from (E,NE) to (F,NF ).
Show that the kernel of f is a closed linear subspace of E.

Let E = `1 and F = `∞ with their respective norms. Note that E ⊂ F . Let f
be the linear mapping from E to F defined by f(u) = u.
1) Show that f is continuous.
1) What is the kernel of f?
2) Show that the range of f is not closed.

Exercise 26 We consider the space C1([0, 1]) of C1 functions on [0, 1] with the
uniform norm ‖ · ‖∞. Let Φ be the derivation operator from C1([0, 1]) to C([0, 1])
defined by Φ(f) = f ′.
1) Show that Φ is a linear mapping.
2) Show that Φ is not continuous if C([0, 1]) is also equipped with the uniform
norm ‖ · ‖∞. Hint: consider the sequence fν(t) = 1

ν+1
sin(2πνt).

Exercise 27 We consider the space C([0, 1]) of continuous functions on [0, 1] with
the uniform norm ‖ · ‖∞ and the norm ‖f‖1 =

∫ 1

0
|f(t)|dt.

1) Show that the function ϕ defined by f → f(0) is a linear function from C([0, 1])
to R.
2) Show that ϕ is continuous for the norm ‖ · ‖∞.
3) Show that ϕ is not continuous for the norm ‖ · ‖1. Hint: consider the sequence

(fν) defined by fν(t) =

{
1− (ν + 1)t if t ∈ [0, 1

ν+1
]

0 otherwise.

1.7.2 On the continuity of convex functions

We just provide two complementary results concerning the continuity of the con-
vex functions and the separation Theorem. The first result has a similar proof
than the one in finite dimension except that we do not have to prove that the
function is locally upper bounded since this is an assumption. Be careful of the
fact that a convex function may be non continuous on the interior of its domain.
This is also true for a linear function defined everywhere.

Proposition 31 Let (E,N) be a normed linear space and f be a convex function
from a convex subset U of E to R. Then, f is continuous and even locally
Lipschitz on the interior of U if it exists x̄ ∈ intU , r > 0 and m ∈ R such that
for all x ∈ B(x̄, r), f(x) ≤ m.

1.7.3 Separation theorems in normed linear spaces

The second result extend the separation Theorem. It is a consequence of the
Hahn-Banach Theorem, the proof of which requires sophisticated argument. Note
that the interiority condition is necessary and be careful not to apply this theorem
without checking this condition.
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Theorem 9 Hahn-Banach Let (E,N) be a normed linear space and C and D
two disjoints convex subsets of E. If the interior of C is nonempty, then it exists
a continuous non-zero linear form ϕ on E such that

sup{ϕ(c) | c ∈ C} ≤ inf{ϕ(d) | d ∈ D}

The geometric interpretation of this result is the fact that an hyperplan sepa-
rates weakly C and D. We can extend this theorem with a strict separation when
C is compact and D closed as follows.

Corollary 2 Hahn-Banach Let (E,N) be a normed linear space and C and D
two disjoints convex subsets of E. If the C is compact and D is closed, then it
exists a non zero continuous linear form ϕ on E such that

sup{ϕ(c) | c ∈ C} < inf{ϕ(d) | d ∈ D}

Proof. We consider the following minimisation problem the distance inf{d(c,D) |
c ∈ C}. Since this function is continuous (See Exercice 10) and C is compact, this
problem has a solution and so, there exists c ∈ C such that d(c,D) ≤ d(c,D) for
all c ∈ C. Since C∩D = ∅, c /∈ D and d(c,D) > 0 since D is closed (See Exercice
10). Let r ∈]0, d(c,D)[. Let C̃ = C + BE(0, r). One checks that C̃ is open and
C̃∩D = ∅. One applies the previous separation theorem to C̃ and D and we con-
clude by showing that sup{ϕ(c) | c ∈ C} < sup{ϕ(c) | c ∈ C̃}. Indeed, since ϕ is
not equal to 0, there exists u ∈ BE(0, r) such that ϕ(u) > 0. From the definition of
the supremum, there exists c ∈ C such that ϕ(c) > sup{ϕ(c) | c ∈ C}− (ϕ(u)/2).
Then c + u ∈ C̃ and sup{ϕ(c) | c ∈ C̃} > ϕ(c + u) > sup{ϕ(c) | c ∈
C}+ (ϕ(u)/2) > sup{ϕ(c) | c ∈ C}. �

1.7.4 Examples of Banach spaces

We have already provided an example of a non-complete normed linear space in
Exercise 5. The completeness is key property to get the existence of solution for
example using the Banach fixed point theorem. A complete norm linear space is
usually called a Banach space. So, we now provide the most usual Banach spaces
encountered in the applications.

We first provide a general way to build a Banach space. Let (E,NE) be a
normed linear space and (F,NF ) be a Banach space. Then the space of continuous
linear mapping from E to F , L(E,F ) is a Banach space with the norm NL(E,F )
defined above. In particular, the set L(E,R) of continuous linear forms on E is
a Banach space.

We now present the norm of the sequence spaces. For p ∈ [1,∞[, let `p be the
space of real sequences (uν) such that the series (|uν |p) is converging. Then, `p

with the norm ‖(uν)‖p = (
∑∞

ν=0 |uν |p)
1/p is a Banach space.

Let `∞ be the space of real bounded sequences (uν). Then, `∞ with the norm
‖(uν)‖∞ = sup{|uν | | ν ∈ N} is a Banach space.
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We can generalise the above examples to sequences in Rn or to sequences in a
Banach space.

Note that the set `0 = {(uν) | card{ν | uν 6= 0} < ∞} which is a subset of `p
for all p ∈ [1,∞] is not a Banach space for the associated norm.

Exercise 28 Prove that `0 is dense in the `p spaces for p ∈ [1,∞[, that is, `0 = `p

when the closure is taken for the associated `p norms.
Prove that `0 is not dense in the `∞

We now present some functional spaces. Let X be a set. Then the space
of bounded function from X to R, B(X,R), is a Banach space for the norm
‖f‖∞ = sup{|f(x)| | x ∈ X}. Note that we can generalise this example for
bounded mappings to a Banach space.

If (X, d) is a metric space, the space of continuous bounded function from X to
R, Cb(X,R) is a Banach space for the same norm. If X is furthermore compact,
then this space is actually the space C(X,R) of continuous functions from X to
R.

Exercise 29 The aim of this exercise is to prove the space C([0, 1],R) with the
norm ‖f‖1 =

∫ 1

0
|f(t)|dt is not a Banach space.

Let us consider the sequence (fν) defined by fν(t) = 0 for t ∈ [0, 1
2
− 1

3(ν+1)
],

fν(t) = 3(ν+1)
2

t + 1
2
− 3(ν+1)

4
for t ∈ [1

2
− 1

3(ν+1)
, 1

2
+ 1

3(ν+1)
] and fν(t) = 1 for

t ∈ [1
2

+ 1
3(ν+1)

, 1].
1) Show that this sequence satisfies the Cauchy Criterion for the norm ‖ · ‖1. For
ν < µ, note that

‖fν − fµ‖1 =

∫ 1
2

+ 1
3(ν+1)

1
2
− 1

3(ν+1)

|fν(t)− fµ(t)|dt

Assume that this sequence has a limit f̄ in C([0, 1]).
2) Show that for all ν,

‖f̄ − fν‖1 =

∫ 1
2
− 1

3(ν+1)

0

|f̄(t)|dt+

∫ 1
2

+ 1
3(ν+1)

1
2
− 1

3(ν+1)

|f̄(t)− fν(t)|dt+

∫ 1

1
2

+ 1
3(ν+1)

|f̄(t)− 1|dt

3) Deduce from the previous question that for all r ∈]0, 1/2[,
∫ 1

2
−r

0
|f̄(t)|dt and∫ 1

1
2

+r
|f̄(t)− 1|dt are equal to 0.

4) Deduce from the previous question that f̄(t) = 0 on [0, 1/2[ and f̄(t) = 1 on
]1/2, 1].
4) Show that we get a contradiction.

Now, for the applications in probability and statistics, we consider a measure
space (X,Ω, µ) with a sigma-algebra Ω and a positive measure µ. Among the
set of measurable functions from X to R, we consider for p ∈ [1,∞[, the space
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Lp(X,Ω, µ) of measurable functions f such that |f |p is integrable and we define
the norm ‖f‖p =

(∫
X
|f |pdµ

)1/p. Then, we need to assimilate functions which
are equal almost everywhere since they are not distinguishable by the integration
process. So, up to this operation, the Lp(X,Ω, µ) spaces are Banach spaces for
the norm ‖ · ‖p.

The space L∞(X,Ω, µ) is the space of essentially bounded measurable functions
from X to R, that is a function f such that for some m ∈ R+, the set {x ∈ X |
|f(x)| > m} is of measure 0. We then define the essential norm as follows:

‖f‖∞ = inf{m ≥ 0 | µ({x ∈ X | |f(x)| > m}) = 0}

Then L∞(X,Ω, µ) is also a Banach space up to the assimilation of functions equal
almost everywhere.

Exercise 30 We consider the two Banach spaces `1 and `∞ with their respective
norms. For every v ∈ `∞, we define the mapping ϕv from `1 to R by ϕv(u) =∑∞

ν=0 vνuν .
1) Show that the function ϕv is well defined that is the series (vνuν) is convergent
for all u ∈ `1.
2) Show that the function ϕv is linear.
3) Show that the function ϕv is Lipschitz continuous of rank ‖v‖∞.
4) For all r > 0 show that there exists u ∈ `1 such that ‖u‖1 = 1 and ϕv(u) ≥
‖v‖∞ − r. Hint: consider the elements εi in `1 defined by εiν = 0 if ν 6= i and
εii = 1.

Let ψ be a continuous linear mapping from `1 to R. We consider the sequence
w defined by wν = ψ(εν).
5) Show that w ∈ `∞.
6) Show that ψ = ϕw, that is, for all u ∈ `1, ψ(u) =

∑∞
ν=0wνuν . Hint: consider

first the sequences with a finite numbers of non zero terms and then use a limit
argument.

Exercise 31 We consider the two Banach spaces `1 and `∞ with their respective
norms. For every v ∈ `1, we define the mapping φv from `∞ to R by φv(u) =∑∞

ν=0 vνuν .
1) Show that the function φv is well defined that is the series (vνuν) is convergent
for all u ∈ `∞.
2) Show that the function φv is linear.
3) Show that the function φv is Lipschitz continuous of rank ‖v‖1.
4) Show that there exists u ∈ `∞ such that ‖u‖∞ = 1 and φv(u) = ‖v‖1. Hint:
all components of u are equal to 1 or −1 depending on the sign of vν .

Exercise 32 We consider the two Banach spaces `1 and `∞ with their respective
norms. We define the positive cone of this spaces as the set of sequences with
non-negative terms. We denote these cones `1

+ and `∞+ .
1) Show that these cones are closed.
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2) Show that the interior of `1
+ is empty.

3) Show that the interior of `∞+ is nonempty and show that `∞+ is the closure of
its interior.

Let us now consider the norm N(u) =
∑∞

ν=0
1
2ν
|uν | on `∞.

4) Show that the interior for N of `∞+ is empty.

Exercise 33 We consider the Banach space `∞.
1) Show that the closed unit ball B̄∞(0, 1) =

∏∞
ν=0[−1, 1].

We define the distance d on B̄∞(0, 1) as follows: d(u, u′) =
∑∞

ν=0
1
2ν
|uν − u′ν |.

2) Using a result of the course, show that the metric space (B̄∞(0, 1), d) is com-
pact.
3) Let (vi) be the sequence of B̄∞(0, 1) defined by vi = εi where εiν = 0 if ν 6= i
and εii = 1. Show that this sequence is converging for d and give the limit.
4) Let (vi) be the sequence of B̄∞(0, 1) defined by vi =

∑i
k=0 ε

k. Show that this
sequence is converging for d and give the limit.

Let v ∈ `1 and φv from B̄∞(0, 1) to R defined by φv(u) =
∑∞

ν=0 vνuν .
5) Show that this function is continuous for the distance d.
6) Solve the maximisation problem: max{φv(u) | u ∈ B̄∞(0, 1)}.

1.8 Series in Banach spaces

Thanks to the Cauchy criterion, we can extend the notion of series in Banach
spaces.

Let (uν) be a sequence in a Banach space (E, ‖ · ‖). The series associated to
(uν) is the sequence (σν) defined by σν =

∑ν
k=0 uk.

Definition 17 The series associated to (uν) (or, in short, the series (uν)) is
convergent if the sequence (σν) defined by σν =

∑ν
k=0 uk is convergent.

The series associated to (uν) is absolutely convergent if the real sequence (
∑ν

k=0 ‖uk‖)
is convergent.

Remark 16 One easily shows (exercise) that if the series (uν) is convergent, then
the sequence (uν) converges to 0. The converse is not true.

Using the Cauchy criterion of convergence, one has the fundamental following
result.

Proposition 32 If the series associated to (uν) is absolutely convergent, then
the series associated to (uν) is convergent.

Since the series associated to a non-negative sequence is increasing, we get the
simple convergence criteria.

Proposition 33 The series associated to the sequence (uν) is absolutely conver-
gent if and only if the sequence (

∑ν
k=0 ‖uk‖) is bounded above.
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Exercise 34 Let (E, ‖ · ‖) be a Banach space and L(E,E) be the Banach space
of the continuous linear mapping from E to E with the norm ‖ · ‖L.

Let f ∈ L(E,E) such that ‖f‖L < 1. We let f 0 = IdE and, for all interger
ν ≥ 1, f ν is equal to f ◦ f ν−1.
1) Show that the series (f ν) is absolutely convergent in L(E,E). Hint: show first
that ‖f ν‖L ≤ (‖f‖L)ν .

Let ϕν =
∑ν

k=0 f
k and ϕ =

∑∞
k=0 f

k

2) Compute (Id− f) ◦ ϕν and deduce its limit when ν tends to ∞.
3) Show that Id− f is regular and that (Id− f)−1 belongs to L(E,E).
4) The purpose of this question is to show that if f ∈ L(E,E) is regular and
f−1 ∈ L(E,E), then for all g ∈ BL(f, 1

‖f−1‖L
), f + g is regular and its inverse

belongs to L(E,E).
a) Let g ∈ BL(f, 1

‖f−1‖L
). Using the inequalities satisfied by ‖ · ‖L, show that

‖f−1 ◦ g‖L < 1.
b) Using the previous question, show that IdE + f−1 ◦ g is regular and its

inverse belongs to L(E,E).
c) Conclude.
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Chapter 2

Dynamical programming

2.1 Introduction

In this chapter, we study optimisation over time, which plays a key role in many
economic and financial models. The explicit mention of time in the model pro-
vides additional structure but, when we deal with infinite horizon models, the
solutions belong to infinite dimensional spaces, which requires more sophisticated
mathematical tools.

In this first presentation, we will mainly consider the discrete time dynamical
optimisation with finite horizon and then with an infinite horizon. The main
results deal with the existence of solutions, necessary and sufficient conditions to
characterise the solutions and the study of the value function. We use a lot of
material already presented in the previous chapters.

For the continuous time optimisation, we will just state the problem and the
optimality conditions without any proofs with some examples. Indeed, a complete
treatment requires a course on differential equations, integration and differential
calculus in infinite dimensional spaces which are beyond the scope of this course.

Let us now start with a very basic example of the intertemporal allocation
of wealth. Let us assume that a consumer has an endowments w0 > 0 of a
commodity and she wants to share her consumption over today and tomorrow.
Her instantaneous utility is represented by a concave utility function u from R+

to R. A parameter β, called a discount factor, measures her preference for the
present. She has also the opportunity to borrow or lend at an interest rate r
between today and tomorrow. So, the optimal allocation is a solution of the
following optimisation problem:

Maximise u(c1) + βu(c2)
c2 = (1 + r)(w0 − c1)
c1 ≥ 0, c2 ≥ 0

If we assume that we have an interior solution (c∗1 > 0, c∗2 > 0), the first order
necessary condition are: {

u′(c∗1) = λ(1 + r)
βu′(c∗2) = λ
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If we assume that the function c is strictly increasing with a positive derivative,
we can eliminate the multiplier λ and we get

u′(c∗1) = βu′(c∗2)(1 + r)

Using the Lagrangian of this problem, we can check that this first order condition
is sufficient. We can interpret this condition economically by saying that the
intertemporal marginal rate of substitution u′(c∗1)

βu′(c∗2)
is equal to 1 + r, which is the

return of 1 unit saved in the first period.
Since u is concave, u′ is decreasing, so we can check that c∗1 > c∗2 if and only if

(1 + r)β < 1. So, the consumption decreases over the two periods if the discount
factor representing the time preferences or the impatience is small enough with
respect to the interest rate.

Exercise 35 Compute the optimal allocation in the above problem when u(c) =√
c and u(c) = ln(c).

We can easily extend this problem to T periods. The initial endowments w0

is given. We get the following problem of maximising the intertemporal welfare:
Maximise

∑T−1
t=0 β

tu(ct)
wt = (1 + r)(wt−1 − ct−1), for t = 1, . . . , T
wT ≥ 0
ct ≥ 0, for t = 1, . . . , T − 1

Due to the homogeneous formulation of the constraints, we need to add a
terminal condition wT ≥ 0. Otherwise, without this constraint, the agent can
borrow as many quantities of the consumption good as she wants and never
reimburse her debt. So, the problem has no solution and is not economically
relevant.

Assuming that the positivity constraints on the consumptions are not binding,
interior solution, the first order necessary conditions are as follows:

u′(c∗0)− λ1(1 + r) = 0
βtu′(c∗t )− λt+1(1 + r) = 0 for t = 1, . . . , T − 1
(1 + r)λt+1 − λt = 0 for t = 1, . . . , T − 1
λT ≥ 0. λTwT = 0

Note that if the terminal constraint is not binding, that is wT > 0, then all
multipliers are equal to 0 and c∗t is constant over time given by u′(c∗t ) = 0. So
this is possible only if u has a global maximum on R+. In this case, the initial
endowments is sufficiently large so that the economic agent can consume her
optimal consumption at each period. Then the intertemporal problem is reduced
to T independent one period identical optimisation problems.

This first order conditions are sufficient since we have a concave objective
functions with linear constraints.

We remark that the multipliers are given by a backward equation, which is a
general characteristic.
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Remark 17 If λT is known, then we compute easily the other multipliers us-
ing the backward equation λt = (1 + r)λt+1. Then, we compute the optimal
consumption c∗t using the inverse of the derivative of u.

We can eliminate the multipliers and we find the following equation for all
t = 0, . . . , T − 2:

u′(c∗t ) = β(1 + r)u′(c∗t+1)

We remark that this is the same as in the two period model. So, for example, c∗t
is decreasing over time if (1 + r)β < 1.

We can interpret the multiplier λt, which is equal to βt+1u′(c∗t+1), as the shadow
price of the wealth wt+1 at the period t. Indeed, at the period t, the consumer
could increase her consumption c∗t of one unit, which provides an instantaneous
gain of βtu′(c∗t ) but decreases the wealth wt+1 of an amount equal to (1 + r)
and so decreases the future consumptions and the future welfare. So, at an
optimal solution c∗t , these two effects must be equal, otherwise, the consumer
could increase her intertemporal welfare. This corresponds to the equality derived
from the first order condition:

βtu′(c∗t ) = λt+1(1 + r) = λt

So, let us analyse the effect of a change of the wealth wt+1 on the future optimal
welfare. The remaining problem starting at period t+ 1 is the following:

Maximise
∑T−1

τ=t+1 β
τu(cτ )

wτ = (1 + r)(wτ−1 − cτ−1), for τ = t+ 2, . . . , T
wT ≥ 0
cτ ≥ 0, for τ = t+ 1, . . . , T − 1

where wt+1 is given. Using the particular form of the equality constraints, we can
eliminate the wealth variables and write this problem with a unique intertemporal
budget constraint: Maximise

∑T−1
τ=t+1 β

τu(cτ )
(1 + r)T−t−1ct+1 + (1 + r)T−t−2ct+2 + . . .+ (1 + r)cT−1 ≤ (1 + r)T−t−1wt+1

cτ ≥ 0, for t = t+ 1, . . . , T − 1

The inequality constraint is equivalent to the following one, where wt+1 appears
only on the right hand side of the inequality

ct+1 + (1 + r)−1ct+2 + . . .+ (1 + r)−(T−t−2)cT−1 ≤ wt+1

In the sensitivity analysis, we have shown that the multiplier is equal to the
derivative of the value function, noticing that the inequality constraint is binding
with a non zero multiplier. Note also that (c∗t+1, . . . , c

∗
T−1) is a solution of this

truncated problem.The multiplier µ of this problem satisfies for all τ = t +
1, . . . , T − 1,

βτu′(c∗τ ) = µ(1 + r)−(τ−t−1)
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So, one get µ = βt+1u′(c∗t+1) = λt. This is the effect on the global welfare of
the increase of one unit of the wealth at the period t + 1. So, we have formally
justified the fact that λt is the shadow price of the wealth at period t. At each
period, the agent chooses an optimal consumption by balancing the two opposite
effects of an immediate gain by increasing the today consumption and a future
loss by decreasing the remaining wealth for the future periods.

Remark 18 Note that some authors multiply the constraints by βt and they
get a different formulation of the optimality condition. Actually, this is fully
equivalent, since it is just a positive rescaling of the multipliers by a power of β.

Exercise 36 Compute the optimal allocation in the T period problem when
u(c) =

√
c and u(c) = ln(c). Compute the derivative of the value function with

respect to w0 and check that it is equal to the multiplier λ0.

2.2 The General model with a finite horizon

We now present the general model of a dynamical optimisation problem. We
are are considering a discrete time model where the periods are denoted t =
0, 1, . . . , t, . . . , T , where T is the finite horizon. At each period, we have a state
st and an action at, also called control. The initial state s0 is given. The new
state at the period t + 1 is determined by a transition equation st+1 = gt(at, st)
depending on the current state and the action. At each period, the economic
agent receives a payoff ft(at, st) ∈ R. It is computing her intertemporal payoff
as the discount sum of the payoffs with a discounting factor β. Furthermore, the
action - state pair is constrained to stay in a given set At.

So, the optimisation problem is to choose the actions (a0, . . . , aT−1) in order
to maximise the intertemporal payoff taken s0 as given:

Maximise
∑T−1

t=0 β
tft(at, st) + βTfT (sT )

st+1 = gt(at, st), t = 0, . . . , T − 1,
(at, st) ∈ At t = 0, . . . , T − 1
sT ∈ AT

AT represents a constraint on the final state, which can be for example a non-
negativity constraint. In the general case, st and at belongs to finite dimensional
vector spaces. For this first course, we assume that they belongs to R. So At is a
subset of R2 and AT is a subset of R. ft and gt are defined on subsets of R2 and
fT , the final payoff, is defined on R.

Definition 18 For a given s0, U(s0) is the subset of RT ×RT+1 of feasible finite
sequences

(
(at)

T−1
t=0 , (st)

T
t=0

)
satisfying the initial condition at s0, the transition

equations st+1 = gt(at, st) and the constraints (at, st) ∈ At for t = 0, . . . , T − 1
and sT ∈ AT .

We implicitly assume that U(s0) is nonempty, otherwise, the problem have no
interest.
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2.2.1 First order optimality conditions

Let us consider an optimal solutions (a∗t ) of the above problem. Let us denote
by s∗t the associated sequence of states given by the transition equations s∗t+1 =
gt(a

∗
t , s
∗
t ) for t = 0, . . . , T − 1 Let us assume that (a∗t , s

∗
t ) ∈ intAt for all t and

s∗T ∈ intAT , that is (a∗t ) is an interior solution. Then, applying the result stated
in the previous chapter, we get the first order necessary conditions under the
following assumptions:
Assumptions

1) for all t = 0, . . . , T − 1, ft and gt are C1 functions defined on open subsets of
R2, fT is a C1 function defined on an open interval of R such that for all
((at), (st)) ∈ U(s0), (at, st) belongs to the domain of definition of ft and gt
and sT belongs to the domain of definition of fT .

2) for all t = 0, . . . , T − 1,the partial derivative of gt with respect to a is not
equal to 0 on its domain of definition.

Proposition 34 Under the above assumptions, at an interior solution, we get
the following first order necessary conditions: there exists a vector of multipliers
λ ∈ RT such that

βt ∂ft
∂a

(a∗t , s
∗
t ) + λt+1

∂gt
∂a

(a∗t , s
∗
t ) = 0, t = 0, . . . , T − 1

βt ∂ft
∂s

(a∗t , s
∗
t ) + λt+1

∂gt
∂s

(a∗t , s
∗
t ) = λt, t = 1, . . . , T − 1

f ′T (s∗T ) = λT
s∗t+1 = gt(a

∗
t , s
∗
t ). t = 0, . . . , T − 1

Proof. We first check that the gradients of the equality constraints are linearly
independent. We rewrite the equality constraints st+1−gt(at, st) = 0. Then these
gradients are given in the following matrix:

− ∂g0

∂a0
0 . . . 0 0 . . . 0 0

−∂g0

∂s0
0 . . . 0 0 . . . 0 0

0 − ∂g1

∂a1
. . . 0 0 . . . 0 0

1 −∂g1

∂s1
. . . 0 0 . . . 0 0

...
... . . . ...

... . . . ...
...

0 0 . . . 0 − ∂gt
∂at

. . . 0 0

0 0 . . . 1 −∂gt
∂st

. . . 0 0
...

... . . . ...
... . . . ...

...
0 0 . . . 0 0 . . . −∂gT−1

∂at
0

0 0 . . . 0 0 . . . −∂gT−1

∂st
0

0 0 . . . 0 0 . . . 0 1


Since ∂gt

∂at
(a∗t , s

∗
t ) is non vanishing, the gradients are independent thanks to the

particular temporal structure of the constraints.
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Now, considering the fact that we have a maximisation problem, the first order
are given by the following equalities:

∂f0

∂a0
= −λ1

∂g0

∂a0

β ∂f1

∂a1
= −λ2

∂g1

∂a1

β ∂f1

∂s1
= −λ2

∂g1

∂s1
+ λ1

...
...

βt ∂ft
∂at

= −λt+1
∂gt
∂at

βt ∂ft
∂st

= −λt+1
∂gt
∂st

+ λt
...

...
βT ∂fT

∂sT
= λT

from which one easily derives the given conditions. �.

Positivity constraints on the variables
In many problems, the state and the action variables are supposed to be non

negative. These constraints are incorporated in the condition (at, st) ∈ At as well
as possible other constraints. So, we need to carefully check what happens if some
of these constraints are binding at the optimal solution, because this requires
additional multipliers and, so, more complex first ordre necessary conditions.
We now provide the first order necessary conditions for the case where we have
non negative constraints at ≥ 0, st ≥ 0 for all t without assuming that these
constraints are not binding at the optimal solution.

Proposition 35 Under the above assumptions, at a solution where the positivity
constraints on the states and the actions may be binding, we get the following first
order necessary conditions: there exists a vector of multipliers λ ∈ RT such that

βt ∂ft
∂a

(a∗t , s
∗
t ) + λt+1

∂gt
∂a

(a∗t , s
∗
t ) ≤ 0, t = 0, . . . , T − 1(

βt ∂ft
∂a

(a∗t , s
∗
t ) + λt+1

∂gt
∂a

(a∗t , s
∗
t )
)
a∗t = 0, t = 0, . . . , T − 1

βt ∂ft
∂s

(a∗t , s
∗
t ) + λt+1

∂gt
∂s

(a∗t , s
∗
t ) ≤ λt, t = 1, . . . , T − 1(

βt ∂ft
∂s

(a∗t , s
∗
t ) + λt+1

∂gt
∂s

(a∗t , s
∗
t )− λt

)
s∗t = 0, t = 1, . . . , T − 1

f ′T (s∗T ) ≤ λT
(f ′T (s∗T )− λT ) s∗T = 0
s∗t+1 = gt(a

∗
t , s
∗
t ). t = 0, . . . , T − 1

Exercise 37 Write the complete first order necessary conditions when the sets
At are defined as follows:

At = {(a, s) ∈ R2 | s ≥ 0, a ∈ [αt(s), αt(s)]}

where αt and αt are continuously differentiable functions from R+ to R satisfying
αt(s) ≤ αt(s) for all s ∈ R+.

We now provide some additional assumptions on the functions ft and gt so that
the first order necessary conditions are sufficient. Basically, they imply that the
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Lagrangian of the problem is concave with respect to ((at), (st)). The Lagrangian
is given by the following formula:

L((at), (st), (λt)) =
T−1∑
t=0

βtft(at, st) + βTfT (sT )−
T−1∑
t=0

λt+1(st+1 − gt(at, st))

So, it is concave if all functions ft, gt are concave and the multipliers are non
negative. According to the above first order condition with or without positivity
constraints, this happens if the functions ft, gt are increasing with respect to the
state variables. So, we get the following proposition.

Proposition 36 We consider the previous dynamical optimisation problem. We
maintain the same assumptions and we also assume that:

1) For all t = 0, . . . , T − 1, ft and gt are concave and fT is concave;

2) For all t = 0, . . . , T − 1, ft and gt are increasing with respect to the state
variable st and fT is increasing with respect to the state variable sT .

Then, if ((a∗t ), (s
∗
t )) satisfies the first order condition given in the two previous

propositions, it is a solution of the dynamical optimisation problem.

Remark 19 Note that the transition equations may be equivalently written
st+1 = gt(at, st) or βt+1(st+1 − gt(at, st)) = 0. So, the first order necessary con-
ditions have not exactly the same form but they are equivalent. Actually, this
leads just to a renormalisation of the multipliers.

2.2.2 Examples

Optimal extraction rate We consider a mine with a stock Q0 of ore. The mine
will be closed after three years of activities. The price of the ore is normalised
equal to 1. Qt is the stock at the beginning of the period t, qt is the quantity
extracted at period t, the cost of extraction is given by q2

t /Qt.
1) Show that the problem to be solved is the following:

Maximise
∑2

t=0 qt −
q2
t

Qt

Qt+1 = Qt − qt, t = 0, 1, 2
Q3 ≥ 0
qt ≥ 0, t = 0, 1, 2

2) Write the first order necessary condition. Are they sufficient?
3) Compute the optimal solution with Q0 = 128.

Ramsay Optimal growth model
With an initial capital stock k0 > 0, at each period, the agent shares the

quantity of capital produced F (kt), where F is the production function, between
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a part ct devoted to the consumption and a part kt+1 devoted to the produc-
tion. Then, the agent maximises an intertemporal welfare which is represented
as a discounted sum of instantaneous utility level u(ct). We put the following
assumptions:

a) β ∈]0, 1[;

b) u from R+ to R+ is differentiable on R∗+, strictly concave and strictly in-
creasing with a positive derivative, limt→0+ u′(t) = +∞ and u(0) = 0;

c) f from R+ to R+ is differentiable on R∗+, strictly concave and strictly in-
creasing with a positive derivative, limt→+∞ f

′(t) < 1, limt→0+ f ′(t) is finite
or +∞ and f(0) = 0;

The maximisation problem is the following:
Maximise

∑T−1
t=0 β

tu(ct)
kt+1 = F (kt)− ct, t = 0, 1, . . . , T − 1
kT ≥ 0
ct ≥ 0, kt ≥ 0, t = 0, 1, . . . , T − 1

1) Write the first order necessary condition.
2) Show that the constraint kT ≥ 0 is binding.
3) Show that the optimal solution satisfies the Euler’s equation

u′(c∗t )

βu′(c∗t+1)
= F ′(k∗t+1)

We assume that limt→0+ f ′(t) > 1.
4) Show that there exists k̄ > 0 such that f(k̄) = k̄, f(k) > k if k < k̄ and
f(k) < k if k > k̄.
5) Show that if k0 < k̄, then the optimal solution (k∗t ) is decreasing.

Problem of allocation in hotels
This example shows that the index t may represent another variable than time.

We consider a travel agency which must distribute travelers in 4 hotels trying to
minimise the cost. The cost in each hotel depends on the number of rooms booked
in this hotel according to the following table:

Hotels → 1 2 3 4
Travelers 8 100 80 80 80
... 7 80 71 80 70

6 60 64 72 60
5 53 55 60 50
4 48 39 44 40
3 40 32 11 30
2 20 20 10 20
1 8 13 9 10
0 0 0 0 0
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To find the best allocation of 6 travelers, we consider the number of hotels
used to accommodate travelers as time. We apply the recursive principle saying
that if n travelers are optimally accommodated in the fourth hotel, then the 6−n
other travelers are accommodated in the three first hotels optimally. So we first
compute the optimal cost of allocating 0 to 6 travelers in the two first hotels.
Then we compute the optimal cost of allocating 0 to 6 travelers in the three first
hotels. Finally, we compute the optimal cost of allocating 6 travelers in the four
hotels. Give the optimal cost and the optimal allocation. Show that we can
change the order of the hotels without changing the optimal result.

Exhaustible resources
We consider a monopolist extracting an ore at a constant marginal cost c.

It faces an inverse demand function pt(qt). Q0 is the initial stock, qt is the
quantity extracted at period t and Qt is the stock at the beginning of period t.
The objective of the monopolist is to maximise the intertemporal profit. The
optimisation problem is the following:

Maximise
∑T−1

t=0 β
t(pt(qt)− c)qt

Qt+1 = Qt − qt, t = 0, 1, . . . , T − 1
QT ≥ 0
qt ≥ 0, Qt ≥ 0, t = 0, 1, . . . , T − 1

We assume that pt is strictly decreasing and differentiable, the instantaneous
profit (pt(qt)−c)qt is a concave function of qt and pt(0) > c for all t = 0, . . . , T−1.
1) Write the first order necessary condition.
2) Show that if the terminal constraint is not binding, then all multipliers are
equal to 0 and the problem is a collection of T independent one dimensional
problems. Show that the solution is characterised by pt(q∗t ) + p′t(q

∗
t )q
∗
t − c = 0 for

all t.
We now consider the case where the terminal constraint is binding: Q∗T = 0.

3) Show that Q∗t is decreasing and there exists τ such that Q∗0 = Q0 > 0, . . .,
Q∗τ > 0, Q∗τ+1 = 0, . . ., Q∗T = 0.
4) Let us assume that q∗t > 0 for t = 0, . . . τ . Show that for all t = 0, . . . τ − 1,
pt(q

∗
t ) + p′t(q

∗
t )q
∗
t − c = β(pt+1(q∗t+1) + p′t+1(q∗t+1)q∗t+1 − c).

5) Let us assume that the inverse demand function pt is constant over time equal
to p. Show that q∗t is decreasing , so q∗t > 0 for all t ≤ τ .

2.2.3 The maximum principle

Let us consider the same general problem as above. Then we define the Hamil-
tonian at the period t, Ht, as follows:

Ht(a, s, λ) = βtft(a, s) + λgt(a, s)
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Then for an interior solution, the first order condition can be rewritten as follows:
∂Ht
∂a

(a∗t , s
∗
t , λt+1) = 0 t = 0, . . . , T − 1

∂Ht
∂s

(a∗t , s
∗
t , λt+1) = λt, t = 1, . . . , T − 1

f ′T (s∗T ) = λT
s∗t+1 = gt(a

∗
t , s
∗
t ). t = 0, . . . , T − 1

The Maximum principle states that, at the optimal solution, the action a∗t max-
imises the global gain at this period, which is the instantaneous gain through the
payoff function ft and the future gain through the change of the state st+1 via the
transition equation gt. This global gain is approximated by the Hamiltonian in
the sense that they have the same derivative with respect to the action at as we
will see more precisely below. So a∗t maximises the Hamiltonian for the suitable
multiplier λt+1.

Proposition 37 (Maximum principle) We consider the previous dynamical
optimisation problem. We maintain the same assumptions and we also assume
that:

1) For all t = 0, . . . , T − 1, ft and gt are concave and fT is concave;

2) For all t = 0, . . . , T − 1, ft and gt are increasing with respect to the state
variable st and fT is increasing with respect to the state variable sT .

Then, ((a∗t ), (s
∗
t )) is an optimal solution if and only if for all t = 0, . . . , T − 1, a∗t

is a solution of
max{H(at, s

∗
t , λt+1) | (at, s∗t ) ∈ At}

and 
∂Ht
∂s

(a∗t , s
∗
t , λt+1) = λt, t = 1, . . . , T − 1

f ′T (s∗T ) = λT
s∗t+1 = gt(a

∗
t , s
∗
t ). t = 0, . . . , T − 1

Under our assumptions, the Hamiltonian is concave, so the maximisation for
an interior solution is equivalent to the fact that the derivative vanishes. If
some constraints are binding, then the result remains true but the proof is more
demanding.

We now come back to the evaluation of a change of at around an optimal
interior solution a∗t . Actually, at an interior solution, we are in the condition
of the sensitivity analysis we did in Section 4.5. Under our assumptions, the
gradient vectors of the equality constraints coming from the transition equations
are linearly independent. So, we know that the solution and the multipliers
are differentiable functions of the parameter. Furthermore, we know that the
multiplier associated to a right hand side perturbation is equal to the derivative
of the value function with respect to this perturbation.

A change in at will have an influence on the future gain
∑T−1

τ=t+1 β
tf(at, st) +

βTfT (sT ) since the initial state st+1 will change according to the equality con-
straint st+1 = gt(at, st). To analyse this question, we reformulate the problem
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in order to have just a right hand side perturbation. As it is the same kind of
problem for the truncated optimisation starting at t + 1 as for the initial prob-
lem starting at t = 0, we work with the initial problem. So, let us consider the
following modified problem where s0 is now a variable satisfying a linear equality
constraint s0 = σ0.

Maximise
∑T−1

t=0 β
tft(at, st) + βTfT (sT )

st+1 = gt(at, st), t = 0, . . . , T − 1,
(at, st) ∈ At t = 0, . . . , T − 1
sT ∈ AT
s0 = σ0

We can check that the gradient vectors of the equality constraints are still inde-
pendent since we add a column with just a 1 for the derivative with respect to s0.
Furthermore with this new constraint, the first order necessary condition are the
same but there is an additional one concerning the new variable s0 with a new
multiplier λ0 corresponding to the new constraint, which is:

∂f0

∂s0

(a∗0, s
∗
0) = −λ1

∂g0

∂s0

(a∗0, s
∗
0) + λ0

So
λ0 =

∂f0

∂s0

(a∗0, s
∗
0) + λ1

∂g0

∂s0

(a∗0, s
∗
0) = V ′(s0)

Hence, the effect of a change of the initial state s0 on the intertemporal payoff
has an immediate part ∂f0

∂s0
(a∗0, s

∗
0) on the payoff at date 0 and a future part

λ1
∂g0

∂s0
(a∗0, s

∗
0) which is the effect on the next state s1 given by ∂g0

∂s0
(a∗0, s

∗
0) times

λ1. Actually λ1 is the derivative of V1, the value of the truncated problem from
period 1 to T at s∗1. Hence λ1 measures the future consequences on the payoff of
a marginal change of s1. Similarly, λt measures the future consequences on the
payoff of a marginal change of st.

So, the Hamiltonian computed with the multipliers associated to the optimal
solution takes into account the global effect of the choice of the action at. Indeed,
λt+1gt(at, st) is a first order approximation of the optimal value Vt+1(gt(at, st)) of
the truncated problem:

Maximise
∑T−1

τ=t+1 β
τfτ (aτ , sτ ) + βTfT (sT )

sτ+1 = gτ (aτ , sτ ), τ = t, . . . , T − 1,
(at, st) ∈ At t = τ + 1, . . . , T − 1
sT ∈ AT
st given

and the decision at date t is to choose the best action at to maximise βtft(at, st)+
Vt+1(gt(at, st)).
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2.2.4 Bellman principle

We have implicitly used the Bellman principle in the previous parts but we now
explicitly state it and we derive the dynamical programming algorithm.

Basically, the Bellman principle tells us that the optimal actions after a date
t depends on the state at date t but does not depend on the previous actions
before the date t, in other words, does not depend on the previous trajectory.

Let us consider our general problem

(P)


Maximise

∑T−1
t=0 β

tft(at, st) + βTfT (sT )
st+1 = gt(at, st), t = 0, . . . , T − 1,
(at, st) ∈ At t = 0, . . . , T − 1
sT ∈ AT

and let us assume that (a∗t ) is an optimal solution, the states being then deter-
mined by the transition equations.

Let us now consider the truncated problem (Pt) at date t

(Pt)


Maximise

∑T−1
τ=t β

τfτ (aτ , sτ ) + βTfT (sT )
sτ+1 = gτ (aτ , sτ ), τ = t, . . . , T − 1,
(aτ , sτ ) ∈ Aτ τ = t+ 1, . . . , T − 1
sT ∈ AT
st given

It st = s∗t , then (a∗τ )
T−1
τ=t is an optimal solution of the truncated problem. So the

optimal trajectory starting at the date t only depends on the state s∗t and not on
the previous decisions a∗τ for τ < t.

Let us denote Vt(st) the optimal value of the problème (Pt) for a given initial
state st. Then, we get the following Bellman equation:

Vt(st) = max{βtft(at, st) + Vt+1(gt(at, st)) | (at, st) ∈ At}

and a∗t is a solution of this maximisation problem.
From the Bellman equation, we deduce the dynamical programming algo-

rithm, which is working backward starting from the final period and goes step
by step to the initial period. At each step, we compute the value function Vt(st)
for all attainable states using the Bellman equation and the solution of the max-
imisation problem is the optimal action at date t provided that the current state
is st.

To initialise the process, we know that the final payoff is given by βTfT (sT ).
Then we solve the following maximisation problem:{

Maximise βT−1fT−1(aT−1, sT−1) + βTfT (gT−1(aT−1, sT−1))
(aT−1, sT−1) ∈ AT−1

This is a one dimension problem with the variable aT−1 taken the state sT−1 as
given. We get the value VT−1(sT−1) and the optimal solution(s) α∗T−1(sT−1).

42



Then we solve the following maximisation problem:{
Maximise βT−2fT−2(aT−2, sT−2) + βTVT−1(gT−2(aT−2, sT−2))
(aT−2, sT−2) ∈ AT−2

to get VT−2(sT−2) and the optimal solution(s) α∗T−2(sT−2) and we repeat the
process until the final step to compute V (s0) = V0(s0) and the optimal action
α∗(s0). The algorithm provides the optimal solution by the recursive formula
starting from (a∗0 = α∗0(s0), s0) as follows:

(a∗t+1, s
∗
t+1) = (α∗t+1(gt(a

∗
t , s
∗
t )), gt(a

∗
t , s
∗
t ))

Example: intertemporal allocation of wealth
We are applying the dynamical programming algorithm to the intertemporal

allocation of wealth. We consider a simple case where β = 1, the interest rate r
equals 0 and the utility function is

√
c. Then we solve this problem:

Maximise
∑T−1

t=0

√
ct

wt = wt−1 − ct−1, for t = 1, . . . , T
wT ≥ 0
ct ≥ 0, for t = 1, . . . , T − 1

We know that at the optimal solution, the final wealth is equal to 0. So, we know
that VT−1(wT−1) = βT−1√wT−1 and the optimal action is α∗T1

(wT−1) = wT−1.
Now for the period T − 2, we solve the following problem:{

Maximise √cT−2 +
√
wT−2 − cT−2

0 ≤ cT−2 ≤ wT−2

The optimal solution is α∗T2
(wT−2) = wT−2

2
and VT2(wT−2) =

√
2
√
wT−2. The next

step is to solve: {
Maximise √cT−3 +

√
2
√
wT−3 − cT−3

0 ≤ cT−3 ≤ wT−3

The optimal solution is α∗T3
(wT−3) = wT−3

3
and VT3(wT−3) =

√
3
√
wT−3. Repeat-

ing the process, we prove by induction that α∗Tτ (wT−τ ) = wT−τ
τ

and VTτ (wT−τ ) =√
τ
√
wT−τ .

So, if we start from an initial wealth w0, the optimal actions and the successive
wealths are (w0

T
, w0(T−t)

T
)T−1
t=0 , which means that the consumption is the same at

each period and the wealth decreases linearly.

Exercise 38 Apply the dynamical programming algorithm to the intertemporal
allocation of wealth with β ∈]0, 1[, the interest rate r equals to 0 and the utility
function is ln c.
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2.3 Infinite horizon

We are now considering an infinite horizon dynamical problem. This leads to new
questions since now the actions are infinite so the existence of a solution is not
guaranteed and even the definition of the objective function is no more granted.
Furthermore, since we have no terminal period, we cannot do a backward induc-
tion starting from the last period. Nevertheless, under some suitable stationarity
conditions, we will show that we are still able to compute the value of the problem
as a fixed point of a contracting mapping and to derive the optimal actions by a
recursive process.

We maintain the notation of the previous section and we consider the following
maximisation problem:

(P)


Maximise

∑∞
t=0 β

tft(at, st)
st+1 = gt(at, st), t ≥ 0
(at, st) ∈ At, t ≥ 0

where s0 is the initial given state and β ∈]0, 1[ is the actualisation factor. The
set of feasible action-state pairs is given by:

U(s0) = {(at, st)t | ∀t ∈ N, st+1 = gt(at, st), (at, st) ∈ At}

The problem is actually to maximise the discount sum of the payoffs
∑∞

t=0 β
tft(at, st)

under the constraint (at, st)
∞
t=0 ∈ U(s0).

We assume that for all (at, st)t ∈ U(s0), for all τ ∈ N, the function fτ and gτ
are defined at all attainable pair (aτ , sτ ).

2.3.1 Existence of an optimal strategy

We first provide some conditions under which the objective function is well de-
fined, continuous and the set U(s0) is closed in a compact set for the product
topology on the sequences of R2. So, we get the existence of a solution.

Assumption A

a) There exists a positive real sequence (ρt) such that U(s0) ⊂
∏

t∈N B̄(0, ρt);

b) there exist k0, k1 ≥ 0 such that for all t ∈ N, for all (a, s) in the domain of
definition of ft, |ft(a, s)| ≤ k0 + k1‖(a, s)‖;

c) limt→∞
t
√
k1ρt + k0β < 1;

d) ∀t, ft and gt are continuous.

e) ∀t, the set At is closed in R2.

Remark 20 If ft is upper bounded by a constant k0, that is k1 = 0, then As-
sumption A(c) is satisfied whatever is β ∈]0, 1[.
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If the sequence (ρt) is upper bounded, then Assumption A(c) is satisfied what-
ever is β ∈]0, 1[.

If ft is concave on R2
+ and differentiable on R2

++,

ft(a, s) ≤ ∇ft(1, 1) · (a− 1, s− 1) + ft(1, 1)

and

|∇ft(1, 1) · (a− 1, s− 1)| ≤ ‖∇ft(1, 1)‖‖(a− 1, s− 1)‖
≤ ‖∇ft(1, 1)‖‖(a, s)‖+ ‖∇ft(1, 1)‖‖(1, 1)‖

So Assumption A(b) is satisfied if either ft is constant and does not depend on t
or if (‖∇ft(1, 1)) and (|ft(1, 1)|) are bounded above.

Proposition 38 Under Assumption A,

1) The set U(s0) is closed in the compact set
∏

t∈N B̄(0, ρt) for the product
topology on the space of sequences of R2.

2) The function Φ((at, st)) =
∑∞

t=0 β
tft(at, st) is well defined and continuous

for the product topology on U(s0).

3) The problem (P) has a solution.

Proof. 1) Let ((aνt , s
ν
t )) be a sequence of U(s0) converging to (āt, s̄t) for the

product topology. From the property of the product topology, for all fixed t,
the sequence in R2 (aνt , s

ν
t )ν converges to (āt, s̄t). So, since At is closed, (āt, s̄t)

belongs to At. Furthermore, since gt is continuous, the limit of (sνt+1 = gt(a
ν
t , s

ν
t ))ν

is equal to gt(āt, s̄t) and the limit of (sνt+1)ν is equal of s̄t+1 So, s̄t+1 = gt(āt, s̄t),
which proves that (āt, s̄t) belongs to U(s0).

2) From Assumption A(c), there exists t ∈ N and β̃ ∈]0, 1[, such that for all
t ≥ t, βt(k1ρt + k0) ≤ β̃t. From Assumption A(b), for all (at, st)t∈N ∈ U(s0),
|ft(at, st)| ≤ k0 + k1ρt. Thus, for all ε > 0, there exists tε ∈ N, such that
|
∑∞

t=tε
βtft(at, st)| ≤ ε for all (at, st)t∈N ∈ U(s0). So the objective function is well

defined on U(s0).
Let ((aνt , s

ν
t )) be sequence of U(s0) converging to (āt, s̄t) ∈ U(s0). From the

property of the product topology, for all fixed t, the sequence in R2 (aνt , s
ν
t )ν

converges to (āt, s̄t). So, (
∑tε

t=0 β
tft(a

ν
t , s

ν
t )) converges to

∑tε
t=0 β

tft(āt, s̄t). Hence
there exists ν ∈ N such that for all ν ≥ ν,∣∣∣∣∣

tε∑
t=0

βtft(a
ν
t , s

ν
t ))−

tε∑
t=0

βtft(āt, s̄t)

∣∣∣∣∣ ≤ ε

Hence, one deduces that for all ν ≥ ν,

|Φ((aνt , s
ν
t )t∈N)− Φ((āt, st)t∈N)| ≤ |

∑tε
t=0 β

tft(a
ν
t , s

ν
t ))−

∑tε
t=0 β

tft(āt, s̄t)|
+|
∑∞

t=tε+1 β
tft(a

ν
t , s

ν
t )|+ |

∑∞
t=tε+1 β

tft(āt, s̄t)|
≤ 3ε
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which shows that Φ is continuous.
3) This is a direct consequence of the two previous parts and the fact that∏
t∈N B̄(0, ρt) is compact for the product topology. �

Examples
Optimal consumption with a given initial wealth:

We are considering the same problem as in the finite horizon case except that
we extend the horizon to +∞. For a given w0 > 0, we have the following optimi-
sation problem:

(P)


Maximise

∑∞
t=0 β

tu(ct)
wt+1 = (1 + r)(wt − ct), t ≥ 0
ct ∈ [0, wt], t ≥ 0

We assume that u is a differentiable concave strictly increasing function on R+

satisfying u(0) = 0. We remark that U(w0) ⊂
∏

t∈N B̄(0, (1 + r)tw0). For c̃ > 0,
u(c) ≤ u′(c̃)c+ k0. Note that limt→∞

t
√
u′(c̃)(1 + r)tw0 + k0β = (1 + r)β.

So Assumption A is satisfied if the interest rate r is small enough with respect
to the actualisation factor. Then there exists a solution. This condition means
that the consumer has a strong enough preference for the present, meaning a
small enough actualisation rate β, with respect to the interest rate.

If the interest rate is above the inverse of the discount factor, then maybe no
solution exists: for example, if u(c) = γc with γ > 0. Then if (1 + r) > 1

β
,

βtγ(1 + r)tw0 tends to +∞ so the consumer can wait to get a utility level as high
as he wants.

Ramsay growth model:
We consider the same framework presented in the previous section but we

extend the horizon to +∞. We maintain the same assumptions. So, the problem
is now for a given initial stock of capital k0:

(P)


Maximise

∑∞
t=0 β

tu(ct)
kt+1 = F (kt)− ct t ≥ 0
ct ≥ 0, kt ≥ 0, t ≥ 0

Show that a feasible sequence (kt) of stock of capital is bounded above by max{k̄, k0}
where k̄ > 0 satisfies F (k̄) = k̄. Show that the problem has a solution for all
k0 > 0.

2.3.2 First order necessary conditions

We show that the first order necessary conditions are the same as the one pre-
sented in the previous section with a finite horizon. Let (a∗t , s

∗
t ) be an optimal

solution of the general problem (P). For a given period T > 0, we consider the
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truncated problem:

(PT )


Maximise

∑T
t=0 β

tft(at, st) +
∑∞

t=T+1 β
tft(a

∗
t , s
∗
t )

st+1 = gt(at, st), t = 0, . . . , T − 1
s∗T+1 = gT (aT , sT )
(at, st) ∈ At, t = 0, . . . , T

Then, one easily check that the truncated sequence (a∗t , s
∗
t )
T
t=0 satisfies the con-

straints and is a solution of the problem (PT ). So, one can apply the result of
the previous section to this finite horizon problem.

If (a∗t , s
∗
t ) ∈ intAt for all t = 0, . . . , T , then, for all t = 0, . . . , T .{

βt ∂ft
∂at

(a∗t , s
∗
t ) = −λt+1

∂gt
∂at

(a∗t , s
∗
t )

βt ∂ft
∂st

(a∗t , s
∗
t ) = −λt+1

∂gt
∂st

(a∗t , s
∗
t ) + λt

If some positivity constraints are binding or if we have a functional representation
of the set At, then we also get the same first order necessary conditions taken
into account the other binding constraints.

Exercise 39 (Ramsay growth model) 1) Write the first order necessary con-
ditions for the Ramsay growth model at an interior solution (c∗t , k

∗
t ), that is

c∗t ∈]0, k∗t [ for all t.
2) Derive from these conditions the Euler equation:

βu′(c∗t+1)F ′(k∗t+1) = u′(c∗t )

3) Show that an optimal solution is always an interior solution as a consequence
of the Inada condition u′(0) = +∞.

2.3.3 Value function

In this part, we study properties of the value function V of the maximisation
of the intertemporal payoffs with an infinite horizon. So we assume that V is
defined on an open interval of R. The previous existence result provides sufficient
condition under which this holds true.

We first give sufficient conditions under which V is concave with respect to
the initial state s0.

Proposition 39 Let us assume that for all t ∈ N,

a) ft and gt are concave functions and increasing with respect to s;

b) At is convex and if (at, st) ∈ At and s′t ≥ st, then (at, s
′
t) ∈ At.

Then V is concave on its interval of definition and so continuous on the interior
of this interval.
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Proof. Let s0 and s′0 two initial states in the domain of V . Let (āt, s̄t) be a
feasible action - state sequence for s0 and (ãt, s̃t) feasible for s′0. Let τ ∈]0, 1[.
Then let aτt = τ āt + (1− τ)ãt and sτt = τ s̄t + (1− τ)s̃t. (στt ) is a state sequence
defined by στt+1 = gt(a

τ
t , σ

τ
t ), στ0 = sτ0.

Then for all t, from the concavity of gt and the fact that it is increasing with
respect to s, στt ≥ sτt . Indeed, sτ1 = τ s̄1+(1−τ)s̃1 = τg0(ā0, s0)+(1−τ)g0(ã0, s

′
0) ≤

g0(τ ā0 + (1− τ)ã0, τs0 + (1− τ)s′0) = στ0 since g concave.
sτ2 = τ s̄2 +(1− τ)s̃2 = τg1(ā1, s̄1)+(1− τ)g1(ã1, s̃1) ≤ g1(τ ā1 +(1− τ)ã1, τ s̄1 +

(1 − τ)s̃1) = g1(aτ1, s
τ
1) ≤ g1(aτ1, σ

τ
1 ) = στ2 since g is concave and increasing with

respect to s. So by induction, we prove the result for all t ∈ N.
(aτt , σ

τ
t ) is feasible for τs0 + (1 − τ)s′0 from our assumption on the convexity

of At and the possibility to increase the state. From the definition of the value
function:

V (τs0 + (1− τ)s′0) ≥
∞∑
t=0

ft(a
τ
t , σ

τ
t ) ≥

∞∑
t=0

ft(a
τ
t , s

τ
t )

since ft increasing with respect to s. So,
∞∑
t=0

ft(a
τ
t , s

τ
t ) ≥ τ

∞∑
t=0

ft(āt, s̄t) + (1− τ)
∞∑
t=0

ft(ãt, s̃t)

since f concave.
One concludes that V (τs0 + (1− τ)s′0) ≥ τV (s0) + (1− τ)V (s′0). �

We now study the differentiability of V on its interval of definition. For this,
we use a property of the concave functions which is left as an exercise.

Exercise 40 Let ϕ be a concave function on an open interval I. Let x̄ ∈ I. We
assume that there exists a function ψ defined on an open interval J containing s̄
such that ψ is differentiable at x̄, ψ(x̄) = ϕ(x̄) and ϕ(x) ≥ ψ(x) for all x ∈ J .
Then ϕ is differentiable at x̄ and ϕ′(x̄) = ψ′(x̄).

Proposition 40 We maintain the assumption of the previous proposition. Let
(a∗0, s

∗
0) be a solution of the problem (P) with the initial state s∗0. We assume

that the functions f0 and g0 are differentiable on a neighbourhood of (a∗0, s
∗
0) and

∂g0

∂a
(a∗0, s

∗
0) 6= 0.

Then V is differentiable at s∗0 and

V ′(s∗0) = −∂f0

∂a
(a∗0, s̄

∗
0)

∂g0

∂s
(a∗0, s

∗
0)

∂g0

∂a
(a∗0, s

∗
0)

+
∂f0

∂s
(a∗0, s

∗
0)

Proof. From the Implicit Function Theorem, there exists a differentiable func-
tion α defined on a neighbourhood of s∗0 such that g0(α(s0), s0) = s∗1 for all s0,
α(s∗0) = a∗0 and

α′(s∗0) = −
∂g0

∂s
(a∗0, s

∗
0)

∂g0

∂a
(a∗0, s

∗
0)
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So, for all s0 in a neighbourhood of s∗0, V (s0) ≥ f0(a(s0), s0) +
∑∞

t=1 ft(a
∗
t , s
∗
t )

and V (s∗0) = f0(a(s∗0), s∗0) +
∑∞

t=1 ft(a
∗
t , s
∗
t ). Since V is concave and the func-

tion f0(a(s0), s0) +
∑∞

t=1 ft(a
∗
t , s
∗
t ) is differentiable at s∗0, one conclude that V is

differentiable at s∗0 and

V ′(s∗0) = ∂f0

∂a
(a∗0, s̄

∗
0)α′(s∗0) + ∂f0

∂s
(a∗0, s

∗
0)

= −∂f0

∂a
(a∗0, s̄

∗
0)

∂g0
∂s

(a∗0,s
∗
0)

∂g0
∂a

(a∗0,s
∗
0)

+ ∂f0

∂s
(a∗0, s

∗
0)

�

Remark 21 Multipliers and derivatives of the value functions Let V 1(s1) be the
value function of the truncated problem starting at period 1 with the initial state
s1:

(P1)


Maximise

∑∞
t=1 β

tft(at, st)
st+1 = gt(at, st), t ≥ 1
(at, st) ∈ At, t ≥ 1

Under the same assumptions as above, V 1 is a concave differentiable function and

V 1′(s∗1) = β

(
−∂f1

∂a
(a∗1, s

∗
1)

∂g1

∂s
(a∗1, s

∗
1)

∂g1

∂a
(a∗1, s

∗
1)

+
∂f1

∂s
(a∗1, s

∗
1)

)

From the first order necessay condition:
β ∂f1

∂a
(a∗1, s

∗
1) = −λ2

∂g1

∂a
(a∗1, s

∗
1)

β ∂f1

∂s
(a∗1, s

∗
1) = −λ2

∂g1

∂s
(a∗1, s

∗
1) + λ1

one deduces that
λ1 = V 1′(s∗1)

Using the same reasoning, one proves that λt = V t′(s∗t ) at each period.
So, as in the finite horizon case, the Hamiltonian Ht(a, s, λ) = ft(a, s) +

λ gt(a, s) is maximised at the optimal action a∗t for the given state s∗t and for
the suitable multiplier λt+1. Indeed, the action at is chosen in order to max-
imise ft(at, s∗t )+V t+1(gt(at, s

∗
t )) that is the current payoff plus the optimal future

payoff which depends on the action at date t through the transition equation gt
which determines the initial state of the problem (P t+1). So, the Hamiltonian
Ht(at, s

∗
t , λt+1) is a first order approximation the objective function at date t since

it has the same derivative than the objective function at the optimal solution a∗t .

Exercise 41 Ramsay growth model: Check that the above assumptions are
satisfied. Show that at an interior solution:

V ′(k∗0) = −u′(c∗0)F ′(k∗0)
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2.4 Stationary optimisation problem

Contrary to the finite horizon model, we cannot use the dynamical programming
algorithm since we have no final period. In this section, we show that we can
compute the value function for stationary optimisation problems as the fixed
point of a contracting operator.

From now on, we assume that ft, gt and At are independent of t and they are
denoted f , g and A.

So, our dynamical optimisation problem is now

(P)


Maximise

∑∞
t=1 β

tf(at, st)
st+1 = g(at, st), t ≥ 0
(at, st) ∈ A, t ≥ 0

and the feasible trajectories are given by:

U(s0) = {(at, st) | ∀t ∈ N, st+1 = g(at, st), (at, st) ∈ A}

V (s0) denotes the value of the above problem with the initial condition s0.
We now consider stronger assumptions to get the recursive equation satisfied

by the value function.

Assumption B There exists an interval I of R, there exists ρ > 0, such that for
all s0 ∈ I,

a) for all a such that (a, s0) ∈ A, then g(a, s0) ∈ I;

b) the set {a | (a, s0) ∈ A} is compact;

c) U(s0) ⊂
∏

t∈N B̄(0, ρ);

d) f and g are continuous.

One deduces from this assumption that ∃k0 ≥ 0, |f(a, s)| ≤ k0 on B̄(0, ρ), so
the objective function is well defined for all s0 ∈ I.

2.4.1 Bellman Equation

Proposition 41 V satisfies the Bellman equation: for all s0,

V (s0) = max{f(a0, s0) + βV (s1) | (a0, s0) ∈ A, s1 = g(a0, s0)}

Proof. We start by showing that V (s0) ≥ max{f(a0, s0) + βV (s1) | (a0, s0) ∈
A, s1 = g(a0, s0)}.

Let (a0, s0) ∈ A and s1 = g(a0, s0). Let (α∗t , σ
∗
t )t≥1 be a solution for the

problem (P1) with the initial state s1. Then, (a0, s0, (α
∗
t , σ

∗
t )t≥1) ∈ U(s0), so

V (s0) ≥ f(a0, s0) +
∞∑
t=1

βtf(α∗t , σ
∗
t ) = f(a0, s0) + βV1(s1)
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Taken the maximum over a0, we get the result.
For the converse inequality; Let (a∗t , s

∗
t )t≥0 be a solution for the initial state s0.

Then (a∗t , a
∗
t )t≥1 is solution for for the problem (P1) and the initial state s∗1. If

not, there exists (α∗t , σ
∗
t )t≥1,

∑∞
t=1 β

tf(α∗t , σ
∗
t ) >

∑∞
t=1 β

tf(a∗t , s
∗
t ), then f(a∗0, s0)+∑∞

t=1 β
tf(α∗t , σ

∗
t ) > f(a∗0, s0) +

∑∞
t=1 β

tf(a∗t , s
∗
t ), which is in contradiction with

(a∗t , s
∗
t )t≥0 solution for s0.

So,

V (s0) = f(a∗0, s0) +
∑∞

t=1 β
tf(a∗t , s

∗
t )

= f(a∗0, s0) + βV (s∗1)
≤ max{f(a0, s0) + βV (s1) | (a0, s0) ∈ A, s1 = g(a0, s0)}

�

Proposition 42 V is the unique continuous solution to the Bellman equation,
satisfying the following transversality condition for all s0 ∈ I:

lim
T→∞

βTV (s0) = 0

Proof. Let us first show that V satisfies the transversality condition. From our
assumption, |V (s0)| ≤

∑∞
t=0 k0β

t ≤ k0

1−β . So limT→∞ β
TV (s0) = 0

LetW be another solution of the Bellman equation satisfying the transversality
condition. From our assumptions, there exists ã0 such that W (s0) = f(ã0, s0) +
βW (s1). By induction, there exists a sequence (ãt, s̃t) such that

W (s0) =
T−1∑
t=0

βtf(ãt, s̃t) + βTW (s̃T )

From the transversality condition, W (s0) =
∑∞

t=0 β
tf(ãt, s̃t) ≤ V (s0).

Conversely, for any feasible sequence in U(s0),

W (s0) ≥ f(a0, s0) + βW (s1)

W (s1) ≥ f(a1, s1) + βW (s2)

So, for all T ,

W (s0) ≥
T−1∑
t=0

f(at, st) + βTW (sT )

Using the transversality condition, W (s0) ≥
∑∞

t=0 f(at, st). Since this inequality
holds for all feasible sequence, W (s0) ≥ V (s0). �

Remark 22 From the Bellman equation, one checks that the optimal action at
date t can be computed as a solution of the following problem:

max{f(at, st) + βV (g(at, st)) | (at, st) ∈ A}

Exercise 42 Steady state We consider the Bellman equation and we denote by
α(s0) the optimal solution given s0. A fixed point s∗ of g(α(·), ·) is called a
Steady state. Show that if s0 = s∗, then the optimal solution of the problem is
the constant sequence(α(s∗), s∗)t∈N.
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2.4.2 V is a fixed point of a contracting mapping

We consider the set B(I) of the bounded functions from I to R with the uniform
norm. We recall that this is a complete metric space. We define an operator T
from B(I) to itself as follows:

Th(s) = sup{f(a, s) + βh(g(a, s)) | (a, s) ∈ A}

Remark 23 Th is well defined since h bounded, g(a, s) ∈ I by assumption, the
set of a such that (a, s) ∈ A is compact and f is continuous and upper-bounded.

Exercise 43 Show that if I = R+ and A is defined by

A = {(a, s) ∈ R2 | s ≥ 0, a ∈ [α(s), α(s)]}

where α and α are continuous functions from R+ to R satisfying α(s) ≤ α(s) for
all s ∈ R+, then Th is continuous if h is a continuous function of B(I).

Proposition 43 From the Blackwell criterion, T is β-contracting operator.

Proof. Let h and h̃ two functions in B(I). If h ≤ h̃, that is h(s) ≤ h(s′) for all
s ∈ I, then, for all s ∈ I, for all a such that (a, s) ∈ A, f(a, s) + βh(g(a, s)) ≤
f(a, s) + βh̃(g(a, s)), so sup{f(a, s) + βh(g(a, s)) | (a, s) ∈ A} ≤ sup{f(a, s) +
βh̃(g(a, s)) | (a, s) ∈ A}, that is Th ≤ T h̃.

Let 1I be the constant function on I equals to 1 for all s. Then

T (h+ β1I)(s) = sup{f(a, s) + β(h(g(a, s)) + 1) | (a, s) ∈ A}
= sup{f(a, s) + βh(g(a, s)) | (a, s) ∈ A}+ β

hence, T (h+ β1I) = Th+ β1I .
So the operator T satisfies the Blackwell criterion from which one concludes

that it is β-contracting. �

Proposition 44 Under Assumption B, from the Banach fixed point theorem, the
value function V is the unique fixed point of the operator T in B(I). Since T send
a continuous mapping to a continuous one, one deduces that V is continuous on
I.

Exercise 44 We consider the Ramsay growth model. We consider the Bellman
equation and for all k ≥ 0, we denote by α(k) the optimal solution. Let ϕ(k) =
k − α(k).
1) Show that α and ϕ are continuous.
2) Show that if k > 0, then ϕ(k) > 0 and α(k) > 0.
3) Show that ϕ is increasing.
4) Show that f − ϕ is increasing.
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Exercise 45 We consider the Ramsay growth model.
1) Show that if we choose an interval I = [0, k̂] with k̂ ≥ k̄, where k̄ is the fixed
point of F , then Assumption B is satisfied.
2) Show that the optimal capital stock (k∗t ) is monotonic;
3) Show that if F ′(0) ≤ 1

β
, then the optimal capital stock (k∗t ) converges to 0;

3) Show that if F ′(0) > 1
β
, then the optimal capital stock (k∗t ) converges to a

steady state K which is strictly positive and satisfies F ′(K) = 1
β
.

2.5 Continuous Time

We are now considering the continuous time case, which is a good approximation
when we consider smaller and smaller time periods. Furthermore, the powerful
tools of mathematical analysis and dynamical systems allow to derive interesting
properties of the optimal trajectories with valuable economic interpretations.

Exercise 46 Actualisation factor in continuous time Let us consider a discrete
actualisation factor β ∈]0, 1[, which means that 1 euro today is equivalent to
1
β
euro at the next period. This denotes the preference for the present or the

impatience of the economic agent. Conversely, if r is the interest rate, then 1
euro invested today provides a return of 1 + r euro at the next period. So the
economic agent with the actualisation factor β is indifferent between consuming
1 euro now or investing it for one period and consuming 1 + r euro tomorrow if
β = 1

1+r
.

If the period is divided in n sub-periods with an interest rate r
n
on each sub-

period, then the placement of 1 euro provides a return of (1+ r
n
)n and the economic

agent is indifferent if β = 1
(1+ r

n
)n
.

Show that at the limit when the duration of the sub-periods tends to 0, then
the instantaneous interest rate equivalent to the discount factor β is equal to
r̄ = − ln β.

Show that the actualisation factor between to dates t and t′ > t is equal to
e−r̄(t

′−t).

2.5.1 Finite horizon continuous time dynamical problem

The formulation of a dynamical problem in continuous time considers an initial
given state s0 and a period [0, T ]. Then the transition equation is replaced by
a differential equation ṡ = g(a(t), s(t), t) where g is supposed to be sufficiently
regular to insure that we have a unique solution on the interval [0, T ] for regular
enough action function a(·). For this, we use the Cauchy-Lipschitz Theorem on
the existence of solutions for a differential equation. For example, it is assumed
that g is locally Lipschitz continuous.

Then we have a function f representing the instantaneous payoff and a terminal
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payoff given by fT . So, the problem is the following

(P)

 Maximise
∫ T

0
e−rtf(a(t), s(t), t)dt+ e−rTfT (s(T ))

ṡ = g(a(t), s(t), t) t ≥ 0
(at, st) ∈ A, t ≥ 0

Then the Lagrange multipliers are now a function λ(·) defined on [0, T ]. We
can define the Lagrangian of the problem:

L(a, s, t, λ) =
∫ T

0
e−rtf(a(t), s(t), t)dt+ e−rTfT (s(T ))

−
∫ T

0
e−rtλ(t)(ṡ− g(a(t), s(t), t))dt

Defining the Hamiltonian as

H(a(t), s(t), t, λ(t)) = f(a(t), s(t), t) + λ(t)(ṡ = g(a(t), s(t), t))

we get

L(a, s, t, λ) =

∫ T

0

e−rtH(a(t), s(t), t, λ(t))dt+ e−rTfT (s(T ))−
∫ T

0

e−rtλ(t)ṡdt

Assuming that λ is differentiable and Integrating by part the last term, we get∫ T
0
e−rtλ(t)ṡdt = e−rTλ(T )s(T )− λ(0)s(0)−

∫ T
0
e−rts(t)λ̇(t)dt

+r
∫ T

0
e−rts(t)λ(t)dt

So the Lagrangian can now be written as:

L(a, s, t, λ) =
∫ T

0
e−rt

(
H(a(t), s(t), t, λ(t)) + s(t)λ̇(t)− rs(t)λ(t)

)
dt

+e−rTfT (s(T ))− e−rTλ(T )s(T ) + λ(0)s(0)

The first order conditions provided by the partial derivatives of the Lagrangian
are:

e−rtDaH(a(t), s(t), t, λ(t)) = 0

e−rt
(
DsH(a(t), s(t), t, λ(t)) + λ̇(t)− rλ(t)

)
= 0

e−rt (f ′T (s(T ))− λ(T )) = 0

which implies
DaH(a(t), s(t), t, λ(t)) = 0

λ̇(t) = rλ(t)−DsH(a(t), s(t), t, λ(t)) = 0

λ(T ) = f ′T (s(T ))

We also have the transition equation on the state

ṡ = g(a(t), s(t), t)

More generally, we can prove that the maximum principle holds true, that is, at
almost all t ∈ [0, T ], a(t) maximises the Hamiltonian H(a(t), s(t), t, λ(t)).

So, we can state the first order necessary conditions for this continuous time
finite horizon dynamical problem.
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Proposition 45 Under suitable regularity conditions on the the functions f and
g, if a∗ is an optimal solution of the problem (P), then it exists an almost every-
where differentiable function λ such that

a∗(t) maximises the Hamiltonian H(a, s(t), t, λ(t)) almost everywhere;

λ̇(t) = rλ(t)−DsH(a∗(t), s∗(t), t, λ(t)) = 0

λ(T ) = f ′T (s∗(T ))

ṡ = g(a∗(t), s∗(t), t)

2.5.2 Calculus of variations

The classical calculus of variations deals with the problems of the following forms:

(Q)
{

Maximise
∫ T

0
e−rtf(ṡ(t), s(t), t)dt+ e−rTfT (s(T ))

for a given s0.
By considering the additional differential equation ṡ = a(t), we get an equiva-

lent standard dynamical optimisation problem in continuous time:

(Q̃)

{
Maximise

∫ T
0
e−rtf(a(t), s(t), t)dt+ e−rTfT (s(T ))

ṡ = a(t)

The Hamiltonian is now simply

H(a(t), s(t), t, λ(t)) = f(a(t), s(t), t) + λ(t)a(t)

The necessary optimality conditions are

Daf(a(t), s(t), t) + λ(t) = 0

ṡ = a(t)

λ̇ = −Dsf(a(t), s(t), t)

If we consider the derivative of the first equation with respect to t, we get:

λ̇ = −DtDaf(a(t), s(t), t)

From which, one derives the Euler Equation:

Dsf(ṡ(t), s(t), t) = DtDaf(ṡ(t), s(t), t)
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2.5.3 A remark for the infinite horizon

If we are considering an infinite horizon problem like

(P)


Maximise

∫∞
0
e−rtf(a(t), s(t), t)dt

ṡ = g(a(t), s(t), t) t ≥ 0
(at, st) ∈ A, t ≥ 0

then, as in the discrete case and using the Bellman principle, the necessary con-
ditions for the finite horizon problem are still valid. So, under suitable regularity
conditions on the the functions f and g, if a∗ is an optimal solution of the problem
(P), then it exists an almost everywhere differentiable function λ such that

a∗(t) maximises the Hamiltonian H(a, s(t), t, λ(t)) almost everywhere;

λ̇(t) = rλ(t)−DsH(a∗(t), s∗(t), t, λ(t)) = 0

ṡ = g(a∗(t), s∗(t), t)

2.5.4 Examples

Optimal growth model In continuous time with an infinite horizon, the Ramsey
growth model becomes for a given stock k(0) of capital

(P)


Maximise

∫∞
0
e−rtu(c(t))dt

k̇ = F (k(t))− c(t)
c(t) ≥ 0, k(t) ≥ 0 for all t ≥ 0

The Hamiltonian is

H(a(t), s(t), t, λ(t)) = u(c(t)) + λ(t)(F (k(t))− c(t))

The necessary conditions are for an interior solution:

u′(c(t))− λ(t) = 0

λ̇ = (r − F ′(k(t)))λ(t)

k̇ : F (k(t))− c(t)

One deduces from u′(c(t)) = λ(t) that λ̇ = u′′(c(t))ċ. Using this equation, we
derive the Euler equation

u′′(c(t))ċ = (r − F ′(k(t)))u′(c(t))

Under the usual assumption that u is concave and increasing as well as F , we
derive the fact that the sign of c is the same as the sign of r − F ′(k(t)). So
the consumption is increasing if the marginal productivity is higher than the
instantaneous interest rate, which is similar to what we get in a discrete time
model.
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Investment in a competitive firm We consider a firm producing an output
from an input “capital” according to a production function F (k). The “capital”
good is long lived with a depreciation. The initial stock of capital is k(0). The
constant depreciation rate is denoted δ. The firm can invest by purchasing the
capital good on the market at the constant price q. The output price is p(t) at
time t. The firm maximises its intertemporal profit, that is, chooses an optimal
investment policy I(t) in order to solve the following maximisation problem:

(P)


Maximise

∫∞
0
e−rt (p(t)F (k(t))− qI(t)) dt

k̇ = I(t)− δk(t)
k(t) ≥ 0, I(t) ≥ 0 for all t ≥ 0

Show that the necessary optimality condition for an optimal investment is:

p(t)F ′(k(t)) = (r + δ)q
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