
Lectures notes on:
Optimisation in Euclidean Spaces1

Jean-Marc Bonnisseau2

September 8, 2020

1EMJMD QEM, First semester, first year, 2020-2021
2Paris School of Economics, Université Paris 1 Panthéon Sor-

bonne, 106-112 Boulevard de l’Hôpital, 75647 Paris Cedex 13, France,
Jean-marc.Bonnisseau@univ-paris1.fr



Contents

1 Presentation of Optimization 6
1.1 Mathematical presentation . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Examples of economic optimisation problems . . . . . . . . . . . . 8

1.2.1 Consumer theory . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Producer Theory . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Finance theory . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Game theory . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.6 Transportation problems . . . . . . . . . . . . . . . . . . . 9
1.2.7 Constant returns to scale . . . . . . . . . . . . . . . . . . . 10

1.3 One variable optimization . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Existence of a solution . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Necessary conditions of optimality . . . . . . . . . . . . . . 12

1.4 Convex and concave functions . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Properties of convex and concave functions . . . . . . . . . 14
1.4.3 Optimization of convex or concave functions . . . . . . . . 14

1.5 Introduction to sensitivity analysis . . . . . . . . . . . . . . . . . 15
1.6 Quasi-convex and quasi-concave functions . . . . . . . . . . . . . 15

2 Norm, convergence and continuity in Euclidean spaces 18
2.1 Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Basic topology on Rn . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Continuous function on a compact set . . . . . . . . . . . . . . . . 28
2.7 Banach fixed point theorem . . . . . . . . . . . . . . . . . . . . . 28
2.8 Sequence of continuous bounded mappings . . . . . . . . . . . . . 28
2.9 Norms on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Space of linear mappings . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 Existence of a solution for optimisation problems . . . . . . . . . 30

1



3 Multivariable Calculus 32
3.1 Derivative of f : R→ Rp . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Derivative of f : Rn → R . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Reminder on Euclidean algebra . . . . . . . . . . . . . . . 34
3.2.3 Differentiable Functions . . . . . . . . . . . . . . . . . . . 38
3.2.4 Geometric properties of the gradient . . . . . . . . . . . . 39
3.2.5 Tangent plane to a surface . . . . . . . . . . . . . . . . . . 40
3.2.6 Taylor Formula . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.7 Euler’s formula . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Derivative of f : Rn → Rp . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 The Frechet derivative as a linear map . . . . . . . . . . . 42
3.3.2 The Jacobian matrix of a differentiable map . . . . . . . . 43
3.3.3 Basic Properties of the Derivative . . . . . . . . . . . . . . 44
3.3.4 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 The Mean Value Theorem . . . . . . . . . . . . . . . . . . 45

3.4 Unconstrained Optimisation . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 First order necessary optimality condition . . . . . . . . . 48
3.4.2 Second order necessary optimality condition . . . . . . . . 49

3.5 Optimisation with linear equality constraints . . . . . . . . . . . . 50

4 Optimization with equality contraints and sensitiviy analysis 53
4.1 Introduction to the implicit function theorem . . . . . . . . . . . 53
4.2 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . 56
4.3 First order necessary optimality condition . . . . . . . . . . . . . 59
4.4 Lagrangian function and second order necessary condition . . . . 60
4.5 Multipliers and derivative of the value function . . . . . . . . . . . 63

5 Convex functions and convex sets 66
5.1 Properties of convex functions . . . . . . . . . . . . . . . . . . . . 66
5.2 Necessary and sufficient condition of optimality for convex (con-

cave) functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Sufficient condition for local solutions . . . . . . . . . . . . . . . . 72
5.4 Convex set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Basic properties of convex sets . . . . . . . . . . . . . . . 75
5.5 Projection on a closed convex set and separation theorems . . . . 80
5.6 Farkas’ Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.1 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.2 Farkas’ Lemma . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Karush-Kuhn-Tucker Theorem 88
6.1 Karush-Kuhn-Tucker first order Conditions . . . . . . . . . . . . . 88
6.2 Second order necessary condition . . . . . . . . . . . . . . . . . . 94

2



6.3 Second order sufficient condition . . . . . . . . . . . . . . . . . . 95

3



Optimisation

General Presentation: This course introduces to Optimization in finite di-
mensional spaces (first part), and infinite dimensional spaces (second part). This
is motivated by models in Economics, Finance, Macroeconomics, Statistics, etc.,
where these tools are very important to study existence of Optimization problems,
uniqueness, properties of the value, method to compute the solution, etc...

Part I: Optimization in Euclidean spaces.

1. Presentation of Optimization, examples (micro, macro, statistics), vocabu-
lary.

2. Optimisation in the one-dimensional case. Basic differential calculus in R.
First-order necessary condition, second-order sufficient condition, convex or
concave functions and application to optimisation.

3. Topology in Euclidean spaces: norm, distance, continuity, closed subset,
compact sets, open subset, boundary, and interior points. Notion of level
curves.

4. The Euclidean case: existence results (if compactness: Weierstrass; other-
wise, coercivity). Applications.

5. Differentiable unconstrained optimization problem in Euclidean space:
reminders about differentiability (differential, first-order development, Ck
functions, Hessian matrix, semi-definite matrices, second-order develop-
ment, etc...). First-order necessary condition, second-order necessary con-
dition. Optimisation with linear equality constraint.

6. Constrained optimization with equality constraints. Reminder on the im-
plicit function theorem. First-order necessary condition: Existence of La-
grange multipliers. Lagrangian function. Interpretation of the multipliers
as the derivatives of the value function. The enveloppe theorem.

7. Convex (concave) functions. Basic properties, continuity of convex function,
properties of the gradient and the hessian matrix of a convex function. Nec-
essary and sufficient optimality conditions for convex (concave) objectives
functions.

8. Convex sets, projection and separation theorems. Basic properties of con-
vex sets, convex cone, Carathéodory’s Theorems, projection on a convex
set, properties, characterisation. Separation theorems. Polar cone, bipolar
Theorem, Farkas Lemma.

9. Constrained optimization with equality and inequality constraints. Con-
straint qualification (rank condition, affine case, Slater’s condition, etc),
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Karush-Kuhn-Tucker necessary conditions, second order necessary condi-
tion. Sufficient optimality condition for convex (concave) functions. Inter-
pretation of the multipliers as the derivative of the value function.

Part II: Dynamical optimization.

1. Reminders about infinite dimensional normed spaces. Examples of norms
in sequence spaces, functions spaces (lp-norm, l∞-norm). Equivalence of
norms in finite dimensional spaces. Non-compactness of a ball in infinite
dimensional spaces (Riesz). Continuity of linear function in normed space
and link with Lipschitz function.

2. Metric spaces. Convergences, continuity, compactness, completeness. Ex-
amples of sequence spaces. Basic example of a sequence space which is not
compact and another one which is compact. Product metric on a countable
product of metric spaces, link with the product topology. Compactness of
a countable product of compact.

3. Complete spaces (Cauchy sequences, link with convergence, examples for se-
quence spaces, function spaces,...). Banach fixed-point theorem. Blackwell
fixed-point theorem.

4. Dynamic programming with a finite horizon. Framework. Decision variables.
Time consistency. Backward induction. Examples.

5. Dynamic programming with an infinite horizon. Bellman equation, neces-
sary optimality condition. Interpretation of the multipliers with the value
function. General discounted optimization problem under some feasibility
conditions. Existence of a solution, existence of the value function. Prop-
erties of the value function. Some applications in growth models.
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Chapter 1

Presentation of Optimization

1.1 Mathematical presentation

Let us consider a function f from a set A to R. A can be a subset of R or of Rn,
or N, or a set of persons, of dates, of locations ... Let C be a subset of A. The
problem consists in finding the maximum (respectively the minimum) of f , called
the objective function on C. The set C is the set of feasible points (admissible
points), it is often described by a finite list of constraints.

We will note
(P) max

x∈C
f(x) resp. (Q) min

x∈C
f(x)

Definition 1 The point x is solution of (P) (respectively of (Q)) if x ∈ C and
if for all x in C, f(x) ≤ f(x) (respectively f(x) ≥ f(x)).

Definition 2 If we can define a distance on A, d : A×A→ R+, the point x is a
local solution of (P) (respectively of (Q)) if x ∈ C and if there exists r > 0 such
that for all x in C such that d(x, x′) < r, f(x) ≤ f(x) (respectively f(x) ≥ f(x)).

We will denote Sol(P) for the set of solutions of P .

Definition 3 We define the value of Problem (P) (respectively of (Q)) the supre-
mum (respectively the infimum ) of the set {f(x) | x ∈ C}. This value is either
finite or infinite.

If the domain C is empty, we will let by convention val(P) = −∞ and val(Q) =
+∞. One should distinguish between c a solution of P which is a vector of A
and v = f(c) the corresponding value which is an element of [−∞,+∞]. There
might exist several solutions c while the value v is unique.

Example 1
(P) max

x∈R
sinx

valP = 1 while SolP = {π/2 + 2kπ | k ∈ Z}
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Example 2

(P) max
x∈R

x2

1 + x2

valP = 1 while SolP = ∅

Proposition 1 Let f : A → R. Let us consider the optimization problem P,
maxx∈C f(x) whose value is α, we have C ∩ {x ∈ A | f(x) > α} = ∅ and

SolP = f−1(α) ∩ C and = {x ∈ A | f(x) ≥ α} ∩ C.

In particular, if valP /∈ R, then SolP = ∅.

Definition 4 If P and (Q) are two optimization problems, we say that they are
equivalent if their sets of solution are equal (but in general, their values are not
equal).

Exercise 1 Let X ⊂ Y be two subsets of A and f be a function from A to R.
Let us consider two optimization problems:

(PX)

{
max f(x)
x ∈ X (PY )

{
max f(x)
x ∈ Y

1) Show that val(PX) ≤ val(PY ).
2) If y ∈ Sol(PY ), and if y ∈ X, show that y ∈ Sol(PX). This means :

Sol(PY ) ∩X ⊂ Sol(PX)

3) If x ∈ Sol(PX), and if val(PX) = val(PY ), then prove that x ∈ Sol(PY ). This
means :

val(PX) = val(PY )⇒ Sol(PX) ⊂ Sol(PY )

4) We assume that for all y in the set Y , there exists x ∈ X such that f(x) ≥ f(y),
show that val(PX) = val(PY ).
5) In the following example, show that Sol(PY ) 6⊂ Sol(PX).

(PX)

{
max 1− x2

x ∈ ]2, 3[
(PY )

{
max 1− x2

x ∈ R

6) Same question for Sol(PX) 6⊂ Sol(PY ).

(PX)

{
max ex(sinx+ 2)
x ∈ [0, π]

(PY )

{
max ex(sinx+ 2)
x ∈ R

Exercise 2 Let P be the optimization problem maxx∈C f(x). Let us define the
set

D = {(x, y) ∈ C × R | y ≤ f(x)}
Let us define g on C × R par g(x, y) = y and the optimization problem (Q),
max(x,y)∈D g(x, y).
1) Show that (P) and (Q) have the same value.
2) Show that if x ∈ SolP , then (x, f(x)) ∈ Sol(Q).
3) Prove that if (x, y) ∈ Sol(Q), then x ∈ SolP , and y = f(x).
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Exercise 3 Let f be a function defined on C. Let us suppose that ϕ : X ⊂ R→
R is an increasing function and f(c) ∈ X for all c ∈ C.

(P1)

{
max f(x)
x ∈ C (P2)

{
maxϕ(f(x))
x ∈ C (P3)

{
min−ϕ(f(x))
x ∈ C

1) Prove that the three following problems are equivalents, that is that their sets
of solutions are the same.
2) Prove that if ϕ is continuous and val(P1) ∈ X, then val(P2) = ϕ(val(P1)).
3) Show that if there exists a solution, then val(P2) = ϕ(val(P1)).
4) Let us consider f(x) = x, C = ]0, 1[ and ϕ equal to the ceiling function, that
isϕ(x) is the smallest element of Z greater or eqal to x, or ϕ(x) = min{z ∈ Z |
x ≤ z}. Compute val(P1), val(P2) and ϕ(val(P1)).

Definition 5 Let us consider the optimization problem P , maxx∈C f(x). The
sequence (xk)k is said to be a maximizing sequence for P if for all k, xk ∈ C and
if the limit of f(xk) exists (either finite or infinite) and is equal to the value of
the problem P .

Exercise 4 Let X be a nonempty set, and f be a function from X to R. Let us
consider the following optimization problem:

(PX)

{
max f(x)
x ∈ X

1) Prove that there exists a maximizing sequence.
2) Prove that there exists a non-decreasing maximizing sequence.
3) Let us suppose morever that SolP = ∅, prove that there exists an increasing
maximizing sequence.

1.2 Examples of economic optimisation problems

1.2.1 Consumer theory

In microeconomics, we suppose that u is a utility function from R`
+ to R. let us

give a price vector p = (p1, . . . , p`) and a wealth w ≥ 0. The consumer’s demand
is the set of solutions of

(PX)


maxu(x)
p1x1 + . . .+ p`x` ≤ w
x1 ≥ 0, . . . , x` ≥ 0

1.2.2 Producer Theory

In microeconomics, we consider a firm which produces the good `, using goods
(1, . . . , ` − 1) as inputs. We describe the production set with f , production
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function from R`−1
+ to R. Let us give a price vector p = (p1, . . . , p`−1) of the

inputs and a level of production y` ≥ 0, The cost function c((p1, . . . , p`−1), y`) of
the firm is the value fo the problem

(P)


min p1y1 + . . .+ p`−1y`−1

y` = f(y1, . . . , y`−1)
y1 ≥ 0, . . . , y`−1 ≥ 0

The firm’s demand of inputs corresponds to the set of solutions of P. In addition,
if we consider the price p` of the unique output, the total offer (with usual signs’
convention) of the firm is the set of solutions of

(Q)

{
max p`y` − c((p1, . . . , p`−1), y`)
y` ≥ 0

1.2.3 Finance theory

In finance, there are S possible states of the world tomorrow with the corre-
sponding probabilities π1, . . . πS. Today, we can buy or sell J assets with price
q1, . . . , qJ . If we own one unit of asset j, we will receive if state s occurs, the
amount (possibly negative) ajs. The investor will try to maximize the expected
value of his stochastic income with respect to his initial capital w. He will buy a
portfolio (z1, . . . , zJ), solution of{

max
∑S

s=1 πs
∑J

j=1 a
j
szj∑J

j=1 qjzj ≤ w

1.2.4 Game theory

In game theory, the best response of a player is the solution of the maximisation of
the payoff function with respect to the strategy of this agent, taken the strategies
of the other agents as given.

1.2.5 Statistics

In statistics, we determine an estimator using the maximum of the likehood, and
we determine the regression’s lines by minimizing the sum of the squares of the
“distance to the line” among all possible lines. Note that the mean of n real
numbers (x1, x2, . . . , xn) is the solution of the following minimisation problem on
R: minimise

∑m
i=1(m− xi)2.

1.2.6 Transportation problems

Let us consider a firm with m units of production P1, . . . , Pm, which produce
quantities q1, . . . , qm of a certain good. There are n markets M1, . . . ,Mn to pro-
vide whose respective demands are δ1, . . . , δn. In order to transport one unit of
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good from the the unity i to the market j, there is a cost γij. We try to provide
all the markets at the lowest transportation cost. We have to determine all the
flows xij (quantity moved from Pi to Mj) solution of

min
∑m

i=1

∑n
j=1 γijxij∑m

i=1 xij ≥ δj for all j,∑n
j=1 xij ≤ qi for all i,

xij ≥ 0, for all i and all j

1.2.7 Constant returns to scale

Let us consider a firm using m processes P1, . . . , Pm of production. The process
Pj is characterized by a vector αj ∈ R`. For a single level of activity, there are
αjh units of good h produced by the firm if αjh ≥ 0 and αjh units of good h used
by the firm in the process if αjh ≤ 0. The total amount of activity of Process Pj
will be denoted by xj ≥ 0.

A first class of problem consists in furnishing the demand at minimal cost.
There are ` markets (one for each good) with respective demands δ1, . . . , δn and
the marginal cost of Process Pj is γj. The problem consists in determining all
activity levels xj solutions of

max
∑m

j=1 γjxj∑m
i=1 α

j
hxj ≥ δi for all i,

xj ≥ 0, for all j

A second class of problem consists in maximizing the income. We assume
that the planer owns an initial stock σ1, . . . , σ` of inputs and that the marginal
income of process j is rj. The problem consists in determining all activity levels
xj solutions of 

max
∑m

j=1 rjxj∑m
i=1 α

j
hxj ≤ σh for all h = 1, . . . , `,

xj ≥ 0, for all j

To conclude this introduction, we briefly present the main topics we will ad-
dress in this course and the mathematical methods to answer to the different
issues.

First we will provide sufficient conditions for the existence of a solution, which
mainly rest upon topological properties of the objective function and the set of
feasible points defined by the constraints. We will later address the question of
the uniqueness of the solution thanks to the strict convexity or concavity of the
objective function.

Then, the main part of the course will be devoted to the study of necessary
optimality conditions. These conditions are almost always derived from the fol-
lowing remark. If x̄ is a solution or a local solution of a maximisation problem
and u(t) is a differentiable mapping satisfying u(0) = 0 and u̇(t) = ū, then by
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analysing the limit at 0+ of (1/t)(f(x̄+u(t))− f(x̄)), we conclude that this limit
is non positive if x̄+u(t) satisfies the constraint of the problem for t small enough.
In the simplest case with linear constraint, it is enough to take u(t) = tū. Then,
using tools of differentiable calculus, we can conclude that the limit is equal to
the inner product of the gradient of f at x̄. Analysing the constraints around
x̄, we can characterise the cone of vectors ū such that there exists a derivable
mapping u(t) satisfying u(0) = 0, u̇(t) = ū and x̄ + u(t) satisfies the constraint
of the problem for t small enough. Using a duality theorem coming from convex
analysis, which is simply a property of orthogonal linear spaces when we have
only equality constraints, we deduce the gradient of f at x̄ is a linear combi-
nation of the gradients of the constraints, the coefficient being called Lagrange
or Karush-Kuhn-Tucker multipliers. The existence of theses multipliers is the
necessary optimality condition.

The convexity of the objective function and of the set of feasible points al-
lows us to show that this necessary condition is then sufficient. We derive from
this property a sufficient optimality condition, which involves the second order
derivative of the objective function.

Finally, we will also state some sensitivity analysis, which means that we study
the behaviour of the solution or of the value when the problem depends on a
parameter. The key tool for this purpose is the implicit function theorem.

The optimisation problems tackle in this course are first in Euclidean spaces
with a finite number of variables. The last part of the course is devoted to dy-
namical optimisation, which eventually deals with an infinite number of variables
when the horizon is infinite or we are working in continuous time. We will then
briefly present some topological properties of infinite dimension spaces.

1.3 One variable optimization

1.3.1 Existence of a solution

Definition 6 Let f be a function from R to R. f is coercive if limx→−∞ f(x) =
limx→+∞ f(x) = +∞.

We consider the following minimisation problem:

(P)

{
Minimise f(x)
x ∈ C

Proposition 2 The problem (P) has a solution if f is continuous, coercive on
R, and C is a closed subset of R.

Proposition 3 The problem (P) has a solution if f is continuous on C, and C
is a closed bounded subset of R.

Exercise 5 1) Prove that the function x→ ax2 + bx+ c with a > 0 is coercive.
2) Prove that the function x→ ax3 + bx2 + cx+ d with a 6= 0 is not coercive.
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Exercise 6 Let f be a coercive function from R to R. Let g be a function from R
to R. We assume that there exists r > 0 such that for all x ∈]−∞,−r]∪ [r,+∞[,
f(x) ≤ g(x). Show that g is coercive.

Exercise 7 Let f be a continuous function from R to R. We consider the above
minimisation problem (P) above and we assume that C is closed. Show that the
problem (P) has a solution if there exists c̄ ∈ C such that the set {c ∈ C | f(c) ≤
f(c̄)} is bounded.

1.3.2 Necessary conditions of optimality

First order necessary condition

Proposition 4 Let I be an interval of R. Let a = inf I and b = sup I. Let f
be a differentiable function on I1. If x ∈ I is a local solution of (P ) maxx∈I f(x)
(resp. (Q) minx∈I f(x)), then

1. if x ∈ ]a, b[, then f ′(x) = 0,

2. if x = a, then f ′(x) ≤ 0, (resp. f ′(x) ≥ 0);

3. if x = b, then f ′(x) ≥ 0, (resp. f ′(x) ≤ 0).

Second order necessary condition

Proposition 5 Let I be an interval of R. Let a = inf I and b = sup I. Let f be
twice differentiable function on I2. If x ∈ I is a local solution of (P) maxx∈I f(x)
(resp. (Q) minx∈I f(x)), then

1. if x ∈ ]a, b[, then f ′′(x) ≤ 0 (resp. f ′′(x) ≥ 0);

2. if x = a, then f ′(x) < 0 or f ′(x) = 0 and f ′′(x) ≤ 0 , (resp. f ′(x) > 0 or
f ′(x) = 0 and f ′′(x) ≥ 0 );

3. if x = b, then f ′(x) > 0 or f ′(x) = 0 and f ′′(x) ≤ 0 , (resp. f ′(x) < 0 or
f ′(x) = 0 and f ′′(x) ≥ 0 ).

Second order sufficient condition

Proposition 6 Let I be an interval of R. Let a = inf I and b = sup I. Let
f be two-times differentiable function on I. Let x ∈ I. If one of the follow-
ing conditions is satisfied, then x is a local solution of (P) maxx∈I f(x) (resp.
(Q) minx∈I f(x)).

1If a (resp. b) belongs to I, then we assume that f has a right (resp. left) derivative at
a (resp. b), that is, limx→a+

f(x)−f(a)
x−a

(
resp. limx→b−

f(x)−f(b)
x−b

)
exists. The right (resp. left)

derivative is denoted f ′(a) (resp. f ′(b)).
2As above, we assume that the derivative of f has a right derivative at a if a ∈ I and a left

derivative at b if b ∈ I.
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1. x ∈ ]a, b[, f ′(x) = 0 and f ′′(x) < 0 (resp. f ′(x) = 0 and f ′′(x) > 0);

2. x = a, f ′(x) < 0 or f ′(x) = 0 and f ′′(x) < 0 , (resp. f ′(x) > 0 or f ′(x) = 0
and f ′′(x) > 0 );

3. x = b, f ′(x) > 0 or f ′(x) = 0 and f ′′(x) < 0 , (resp. f ′(x) < 0 or f ′(x) = 0
and f ′′(x) > 0 ).

1.4 Convex and concave functions

1.4.1 Definition

Definition 7 Let f be a function from I an interval of R to R. f is convex (resp.
concave) if for all (x, y) ∈ I × I and for all t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

(resp. f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).)

The function f is strictly convex (resp. strictly concave) if for all (x, y) ∈ I×I
such that x 6= y and for all t ∈ ]0, 1[, f(tx+ (1− t)y) < tf(x) + (1− t)f(y) (resp.
f(tx+ (1− t)y) < tf(x) + (1− t)f(y)).

Remark 1 A function f is convex if and only if −f is concave. Consequently,
the results obtained for convex functions can be translated in terms of concave
functions.

Theorem 1 Let f be a function from I an interval of R to R. f is convex if and
only if for all k ≥ 2, (xi) ∈ Ik and λ ∈ Rk

+ such that
∑k

i=1 λi = 1,

f(
k∑
i=1

λixi) ≤
k∑
i=1

λif(xi)

Examples: An affine function (x→ ax+b) is convex and concave. A quadratic
function (ax2 + bx+ c) is convex if a > 0 and concave if a < 0. The exponential
function is convex, the logarithmic function is concave on R∗+. The absolute value
is convex.

Proposition 7 (i) A finite sum of convex (resp. concave) functions defined on
I is convex (resp. concave);

(ii) if f is convex (resp. concave) and λ > 0, λf is convex (resp. concave);
(iii) The supremum (resp. infimum) of a family of convex functions (resp.

concave) defined on I is convex (resp. concave) on its domain (that is when the
supremum (resp. infimum) is finite);

(iv) If f is a convex function (resp. concave) from I to J , intervals of R, and
if ϕ is a convex function (resp. concave) non-decreasing from J to R then ϕ ◦ f
is convex (resp. concave).
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(v) if g is an affine function from R to R and f a convex function on the
interval I ⊂ R, then f ◦ g is a convex function on g−1(I).

1.4.2 Properties of convex and concave functions

Proposition 8 Let f be a convex (resp. concave) function on I an open interval
of R. Then f is continuous on I. Moreover, for all x ∈ I, there exists r > 0
and k ≥ 0 such that ]x − r, x + r[ ⊂ I and for all (x, ξ) ∈ ]x − r, x + r[2,
|f(x)− f(ξ)| ≤ k|x− ξ|.

Proposition 9 Let f be a differentiable function defined on the interval I. The
three following properties are equivalent:

1. f is convex (resp. concave);

2. for all (x, ξ) ∈ I2, f(ξ)− f(x) ≥ (resp. ≤)f ′(x)(ξ − x);

3. f ′ is increasing (resp. decreasing) on I.

Proposition 10 Let f be a twice differentiable function defined on the interval I.
f is convex (resp. concave) if and only if f ′′ is non negative (resp. non positive)
on I.

1.4.3 Optimization of convex or concave functions

Proposition 11 Let f be a convex (resp. concave) function defined on the in-
terval I. Then:

1. the set of solutions of (Q) minx∈I f(x) (resp. (P) maxx∈I f(x)) is convex;

2. if x is a local solution of (Q) (resp. (P)) then x is a solution of (Q) (resp.
(P));

3. if I is open and J is a bounded closed interval of R included in I, then the
problem minx∈J f(x) and maxx∈J f(x) has a solution.

Proposition 12 Let f be a differentiable function defined on the interval I. Let
a = inf I and b = sup I. Let x ∈ I. If f is convex (resp. concave) on I, then x
is a solution of (Q) minx∈I f(x) (resp. (P) maxx∈I f(x)) if and only if

1. x ∈ ]a, b[ and f ′(x) = 0,

2. x = a and f ′(x) ≥ 0, (resp. f ′(x) ≤ 0);

3. x = b and f ′(x) ≤ 0, (resp. f ′(x) ≥ 0).
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1.5 Introduction to sensitivity analysis

Let f be a strictly concave continuously differentiable function on R satisfying
limx→−∞ f(x) = −∞. For all real parameter β, we consider the “parameterized”
optimization problem

(Pβ)

{
max f(x)
x ≤ β

We denote by v(β) the value of the problem (Pβ). We study the behavior
of the function v and of the solution of the problem (Pβ) with respect to the
parameter β.

Theorem 2 1. For all β ∈ R, there exists a unique solution denoted by ξ(β);

2. the function ξ is continuous;

3. the function v is non-decreasing, concave and continuously differentiable on
R, and, v′(β) = f ′(ξ(β)).

1.6 Quasi-convex and quasi-concave functions

Definition 8 Let f be a real-valued function defined on an interval I of R. f is
quasi-concave (resp. quasi-convex) if for all α ∈ R, the set {x ∈ I | f(x) ≥ α}
(resp. {x ∈ I | f(x) ≤ α}) is convex.

Proposition 13 Let f be a real-valued function defined on an interval I of R.
f is quasi-concave (resp. quasi-convex) if and only if for all (x, ξ) of I2 and all
λ ∈ [0, 1],

f(λx+ (1− λ)ξ) ≥ min{f(x), f(ξ)}(resp. ≤ max{f(x), f(ξ)})

Proposition 14 Let f be a real-valued function defined on an interval,
1) if f is convex, then f is quasi-convex.
2) The function f is quasi-convex if and only if (−f) is quasi-concave.
3) if f is weakly monotone, then f is both quasi-concave and quasi-convex.

Proposition 15 Let I be an interval I of R and f be a continuously differentiable
function from I to R. f is quasi-convex if and only if for all (x, ξ) ∈ I2,

f(ξ) ≤ f(x)⇒ f ′(x)(ξ − x) ≤ 0.

Definition 9 Let f be a real-valued function defined on an interval I, We say
that f is strictly quasi-convex if for all (x, ξ) ∈ I2 satisfying x 6= ξ and for all
λ ∈ ]0, 1[,

f(λx+ (1− λ)ξ) < max{f(x), f(ξ)}

Proposition 16 Let f be a twice continuously differentiable function from I to
R. If for all x ∈ I, f ′(x) = 0⇒ f ′′(x) > 0, then f is strictly quasi-convex.
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Proposition 17 Let f be a quasi-convex function on an interval I. Then the
set of solutions of (Q) minx∈I f(x) is convex. If, furthermore, f is strictly quasi-
convex, then

1. the set of solutions of (Q) contains at most one element;

2. If x is a local solution of (Q), then it is also a global solution.

Proposition 18 Let f be a twice continuously differentiable function from I to
R. Let a = inf I and b = sup I. We assume that for all x ∈ I, f ′(x) = 0 ⇒
f ′′(x) > 0. Let x ∈ I. x is a solution of (Q) minx∈I f(x) if and only if

1. x ∈ ]a, b[ and f ′(x) = 0,

2. x = a and f ′(x) ≥ 0;

3. x = b and f ′(x) ≤ 0.

Exercise 8 We consider the following maximisation problem:

(P(α))

{
Maximise ax2 + bx+ c
x ≥ α

For which values of (a, b, c) this problem has a solution? For which values of
(a, b, c) this problem has a finite value?

When a solution exists, compute the solution and give the value of the problem.

Exercise 9 We consider the following maximisation problem:

(P(α))

{
Maximise ax2 + bx+ c
α ≤ x ≤ β

where (a, b, c, α, β) are real numbers with α < β.
For which values of (a, b, c, α, β) this problem has a solution? For which values

of (a, b, c) this problem has a finite value?
When a solution exists, compute the solution(s) and give the value of the

problem.

Exercise 10 Find the solution(s) of the following maximisation problem when
it exists and compute the value of the problem:

(P(α))

{
Maximise

√
x+ 2

√
c− x

x ∈ [0, c]

where c is a positive real number.

(P(α))

{
Maximise x2 + 2(c− x)
x ∈ [0, c]

where c is a positive real number.
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(P(α))

{
Maximise ax− ex
x ∈ R

where a is a positive real number.
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Chapter 2

Norm, convergence and continuity
in Euclidean spaces

2.1 Euclidean space

Euclidean space: Rn, or a linear subspace of Rn, or a finite dimensional linear
space with an inner product and the associated norm.

Rn usual inner product:
∀(x, y) ∈ Rn × Rn, x · y =

∑n
i=1 xiyi ∈ R

Check that ∀(x, y, z) ∈ Rn × Rn × Rn, ∀t ∈ R,
- x · y = y · x
- (x+ z) · y = x · y + z · y
- x · (y + z) = x · y + x · z
- (tx) · y = x · (ty) = tx · y
- x · x > 0 for all x 6= 0

Note that if the vector x satisfies x · y = 0 for all y ∈ Rn, then x = 0.

Exercise 11 Let x ∈ Rn.
1) Show that if for all y ∈ Rn, x · y ≤ 0, then x = 0.
2) Show that if for all y ∈ Rn, x · y ≥ 0, then x = 0.
3) Show that there exists a real number a such that for all y ∈ Rn, x · y ≥ a,

then x = 0.
4) Show that there exists a real number a such that for all y ∈ Rn, x · y ≤ a,

then x = 0.

Euclidean norm ‖x‖ =
√
x · x =

√∑n
i=1 x

2
i

Properties of the norm:

∀x ∈ Rn, ‖x‖ ≥ 0;

‖x‖ = 0 if and only if x = 0;

∀x ∈ Rn, for all t ∈ R, ‖tx‖ = |t|‖x‖;
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∀(x, y) ∈ Rn × Rn, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Furthermore, for all (x, y) ∈ Rn × Rn,

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2x · y

Distance associated to the norm: for all (x, y) ∈ Rn×Rn, d(x, y) = ‖x− y‖.

Definition 10 Let r be a non-negative real number and x̄ an element of Rn.

the closed ball of center x̄ and radius r is the set B̄(x̄, r) = {x ∈ Rn | ‖x− x̄‖ ≤
r};

the open ball of center x̄ and radius r is the set B(x̄, r) = {x ∈ Rn | ‖x−x̄‖ < r};

Exercise 12 Let r be a non-negative real number and x̄ an element of Rn. Let
x ∈ B(x̄, r). Show that for all ρ ≤ r − ‖x− x̄‖, B(x, ρ) ⊂ B(x̄, r).

Theorem 3 Cauchy-Schwartz Inequality: ∀(x, y) ∈ Rn × Rn, |x · y| ≤ ‖x‖‖y‖
and the equality happens when x and y are collinear.

Exercise 13 Let ȳ ∈ Rn, ȳ 6= 0. Using the Cauchy-Schwartz inequality, show
that the solution of the following problem{

Minimise ȳ · x
‖x‖ ≤ 1

is − 1
‖ȳ‖ ȳ and that the solution of the following problem{

Maximise ȳ · x
‖x‖ ≤ 1

is 1
‖ȳ‖ ȳ.

x and y are orthogonal if x · y = 0.

Theorem 4 Pythagore’s Theorem: ∀(x, y) ∈ Rn × Rn, x · y = 0 if and only if
‖x+ y‖2 = ‖x‖2 + ‖y‖2

Proposition 19 Parallelogram’s rule: ∀(x, y) ∈ Rn×Rn, ‖x+ y‖2 + ‖x− y‖2 =
2‖x‖2 + 2‖y‖2.

Exercise 14 Let x ∈ Rn. Let r > 0 and B(0, r) = {x ∈ Rn | ‖x‖ < r} the open
ball of center 0 and radius r.

1) Show that if for all y ∈ B(0, r), x · y ≤ 0, then x = 0.
2) Show that if for all y ∈ B(0, r), x · y ≥ 0, then x = 0.
3) Show that there exists a real number a such that for all y ∈ B(0, r), x·y ≥ a.
4) Show that there exists a real number b such that for all y ∈ B(0, r), x·y ≤ b.
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2.2 Sequences

Definition 11 A sequence is a mapping from N to Rn.

A sequence is often denoted (uν) where uν is the image of n ∈ N. If we consider
the n components of uν = (u1

ν , u
2
ν , . . . , u

n
ν ), then a sequence in Rn generates n real

sequences (uiν).
Examples

Definition 12 A sequence (uν) is bounded if there exists r > 0 such that for all
ν ∈ N, uν ∈ B̄(0, r).

Definition 13 Let (uν) and (vν) be two sequences and t ∈ R.

a) The sequence (wν) defined by for all n ∈ N, wν = uν + vν is called the sum
of (uν) and (vν).

b) The sequence (wν) defined by for all n ∈ N, wν = tuν is called the product
of t and (uν).

Definition 14 The sequence (uν) converges to a limit ` ∈ Rn if for all r > 0,
there exists an integer νr ∈ N such that for all ν ≥ νr, uν ∈ B(`, r) or equivalently
‖uν − `‖ < r.

If a sequence converges to a limit, we say that it is convergent and the limit is
denoted by limν→∞ uν .

Proposition 20 (i) If a sequence is convergent, it has unique limit.
(ii) The sequence (uν) converges to the limit ` if and only if the real sequence

(‖uν − `‖) converges to 0.
(iii) The sequence (uν = (uiν) converges to the limit ` if and only if the n real

sequences (uiν) converge to `i the corresponding component of `.
(iv) If the sequence (uν) is convergent, then it is bounded.

Exercise 15 Let (uν) and (vν) be two sequences. We assume that (uν) is con-
vergent. Show that if the set {n ∈ N | uν 6= vν} is finite, then, (vν) is convergent
and has the same limit as (uν).

We assume that (uν) is not convergent. Show that if the set {ν ∈ N | uν 6= vν}
is finite, then, (vν) is not convergent.

Proposition 21 Let (uν) and (vν) be two sequences and t ∈ R. We assume that
(uν) converges to ` and (vν) converges to `′. Then

a) The sequence (uν + vν) converges to `+ `′.

b) The sequence (uν · vν) converges to ``′.

c) The sequence (tuν) converges to t`.
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d) The sequence (‖uν‖) converges to ‖`‖.

Cauchy Criterion: From the result for real sequences, we can derive the fol-
lowing very important criterion for convergence.

Proposition 22 A sequence (uν) is convergent if and only if it satisfies the fol-
lowing Cauchy criterion:

∀r > 0,∃νr ∈ N,∀ν, µ ≥ νr, ‖uν − uµ‖ ≤ r

From a given sequence (uν), we can build many others by picking only some
terms of it.

Definition 15 Let (uν) be a real sequence. A subsequence of (uν) is a sequence
(vν) defined by a strictly increasing mapping ϕ from N to itself and for all ν ∈ N,
vν = uϕ(ν).

Proposition 23 If (uν) is a converging sequence, then all subsequences of (uν)
are convergent and they are converging to the same limit.

We can now extend to Rn the fundamental Bolzano-Weierstrass Theorem

Theorem 5 All bounded sequences in Rn have a converging subsequence.

From this result, we deduce a new convergence criterion for bounded sequences.

Proposition 24 Let (uν) be a bounded sequence. (uν) is convergent if and only
if all convergent subsequences of (uν) have the same limit.

Definition 16 Let (uν) be a sequence in Rn. c ∈ R is a cluster point of (uν) if
for all r > 0, the set {ν ∈ N | uν ∈ B(c, r)} is infinite.

Proposition 25 Let (uν) be a sequence. c ∈ R is a cluster point of (uν) if and
only if there exists a convergent subsequence (vν) of (uν) such that c is the limit
of (vν).

Note that the Bolzano-Weierstrass Theorem can be equivalently stated as all
bounded real sequences have a cluster point. We also deduce from the previous
results that a bounded sequence is convergent if and only if it has a unique cluster
point. In that case, the limit is the unique cluster point.

2.3 Series

Let (uν) be a sequence in Rn. The series associated to (uν) is the sequence (σν)
defined by σν =

∑
k=0 νuk.

Definition 17 The series associated to (uν) (or, in short, the series (uν)) is
convergent if the sequence (σν) defined by σν =

∑ν
k=0 uk is convergent.
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The series associated to (uν) is absolutely convergent if the real sequence (
∑ν

k=0 ‖uk‖)
is convergent.

Remark 2 One easily shows (exercise) that if the series (uν) is convergent, then
the sequence (uν) converges to 0. The converse is not true.

Using the Cauchy criterion of convergence, one has the fundamental following
result.

Proposition 26 If the series associated to (uν) is absolutely convergent, then
the series associated to (uν) is convergent.

Since the series associated to a non-negative sequence is increasing, we get the
simple convergence criteria.

Proposition 27 The series associated to the sequence (uν) is absolutely conver-
gent if and only if the sequence (

∑ν
k=0 ‖uk‖) is bounded above.

Exercise 16 Let (uν) and (vν) be two sequences such that the associated series
are convergent.

Show that the series associated to (uν + vν) is also convergent and that its
limit is the sum of the limits of the series associated to (uν) and (vν).

Let t ∈ R. Show that the series associated to (tuν) is also convergent and that
its limit is t times the limit of the series associated to (uν).

Exercise 17 Let (uν) be a sequence such that the associated series is absolutely
convergent. Let (tν) be a bounded real sequence.

Show that the series associated to (tνuν) is also absolutely convergent.

2.4 Basic topology on Rn

Definition 18 A subset F of R is closed if for all convergent sequences (uν)
such that uν ∈ F for all ν ∈ N, then the limit of (uν) belongs to F .

A subset U of R is open if for all convergent sequences (uν) such that the limit
belongs to U , then there exists ν0 ∈ N such that uν ∈ U for all ν ≥ ν0.

Remark 3 A closed ball is closed. An open ball is open. If I1, I2, ... , In are
closed (resp. open) subsets of R, then the set {x ∈ Rn | ∀i = 1, . . . , n, xi ∈ Ii}
is closed (resp. open). The set Rn

+ = {x ∈ Rn | ∀i = 1, . . . , n, xi ≥ 0} is closed.
The set Rn

++ = {x ∈ Rn | ∀i = 1, . . . , n, xi > 0} is open. All linear subspaces of
Rn are closed. All affine subspaces of Rn are closed.

Proposition 28

A subset F of Rn is closed if and only if F c, its complement in Rn, is open.

A subset U of Rn is open if and only if U c, its complement in Rn, is closed.
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A subset U of Rn is open if and only if for all x ∈ U , there exists r > 0 such that
B(x, r) ⊂ U .

Proposition 29

A finite union of closed sets is closed.

An intersection of finitely many or infinitely many closed sets is closed.

A finite intersection of open sets is open.

A union of finitely many or infinitely many open sets is open.

Definition 19 Let A be a subset of Rn.

The closure of A is the set of vectors x ∈ Rn such that there exists a sequence
(uν) converging to x and satisfying uν ∈ A for all ν ∈ N. The closure of A
is denoted clA or A.

The interior of A is the set a ∈ A for which there exists r > 0 such that
B(a, r) ⊂ A. The interior of A is denoted intA or

◦
A.

Proposition 30 Let A be a subset of Rn.

A ⊂ A;

A is a closed subset of Rn;

A is the smallest closed subset of Rn containing A, that is, if F is closed and
A ⊂ F , then A ⊂ F ;

A is the intersection of all closed subsets of Rn containing A.

Proposition 31 Let A be a subset of Rn.

intA ⊂ A;

intA is an open subset of Rn;

intA is the largest open subset of Rn included in A, that is, if U is open and
U ⊂ A, then U ⊂ intA;

A is the union of all open subsets of R included in A.

Exercise 18 Give the closure and the interior of the following subsets of Rn.

Rn;

Rn
+;

Rn
++;

a linear subspace of Rn different from Rn;
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B̄(x, r) for x ∈ Rn and r > 0;

B(x, r) for x ∈ Rn and r > 0;

in R2, ]0, 1]2 ∪ ([1, 2]× {0});

in R2, {(x, y) ∈ R2 | x+ y ≥ 0, x2 + y2 ≤ 1};

in R2, {(x, y) ∈ R2 | x > 0, y > 0, xy ≥ 1}.

Definition 20 Let A be a subset of Rn. The boundary of A denoted bdA is the
set A ∩ Ac, that is the intersection of the closure of A with the closure of the
complement of A in Rn.

Remark 4 An element b belongs to the boundary of A if and only if it is a limit
of a sequence of elements of A and a limit of a sequence of elements not in A.

Proposition 32 Let A be a subset of Rn.

The boundary of A is a closed set.

A is closed if and only if the boundary of A is included in A.

A is open if and only if the intersection of the boundary of A and A is empty,
bdA ∩ A = ∅.

Exercise 19 Give the boundary of the following subsets of R.

Rn;

Rn
+;

Rn
++;

a linear subspace of Rn different from Rn;

B̄(x, r) for x ∈ Rn and r > 0;

B(x, r) for x ∈ Rn and r > 0.

Definition 21 Let A be a subset of Rn. The set A is compact if it is closed and
bounded.

Proposition 33 Let A be a subset of Rn. A is compact if one of the following
equivalent conditions is satisfied:

If (uν) is a sequence such that uν ∈ A for all n, then it has a converging subse-
quence with a limit in A.

If (Ui)i∈I is a family of open subsets of Rn such that A ⊂ ∪i∈IUi, there exists a
finite subset J ⊂ I such that A ⊂ ∪i∈JUi.
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If (Fi)i∈I is a family of closed subsets of R such that A ∩ (∩i∈IFi) = ∅, there
exists a finite subset J ⊂ I such that A ∩ (∩i∈JFi) = ∅.

Proposition 34 Let A be a compact subset of Rn and F be a closed subset of
Rn. Then A ∩ F is a compact subset of Rn.

2.5 Mappings

In this section, U denotes a subset of Rn. We will consider mappings from U to
Rp. To avoid confusion, we denote with the subscript n, the objects related to
Rn like the ball Bn(x, r) or the norm ‖ · ‖n and with the subscript p, the ones
related to Rp.

Definition 22 Let f be a mapping from U ⊂ Rn to Rp.

f is bounded if there exists r > 0 such that for all x ∈ U , f(x) ∈ B̄p(0, r).

The image of U by f is the set {y ∈ Rp | ∃x ∈ U, y = f(x)}.

Limit of a mapping

Definition 23 Let f be a mappint from U ⊂ Rn to Rp. Let x0 an element of
the closure of U . The function f has a limit y0 at x0 if for all sequences (uν)
satisfying uν ∈ U for all ν and limν→∞ un = x0, then the sequence (f(un)) is
convergent in Rp and its limit is y0.

Proposition 35 Let f be a mapping from U ⊂ Rn to Rp. Let x0 an element of
the closure of U .

The function f has at most one limit at x0.

The function f has a limit y0 at x0 if for all r > 0, there exists ρ > 0 such that
for all x ∈ Bn(x0, ρ) ∩ U , f(x) ∈ Bp(y0, r).

Cauchy criterion: the function f has a limit at x0 if and only if for all r > 0,
there exists ρ > 0 such that for all pair (x, x′) in Bn(x0, ρ) ∩ U , ‖f(x) −
f(x′)‖p < r.

Limits and closed sets

Proposition 36 Let f be a mapping from U ⊂ Rn to Rp. Let x0 ∈ U . We
assume that f has a limit y0 at x0. If there exists r > 0 and F a closed subset of
Rp such that for all x ∈ U ∩Bn(x0, r), f(x) ∈ F , then y0 ∈ F .

Basic calculus with limits
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Proposition 37 Let f and g be two mappings from U ⊂ Rn to Rp. Let x0 ∈ U .
We assume that f and g have a finite limit at x0 denoted y0 and z0. Then

a) The mapping f + g has a limit at x0 which is y0 + z0.

b) The mapping f · g has a limit at x0 which is y0 · z0.

c) For all t ∈ R, the mapping tf has a limit at x0 which is ty0. In particular,
limx→x0 −f(x) = − limx→x0 f(x).

d) The mapping ‖f‖p has a limit at x0 which is ‖y0‖p

Limit of the composition of two mappings

Proposition 38 Let f be a mapping on U ⊂ Rn to Rp and x0 ∈ U . Let g be
a mapping on V ⊂ Rp to Rk. We assume that for all x ∈ U , f(x) ∈ V . Let
y0 = limx→x0 f(x). One easily checks that y0 ∈ V . Let z0 = limy→y0 g(y). Then
the limit of g ◦ f at x0 exists and is equal to z0.

Continuous mappings

Definition 24 Let f be a mapping on U ⊂ Rn to Rp. f is continuous at a point
x0 ∈ U , if the limit of f at x0 exists and is equal to f(x0). f is continuous on U
if f is continuous at every point of U .

Remark 5 All the usual mappings: norm, inner product from Rn × Rn → R,
linear mappings, bilinear mapppings are continuous on their domain of definition.

A particular class of continuous mapping is the class of Lipschitzian map-
pings, that is the function f from U to Rp such that there exists k ≥ 0, for all
(x, x′) ∈ U × U , ‖f(x)− f(x′)‖p ≤ k‖x− x′‖n.

Proposition 39 Let f be a mapping on U ⊂ Rn to Rp. f is continuous on U if
one of the two equivalent following conditions is satisfied:

For all open set V of Rp, the set f−1(V ) = {x ∈ U | f(x) ∈ V } = W ∩ U where
W is an open set of Rn.

For all closed set F of Rp, the set f−1(F ) = {x ∈ U | f(x) ∈ F} = G∩U where
G is a closed set of Rn.

Proposition 40 Let f be a continuous mapping on U ⊂ Rn to Rp. Then ‖f‖ is
a continuous function from U to R.

Proposition 41 Let f and g be two continuous mappings from U ⊂ Rn to Rp.
Then

f + g is a continuous mapping from U to Rp.
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f · g is a continuous function from U to R.

for all t ∈ R, tf is a continuous function from U to Rp.

Proposition 42 Let f be a continuous mapping from U ⊂ Rn to Rp. Let g
be a continuous mapping from V ⊂ Rp to Rk. We assume that for all x ∈ U ,
f(x) ∈ V . Then g ◦ f is continuous on U .

With these basic operations, we are able to show almost always that the usual
functions are continuous.

Exercise 20 Show that the mapping f from R × (R \ {0}) to R defined by
f(x, y) = x/y is continuous.

The following criterion of continuity is very useful when the function f is
defined as a solution of an optimisation problem.

Proposition 43 Let f a bounded mapping from U ⊂ Rn to Rp. Then f is
continuous on U if and only if the graph of U is closed, that is, for all sequences
(xν) of elements of U converging to x0 ∈ U and such that the sequence (f(xν))
converges in Rp, then limν→∞ f(xν) = f(x0).

Exercise 21 Let f be a bounded continuous mapping from Rn to R. Show that
the function g(y, r) = supx∈B̄(y,r){f(x)} is continuous on Rn × R++.

Exercise 22 Let f be a bounded continuous mapping from Rn to R. Let A be
a subset of Rn. Show that supx∈A{f(x)} = supx∈Ā{f(x)}.

Exercise 23 Let A and B be two subsets of Rn and f linear mapping from Rn

to R. We denote by A+B the set {a+ b | (a, b) ∈ A×B}. We consider the three
following optimisation problems:

(PA)

{
Minimise f(x)
x ∈ A (PB)

{
Minimise f(x)
x ∈ B (P)

{
Minimise f(x)
x ∈ A+B

1) Let ā be a solution of (PA) and b̄ be a solution of (PB). Show that ā + b̄ is a
solution of (P).
2) Let x̄ be a solution of (P). Let (ᾱ, β̄) ∈ A × B such that x̄ = ᾱ + β̄. Show
that ᾱ is a solution of (PA) and β̄ a solution of (PB).
3) Show that supa∈A{f(a)}+ supb∈B{f(b)} = supx∈A+B{f(x)}.

Exercise 24 Let f be a continuous mapping from Rn to R. Let ϕ be a function
from R+ to R such that limt→+∞ ϕ(t) = +∞. We assume that there exists a ∈ R
such that for all x ∈ Rn, f(x) ≥ a+ ϕ(‖x‖). Show that f is coercive.
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2.6 Continuous function on a compact set

Theorem 6 Let K ⊂ Rn be compact and f be a continuous mapping from K to
Rp. Then f(K) is a compact subset of Rp.

Corollary 1 Weierstrass Theorem. Let K ⊂ Rn be compact and f be a continu-
ous mapping from K to R. Then there exists x ∈ K and x ∈ K such that for all
x ∈ K, f(x) ≤ f(x) ≤ f(x).

Theorem 7 Heine’s Theorem Let K ⊂ Rn be compact and f be a continuous
mapping from K to Rp. Then f is uniformly continuous on K, which means that
for all r > 0, there exists ρ > 0, such that for all (x, x′) ∈ K × K such that
‖x− x′‖n ≤ ρ, then ‖f(x)− f(x′)‖p ≤ r.

2.7 Banach fixed point theorem

Theorem 8 Let f be a mapping from U ⊂ Rn to U . We assume that U is
closed and f is a contraction, that is, there exists k ∈ [0, 1[ such that for all
(x, x′) ∈ U × U , ‖f(x) − f(x′)‖n ≤ k‖x − x′‖n. Then there exists a unique
element (fixed point) x̄ ∈ U such that f(x̄) = x̄ and for all x0 ∈ U , the sequence
(uν) defined by u0 = x0 and for all ν ∈ N, uν+1 = f(uν) converges to x̄.

2.8 Sequence of continuous bounded mappings

Let U be a subset of Rn. Let (fν) be a sequence of bounded continuous mappings
from U to Rp. We assume that for all x ∈ U , the real sequence (fν(x)) is
convergent. So we can define a function f on U by f(x) = limν→∞ fν(x). The
question is to find a sufficient condition to obtain the continuity of f as a function
from U to R.

Theorem 9 If f is bounded and the real sequence (supx∈U{‖fν(x) − f(x)‖p})
converges to 0, then f is continuous on U . In this case, we say that the sequence
(fν) converges uniformly to f .

Like for the real sequences, we have a Cauchy criterion for the uniform con-
vergence of limit of continuous functions.

Theorem 10 Let U be a subset of Rn. Let (fν) be a sequence of bounded contin-
uous function from U to Rp. If for all r > 0, there exists ν ∈ N such that for all
p, q ≥ ν, supx∈U{‖fp(x) − fq(x)‖p} ≤ r, then there exists a continuous function
f on U to Rp such that limν→∞ supx∈U{‖fν(x)− f(x)‖p} = 0, which implies that
for all x ∈ U , f(x) = limν→∞ fν(x).
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2.9 Norms on Rn

A norm on Rn is a mapping N from Rn to R+ satisfying the following conditions:

N(x) = 0 if and only if x = 0;

∀x ∈ Rn, for all t ∈ R, N(tx) = |t|N(x);

∀(x, y) ∈ Rn × Rn, N(x+ y) ≤ N(x) +N(y).

We have consider above the Euclidean norm ‖x‖ =
√∑n

i=1 x
2
i . But we can

check that N1 defined by N1(x) =
∑n

i=1 |xi| is also a norm as well as N∞ defined
by N∞(x) = max{|xi| | i = 1, . . . , n}. We have an infinity of norms on Rn.

We will prove later that all norms are equivalent in the following sense: if N
and Ñ are two norms on Rn, there exists k > 0 and k′ > 0 such that for all
x ∈ Rn,

kN(x) ≤ Ñ(x) ≤ k′N(x)

In particular:
N∞(x) ≤ ‖x‖ ≤ N1(x) ≤ nN∞(x)

So, this means that the definition and results stated in the above sections can
be expressed equivalently with any norm. In particular a closed set, an open set, a
compact set, a bounded set is independent of the norm chosen for the definition.
As well, the convergence of a sequence or the continuity of a mapping can be
proved using any norm. So, we can choose the norm who is the most convenient
for the computation.

Exercise 25 Let E be a linear subspace of Rn and F a linear complement of E,
that is a linear subspace of Rn such that E + F = Rn and E ∩ F = {0}. So,
for all x ∈ Rn, there exists a unique pair (y, z) ∈ E × F such that y + z = x.
We consider the mapping N from Rn to R+ defined by N(x) = ‖y‖+ ‖z‖ where
(y, z) ∈ E × F and x = y + z.

1) In the case n = 2, E = {(x, 0) | x ∈ R} and F a linear complement of E,
show that N is not equal to the Euclidean norm of R2.

2) Show that N is a norm on Rn.

3) Show that N is equivalent to the Euclidean norm.

Exercise 26 We consider the linear space Rn × Rp. We define the mapping
N from Rn × Rp to R+ by N(x, y) = max{‖x‖n, ‖y‖p}. Show that N is a
norm on Rn × Rp and that it is equivalent to the Euclidean norm ‖(x, y)‖ =√∑n

i=1(xi)2 +
∑p

j=1(yj)2.
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2.10 Space of linear mappings

We consider the space of linear mappings from Rn to Rp denoted L(Rn,Rp). We
know that the sum of two linear mappings is a linear mapping and the multipli-
cation of a linear mapping by a real number is a linear mapping. So, L(Rn,Rp)
has a structure of linear space.

Taken the canonical basis of Rn and Rp ((e1, . . . , en) and (ε1, . . . , εp)) we can
identify the space L(Rn,Rp) with the space M(n, p) of matrices with p rows
and n column, which is a linear space of dimension pn. A linear mapping is
represented by its matrix in the canonical basis of Rn and Rp. More precisely,
if ϕ ∈ L(Rn,Rp), the term mij of its matrix in the canonical basis on the jth
column and the ith row is the ith component in the canonical basis of Rp of the
image ϕ(ej) of the jth vector of the canonical basis of Rn. We know that the
matrix of the sum of two linear mappings is the sum of their matrices and the
matrix of tϕ for a real number t is t times the matrix of ϕ.

Since we are considering a finite dimensional space, we can work on L(Rn,Rp)
as we did with Rn in the previous sections. But, it is convenient to choose a
particular norm, which is not the Euclidean norm. Let us define it as follows for
ϕ ∈ L(Rn,Rp):

NL(ϕ) = sup{‖ϕ(x)‖p | x ∈ B̄n(0, 1)}
NL is well defined since ϕ is continuous as a linear mapping and B̄n(0, 1) is
compact. The supremum is actually a maximum.

We leave the reader checks that NL is a norm. We just provides two useful
properties of this norm.

Proposition 44 For all x ∈ Rn, ‖ϕ(x)‖p ≤ NL(ϕ)‖x‖n.

In other words, ϕ is NL(ϕ) Lipschitz continuous.

Proposition 45 Let ϕ be a linear mapping from Rn to Rp and ψ be a linear
mapping from Rp to Rk. Then, NL(ψ ◦ ϕ) ≤ NL(ψ)NL(ϕ).

Exercise 27 We consider the linear space L(Rn,Rp) with the norm NL and f
an element of L(Rn,Rn). We consider the mapping Φ from L(Rn,Rn) to itself
defined by Φ(g) = g ◦ f .
1) Show that Φ is a linear mapping. Show that it is Lipschitz continuous with a
coefficient NL(f).

Same question with Ψ defined by Ψ(g) = f ◦ g.

2.11 Existence of a solution for optimisation prob-
lems

Definition 25 Let f be a function from RN to R. f is coercive if lim‖x‖→∞ f(x) =
+∞, which means that for all r ∈ R, there exists ρ > 0, for all x ∈ Rn, if ‖x‖ ≥ ρ,
then f(x) ≥ r.
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We consider the following minimisation problem:

(P)

{
Minimise f(x)
x ∈ C

Proposition 46 The problem (P) has a solution if f is continuous, coercive on
Rn, and C is a closed subset of R.

Exercise 28 Let C be a closed subset of Rn and x̄ an element of Rn. Show that
the following minimisation problem has a solution:

(P)

{
Minimise ‖x− x̄‖
x ∈ C

Proposition 47 The problem (P) has a solution if f is continuous on C, and
C is a closed bounded subset of R.

Exercise 29 Let f be a coercive function from Rn to R. Let g be a function
from Rn to R. We assume that there exists r > 0 such that for all x satisfying
‖x‖ ≥ r, f(x) ≤ g(x). Show that g is coercive.

Exercise 30 Let f be a continuous function from U an open subset of Rn to R.
We consider the minimisation problem:

(P)

{
Maximise f(x)
x ∈ C ∩ U

We assume that C is closed. Show that the problem (P) has a solution if there
exists c̄ ∈ C ∩ U such that the set {c ∈ C ∩ U | f(c) ≥ f(c̄)} is bounded and
closed in Rn.

Exercise 31 Let f be a continuous function from Rn
++ to R. We assume that

for all x ∈ Rn
++, the set A = {x′ ∈ Rn

++ | f(x′) ≥ f(x)} is closed in Rn. Show
that for all closed subset C of Rn such that C ∩ Rn

++ is nonempty and bounded,
the problem

(P)

{
Maximise f(x)
x ∈ C ∩ Rn

++

has a solution.
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Chapter 3

Multivariable Calculus

3.1 Derivative of f : R→ Rp

Definition 26 Let f be a mapping of an interval J into Rp. We assume that
the interval has more than one point, but the interval may contain its end points.
We say that f is differentiable at a number t in its interval of definition if
limh→0

f(t+h)−f(t)
h

exists, in which case this limit is called the derivative of f at t
and is denoted by f ′(t).
We say that f is differentiable (on J) if it is differentiable at every t ∈ J , and in
that case, f ′ is a mapping of J into Rp.
If f has p continuous derivatives, we say f is of class Cp.
If f is infinitely differentiable, we say that f is C∞.

Remark 6 f : J → Rp can be represented by coordinate functions,
f(t) = (f1(t), . . . , fp(t)) and f(t+h)−f(t)

h
=
(
f1(t+h)−f1(t)

h
, . . . , fp(t+h)−fp(t)

h

)
.

The limit can be taken componentwise, and consequently f is differentiable if and
only if each coordinate function is differentiable, and then
f ′(t) = (f ′1(t), . . . , f ′p(t)).
One usually views a map f such as above as a parametrized curve in Rp.

Examples: Let f(t) = (cos(t), sin(t)) parametrizes the circle. We have f ′(t) =
(−sin(t), cos(t)).
Let f(t) = (cos(t), sin(t), t). Then f(t) describes a spiral. Its projection in the
plane of the first two coordinates is of course the circle.

The examples give a curve in R2 and R3 respectively.

To distinguish such curves from those given by an equation like x2 + y2 = 1
we also call them parametrized curves. If f is a differentiable curve, then the
derivative f ′ is called the velocity of the curve. The second derivative f ′′, if it
exists, is called the acceleration of the curve.

Proposition 48 Let f and g from J → Rp, if f and g are differentiable at t,
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then so is f + g and (f + g)′(t) = f ′(t) + g′(t).
If f : J → Rp and g : J → Rp are differentiable at t, let f · g be defined by
(f · g)(t) = f(t) · g(t). Then:
(f · g)′(t) = f(t) · g′(t) + f ′(t) · g(t).

Proposition 49 (Chain rule) Let J1, J2 be intervals. Let f : J1 → J2 and
g : J2 → Rp be maps. Let t ∈ J1. If f is differentiable at t and g is differentiable
at f(t), then g ◦ f is differentiable at t and
(g ◦ f)′(t) = g′(f(t))f ′(t).

3.2 Derivative of f : Rn → R

3.2.1 Partial Derivatives

Definition 27 Let U be an open set of Rn, and let f : U → R be a function.
We define its partial derivative at a point x = (x1, . . . , xn) ∈ U by
∂f
∂xi

(x) = limh→0,h 6=0
f(x+hei)−f(x)

h
= limh→0,h 6=0

f(x1,...,xi+h,...,xn)−f(x1,...,xn)
h

if the
limit exists.
ei = (0, . . . , 1, . . . , 0) is the unit vector with the i-th component being equal to 1
and all others equal to 0. Note that f(x+hei) is well defined if h is small enough
since U , the domain of f , is open and x belongs to U .

Remark 7 We see that ∂f
∂xi

is an ordinary derivative which keeps all variables
fixed but not the i-th variable. In particular, we know that the derivative of a
sum, and the derivative of a constant times a function follow the usual rules, that
is ∂f+g

∂xi
= ∂f

∂xi
+ ∂g

∂xi
and ∂cf

∂xi
= c ∂f

∂xi
for any constant c.

Example: If f(x, y) = 3x3y2 then ∂f
∂x

(x, y) = 9x2y2 and ∂f
∂y

(x, y) = 6x3y. Of
course we may iterate partial derivatives. In this example, we have ∂2f

∂x2
(x, y) =

18xy2, ∂
2f
∂y2

(x, y) = 6x3 and ∂2f
∂x∂y

(x, y) = 18x2y,
∂2f
∂y∂x

(x, y) = 18x2y.
Observe that the two last iterated partials are equal. This is not an accident, and
is a special case of the following general theorem.

Theorem 11 (Schwarz) Let f be a function on an open set U ∈ R2. Assume
that the partial derivatives ∂f

∂x
, ∂f
∂y
, ∂2f
∂x∂x

, ∂2f
∂y∂y

, ∂2f
∂x∂y

, ∂2f
∂y∂x

exist and are continuous.
Then ∂2f

∂x∂y
= ∂2f

∂y∂x
.

Definition 28 We define the gradient of f at any point x at which all partial
derivatives exist to be the vector ∇f(x) =

(
∂f
∂x1

(x), . . . , ∂f
∂xn

(x)
)
.

Definition 29 We define the Hessian matrix of f at any point
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x = (x1, . . . , xn) by

H(f, x) =


∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x) ... ∂2f
∂x1∂xn

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x22
(x) ... ∂2f

∂x2∂xn
(x)

...
... . . . ...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) ... ∂2f
∂x2n

(x)


Remark on higher order partial derivatives

Let f be a function on an open set U of Rn. We may take iterated partial

derivatives (if they exist) of the form
(

∂
∂x1

)i1
. . .
(

∂
∂xn

)in
f where i1, . . . , in are

integers ≥ 0. It does not matter in which order we take the partials (provided
they exist and are continuous) according to the Schwarz’s theorem. If ci0...in are

numbers, we may form finite sums
∑
ci1...in

(
∂
∂x1

)i1
...
(

∂
∂xn

)in
which we view as

applicable to functions which have enough partial derivatives. More precisely, we
say that a function f on U is of class Cp, for some integer p ≥ 0, if all partial

derivatives
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
f exist for i1, . . . , in ≤ p and are continuous. It is

clear that the functions of class Cp form a vector space, that is the sum of two
functions of class Cp is of class Cp and the product of a function of class Cp by
a real number is a function of class Cp.. Let i1, . . . , in be integers ≥ 0 such that
i1 + . . .+ in = r ≤ p.
Let Fp be the vector space of functions of class Cp. (For p = 0, this is the vector

space of continuous functions on U .) Then any monomial
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
may

be viewed as a linear map Fp → Fp−r given by f 7→
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
f .

We say that f is of class C∞ if it is of class Cp for every positive integer p.

If f is of class C∞, then
(

∂
∂x1

)i1
...
(

∂
∂xn

)in
f is also of class C∞.

3.2.2 Reminder on Euclidean algebra

Orthogonal spaces

Definition 30 (u1, . . . , un) is an orthogonal basis of Rn if (u1, . . . , un) is a basis
of Rn and ui · uj = 0 for all (i, j), i 6= j.

(u1, . . . , un) os an orthonormal basis of Rn if (u1, . . . , un) is an orthogonal basis
of Rn and ‖ui‖ = 1 for all i.

The canonical basis of Rn is orthonormal.

Proposition 50 Let B = (u1, . . . , un) be an orthonormal basis of Rn and let x
and y be two vectors of Rn. Let (ξ1, . . . , ξn) be the coordinates of x is the basis B
and (ζ1, . . . , ζn) be the coordinates of y in the basis B. Then, for all i, ξi = x · ui,
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ζi = y · ui and

x · y =
n∑
i=1

ξiζi and ‖x‖ =

√√√√ n∑
i=1

ξ2
i

Let E be a linear subspace of Rn and (u1, . . . , up) a basis of E. One can
built an orthogonal basis of E, (v1, . . . , vp), starting from (u1, . . . , up) using the
Gram-Schmidt orthogonalisation method as follows:
v1 = u1;
v2 = u2 − v1·u2

‖v1‖2v1

...
vk = uk − v1·uk

‖v1‖2v1 − v2·uk
‖v2‖2v2 − . . .− vk−1·uk

‖vk−1‖2
vk−1

...
vp = up − v1·up

‖v1‖2v1 − v2·up
‖v2‖2v2 − . . .− vp−1·up

‖vp−1‖2vp−1

From which, we deduces that all linear subspace of Rn has an orthogonal basis.

Exercise 32 Let (u = (1, 0, 1), v = (2,−1, 1), w = (−1,−1, 2)) be three vectors
of R3. Show that this is a basis of R3. Apply the Gram-Schmidt orthogonalisation
method to find an orthogonal basis of R3.

Same question with ((1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)) in R4.

Let E be a linear subspace of Rn. The orthogonal complement of E denoted
E⊥is the set defined by:

E⊥ = {v ∈ Rn | ∀u ∈ E, u · v = 0}

Proposition 51 E⊥ is a linear subspace of Rn. E ∩ E⊥ = {0}.

Let (u1, . . . , up) be a basis of E, then

E⊥ = {v ∈ Rn | ∀i = 1, . . . , p ∈ E, ui · v = 0}

In other words, E⊥ is the kernel of the linear mapping f from Rn to Rp defined
by f(v) = (u1 · v, . . . , up · v).

Let E be a linear subspace of Rn and (u1, . . . , up) be an orthogonal basis of E.
we know that there exists (up+1, . . . , un) ∈ (Rn)n−p such that (u1, . . . , up, up+1, . . . , un)
is a basis of Rn. Using the Gram-Schmidt orthogonalisation method, we build
orthogonal basis of Rn (v1, . . . , vp, vp+1, . . . , vn) from (u1, . . . , up, up+1, . . . , un).
Since (u1, . . . , up) is an orthogonal basis of E, we remark thatv1 = u1, v2 = u2,
. . ., vp = up. So (vp+1, . . . , vn) are linearly independent vectors of E⊥ and they
are a basis of E⊥. So we conclude that

Proposition 52 1) E are E⊥ are complements in Rn, Rn = E ⊕ E⊥ and
dimE⊥ = n− dimE.
2) THe orthogonal complement of E⊥ is E: (E⊥)⊥ = E
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For all x ∈ Rn, there exists a unique pair (y, z) ∈ E×E⊥ such that x = y+ z.
y is the orthogonal projection of x on E, z is the orthogonal projection of x on
E⊥. They are denoted proj⊥E(x) and proj⊥E⊥(x).

Remark that proj⊥E(x) · proj⊥E⊥(x) = 0.

Proposition 53 1) The mappings proj⊥E are proj⊥E⊥ are linear;

2) The kernel of proj⊥E (resp. the range proj⊥E⊥) is E
⊥, the range of proj⊥E (resp.

the kernel of proj⊥E⊥) is E.

3) proj⊥E ◦ proj⊥E = proj⊥E.

4) proj⊥E + proj⊥E⊥ = Id.

We remark that all linear subspaces of Rn is the kernel of a linear mapping. We
can also represent a linear subspace E of Rn of dimension p by n−p independent
linear equations. Indeed, if (v1, . . . , vn−p) is a basis of E⊥, then

E = {x ∈ Rn | ∀j = 1, . . . , n− p, vj · x = 0}

Proposition 54 Let E and F be two linear subspaces of Rn. Then (E ∩ F )⊥ =
E⊥ + F⊥ and (E + F )⊥ = E⊥ ∩ F⊥. If E ⊂ F , then F⊥ ⊂ E⊥.

Let u be a non zero vector in Rn; we denote by u⊥ the orthogonal complement
of the line D generated by u: D = {tu | t ∈ R}. We remark that u⊥ is an
hyperplan, that is, a linear subspace of dimension n − 1 and the projections on
u⊥ and on D are defined as follows:

proj⊥u⊥(x) = x− x · u
‖u‖2

u et proj⊥D(x) =
x · u
‖u‖2

u

Linear mappings and inner product
Let f be a linear mapping from Rn to Rp. Let M its p × n matrix. in the

canonical basis of Rn and Rp. we denote by (`j)
p
j=1 the rows of the matrix M

which are vectors in Rn and by (ci)
n
i=1 the columns of M which are vectors in Rp.

The transpose of M denoted M t is the n × p matrix whose column vectors are
the row vectors of M .

For all x ∈ Rn, we have two ways to compute the image of x by f .

f(x) =
n∑
i=1

xici = (`j · x)pj=1

The transpose of f is the unique linear mapping f t from Rp to Rn satisfying
for all (x, y) ∈ Rn × Rp, y · f(x) = f t(y) · x.

The matrix of f t in the canonical basis is M t. We remark that the transpose
of the transpose of f is equal to f .

Proposition 55 Let f be a linear mapping from Rn to Rp.
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1) Kerf = (Imf t)⊥, Imf = (Kerf t)⊥;

2) Kerf t = (Imf)⊥, Imf t = (Kerf)⊥;

3) f and f t have the same rank, the dimension of their ranges are equal.

Properties of the symmetric matrices Let M be a n× n symmetric matrix,
that is,M is equal to its transpose,M t = M . M is the matrix of a linear mapping
f from Rn to Rn defined by the matrix-vector product f(x) = Mx. This linear
mapping satisfies y · f(x) = y ·Mx = M ty · x = My · x = f(y) · x and it is called
a symmetric linear mapping.

We recall the fundamental spectral theorem on the symmetric matrices. An
orthonormal basis of Rn is a basis B = (u1, . . . , un) such that ui · uj = 0 for all
(i, j) with i 6= j and ‖ui‖ = 1 for all i.

Theorem 12 Let f be a symmetric linear mapping on Rn and M its symmet-
ric matrix in the canonical basis. Then it exists an orthonormal basis B =
(u1, . . . , un) such that for all i, there exists a real number λi such that f(ui) = λiui.
In other words, the matrix of f in the basis B is diagonal and λi is the term on
the diagonal and on the ith row. Equivalently, we can say that there exists a n×n
matrix P such that P−1 = P t and P−1MP is a diagonal matrix.

Definition 31 Let M be a n× n symmetric matrix. Then M is

positive definite if all its eigenvalues are positive;

positive semi-definite if all its eigenvalues are non negative;

negative definite if all its eigenvalues are negative;

negative semi-definite if all its eigenvalues are non positive;

Proposition 56 Let M be a n × n symmetric matrix. If M is positive definite
(resp. negative definite), then M is invertible and its inverse is positive definite
(resp. negative definite).

From a symmetric n× n matrix M , we define a quadratic form q from Rn to
R and a bilinear symmetric form ϕ from Rn × Rn to R as follows:
q(x) = x ·Mx;
ϕ(x, y) = x ·My.

We note that q(x) = ϕ(x, x) and ∀(x, y, z) ∈ Rn × Rn × Rn, ∀t ∈ R,
- ϕ(x, y) = ϕ(y, x)

- ϕ(x+ z, y) = ϕ(x, y) + ϕ(z, y)

- ϕ(x, y + z) = ϕ(x, y) + ϕ(x, z)

- ϕ(tx, y) = ϕ(x, ty) = tϕ(x, y)

- q(tx) = t2q(x)

- q(x+ y) = q(x) + q(y) + 2ϕ(x, y)

- ϕ(x, y) = 1
4
(q(x+ y)− q(x− y))
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Remark 8 M is positive definite (resp. positive semi-definite, negative semi-
definite, negativedefinite) if and only if q(x) > 0 (resp. ≥ 0, ≤ 0, < 0) for all
x 6= 0. More precisely, if λ is the smallest eigenvalue of M and λ the largest
eigenvalue of M , then

λ‖x‖2 ≤ q(x) ≤ λ‖x‖2

Exercise 33 Let M be a p × n matrix. Let P be the p × p matrix defined by
P = MM t.
1) Show that P is a symmetric positive semi-definite matrix.
2) Show that if the rank of M is equal to p, then P is positive definite.

Let N be a n × n symmetric positive definite matrix. Same questions with
Q = MNM t.

Criterion for a positive definite symmetric matrix
If M is a 2× 2 symmetric matrix. M is positive definite if both trace and the

determinant are positive.
IfM is a n×n symmetric matrix. We denoteMp the p×p submatrix containing

the first p columns and the first p rows of the matrix M . M is postive definite if
the determinant of the matrices Mp with p = 1, . . . , n are positive.

M =


m11 m12 . . . m1n

m21 m22 . . . m2n
...

... . . . ...
mn1 mn2 . . . mnn

Mp =


m11 m12 . . . m1p

m21 m22 . . . m2p
...

... . . . ...
mp1 mp2 . . . mpp


Exercise 34 Let a ∈ R and q be a quadratic function define on R3 as:

q(x, y, z) = x2 + (1 + a)y2 + (1 + a+ a2)z2 + 2xy − 2ayz

1) Compute the bilinear form ϕ associated to q.
2) Give the matrix of q in the canonical basis of R3.
3) For which values of a, ϕ is positive definite?

Exercise 35 Let q be the quadratic form defined by its matrix in the canonical
basis:

M =

2 1 1
1 1 1
1 1 2


1) Compute the bilinear form ϕ associated to q.
2) Show that ϕ is positive definite?

3.2.3 Differentiable Functions

Definition 32 A function f : U → R, where U is an open set of Rn, is differ-
entiable at a point x if there exists a vector g ∈ Rn and a mapping ε defined
on an open set containing 0 such that f(x + h) = f(x) + g · h + ‖h‖ε(h) with
limh→0 ε(h) = 0.

38



Proposition 57 Let f be a function U → R, where U is an open set of Rn. If
f is differentiable at a point x, then it is continuous at x.

Theorem 13 Let f be differentiable at a point x and let g be a vector such that
f(x+h) = f(x)+g ·h+‖h‖ε(h) with limh→0 ε(h) = 0. Then all partial derivatives
of f at x exist, and g = ∇f(x).
Conversely, assume that all partial derivatives of f exist in some open set con-
taining x and are continuous functions. Then f is differentiable at x.

Remark 9 Note that a function may have partial derivatives everywhere and
not being differentiable. For example:

f(x, y) =

{ xy
x2+y2

if (x, y) 6= (0, 0)

0 otherwise.

You can check that ∂f
∂x1

(x, y) and ∂f
∂x2

(x, y) are defined for all (x, y), included at
(0, 0), but f is not differentiable at (0, 0). It is not even continuous at the origin.

Definition 33 A function f from U an open set of Rn to R is differentiable on
U if it is differentiable at every point of U . It is continuously differentiable on U
if all partial derivatives are continuous on U .

Proposition 58 Let f and g be two differentiable functions from U an open set
of Rn to R. Then, for all x ∈ U , ∇(f + g)(x) = ∇f(x) + ∇g(x), ∇(fg)(x) =
f(x)∇g(x) + g(x)∇f(x) and for all c ∈ R, ∇(cf)(x) = c∇f(x).

Remark 10 Suppose f is defined on an open set U , and let ϕ : [a, b] → U be
a differentiable curve. Then we may form the composite function f ◦ ϕ given
by (f ◦ ϕ)(t) = f(ϕ(t)). We may think of ϕ as parametrization of a curve, or
we may think of ϕ(t) as representing the position on a curve at time t. If f(x)
represents, say, the value of the basket of commodities x, then f(ϕ(t)) is the value
of the commodities at time t of x = ϕ(t). The rate of change of the value along
the curve is then given by the derivative ∂f(ϕ(t))

∂t
. The chain rule which follows

gives an expression for this derivative in terms of the gradient, and generalises
the usual chain rule to n variables.

Theorem 14 Let ϕ : J → U be a differentiable function defined on some inter-
val, and with values in an open set U of Rn. Let f : U → R be a differentiable
function. Then f ◦ϕ : J → R is differentiable, and (f ◦ϕ)′(t) = ∇f(ϕ(t)) ·ϕ′(t).

3.2.4 Geometric properties of the gradient

From the chain rule, we deduce a geometric interpretation for the gradient.

Definition 34 Let x be a point of U and let v be a fixed vector. We de-
fine the directional derivative of f at x in the direction of v to be f ′(x, v) =
limt→0,t6=0

1
t
(f(x+ tv)− f(x)).
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Remark 11 This means that if we let g(t) = f(x+ tv) then f ′(x, v) = g′(0). By
the chain rule, g′(t) = ∇f(x+ tv) · v whence f ′(x, v) = ∇f(x) · v.

From this formula we obtain an interpretation for the gradient. We use the stan-
dard expression for the dot product, namely f ′(x, v) = ‖f(x)‖‖v‖cos(θ) where
θ is the angle between v and ∇f(x). Depending on the direction of the vector
v, the number cos(θ) ranges from −1 to 1. The maximal value occurs when v
has the same direction as ∇f(x), in which case for such unit vector v we obtain
f ′(x, v) = ‖∇f(x)‖‖v‖. Therefore we get an interpretation for the direction and
norm of the gradient:
The direction of ∇f(x) is the direction of maximal increase of the function f at x.
The norm ‖∇f(x)‖ is equal to the rate of change of f in its normalized direction
of maximal increase.

Example: Find the directional derivative of the function f(x, y) = x2y3 at
(1,−2) for v = 1√

10
(3, 1).

We have ∇f(x, y) = (2xy3, 3x2y2) and ∇f(1,−2) = (−16, 12). Hence the desired
directional derivative is f ′((1,−2), v) = (−16, 12). 1√

10
(3, 1) = 1√

10
(−36).

3.2.5 Tangent plane to a surface

Consider the set of all x ∈ U such that f(x) = 0; or given a number c, the set
of all x ∈ U such that f(x) = c. This set, denoted by Sc, is called the level
hypersurface at c. Let x ∈ Sc and assume again that ∇f(x) 6= 0.

It will be shown later as a consequence of the implicit function theorem that
given any direction v perpendicular to the gradient, there exists a differentiable
curve α : J → U defined on some interval J containing 0 such that α(0) = x and
α′(0) = v and f(α(t)) = c for all t ∈ J . In other words, the curve is contained
in the level hypersurface. Conversely, we see from the chain rule that if we have
a curve α lying in the hypersurface such that α(0) = x, then 0 = ∂f

∂t
(α(t)) =

∇f(α(t)).α′(t).
In particular, for t = 0, 0 = ∇f(α(0)).α′(0) = ∇f(x).α′(0). Hence the velocity
vector α′(0) of the curve at t = 0 is perpendicular to ∇f(x). From this re-
sult, we make the geometric conclusion that ∇f(x) is perpendicular to the level
hypersurface at x.

So we get the formal definition of the tangent plane to the level surface as
follows:

Definition 35 Let f be a differentiable mapping for U , an open subset of Rn,
to R. Let x ∈ U such that ∇f(x) 6= 0. Let c = f(x). The set Sc = {x′ ∈ U |
f(x′) = c} is the level surface of f at the level c. The tangent hyperplane of Sc
at x denoted TSc(x) is defined by:

TSc(x) = {u ∈ Rn | u · ∇f(x) = 0}

or, in other words, TSc(x) is the orthogonal space to ∇f(x).
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Note that we often consider a translation of the tangent plan which contains
the point x and which is defined as {u ∈ Rn | u ·∇f(x) = x ·∇f(x)}. Sometimes,
there is a confusion between the two plans.

Example: Let f(x, y, z) = x2 + y2 + z2. The surface S of points X = (x, y, z)
such that f(X) = 4 is the sphere of radius 2 centered at the origin. Let P =
(1, 1,

√
2). We have ∇f(x, y, z) = (2x, 2y, 2z) and so ∇f(P ) = (2, 2, 2

√
2). Hence

the tangent plane at P is given by the equation 2x+ 2y + 2
√

2z = 0.

Exercise 36 Let f be a differentiable function on Rn \ {0}, depending only on
the distance from the origin, that is, there exists a differentiable function g on
R++ such that f(x) = g(‖x‖) where ‖x‖ is the Euclidean norm. Show that

∇f(x) =
g′(‖x‖)
‖x‖

x.

3.2.6 Taylor Formula

By applying the result on the directional derivatives to the first order partial
derivatives, we obtain the following result:

Proposition 59 Let f be a C2 function from U , an open subset of Rn, to R. Let
x̄ ∈ U and u ∈ Rn. Let ϕ be the function from the open interval I containing 0
in R defined by ϕ(t) = f(x̄+ tu). then,

ϕ′′(t) = utHf (x̄+ tu)u =
n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(x̄+ tu)uiuj

Using the Taylor-Lagrange development of ϕ, we obtain the following result
for f :

Proposition 60 Let f be a C2 function from U , an open subset of Rn, to R. Let
x and x′ be two elements of U such that the segment [x, x′] ⊂ U . Then, it exists
ξ ∈]x, x′[ such that:

f(x′) = f(x) +Df(x)(x′ − x) +
1

2
(x′ − x)tHf (ξ)(x

′ − x)

Using the continuity of the second order partial derivatives, we obtain the
following Taylor development:

Proposition 61 Let f be a C2 function from U , an open subset of Rn, to R.
Then, it exists a continuous function η from U × U to R such that:

f(x′) = f(x) +Df(x)(x′ − x) +
1

2
(x′ − x)tHf (x)(x′ − x) + ‖x′ − x‖2η(x′, x)

and η(x, x) = 0 for all x ∈ U .

Note that the continuity of η implies that for all x ∈ U , limx′→x η(x′, x) = 0.
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3.2.7 Euler’s formula

Definition 36 For any real number k, a real-valued function f defined on a cone
K1 of Rn is homogeneous of degree k if f(tx) = tkf(x1, . . . , xn) for all x ∈ K and
all t > 0.

Theorem 15 Let f(x) be a C1 function on an open cone K of Rn. If f is
homogeneous of degree k, its first order partial derivatives are homogeneous of
degree k − 1.

Theorem 16 (Euler’s formula) Let f be a C1 homogeneous function of degree
k on an open cone K of Rn. Then for all x,

x1
∂f

∂x1

(x) + x2
∂f

∂x2

(x) + . . .+ xn
∂f

∂xn
(x) = kf(x)

or using the gradient
x · ∇f(x) = kf(x)

3.3 Derivative of f : Rn → Rp

3.3.1 The Frechet derivative as a linear map

Definition 37 Let U be an open subset of Rn and let x ∈ U . Let f be a
mapping from U to Rp . We shall say that f is (Frechet)-differentiable at x if
there exists a continuous linear map ϕ : Rn → Rp and a map η defined for all
sufficiently small h ∈ Rn, with values in Rp, such that limh→0 η(h) = 0 and
f(x+ h) = f(x) + ϕ(h) + ‖h‖η(h).

Remark 12 Setting h = 0 shows that we may assume that η is defined at 0 and
that η(0) = 0. The preceding formula still holds.
We view the definition of the derivative as stating that near x, the values of f
can be approximated by a affine map f(x) + ϕ(x′) with an error term described
by the limit property of η at 0.

Theorem 17 If f is (Frechet)-differentiable at x, then f is continuous at x.

Definition 38 If f is (Frechet)-differentiable at every point x of U , then we
say that f is (Frechet)-differentiable on U . In that case, the derivative Df is a
mapping from U to the space of continuous linear mappings L(Rn, Rp), and thus
to each x ∈ U , we have associated the linear map Df(x) ∈ L(Rn,Rp).

We shall now see systematically how the definition of the derivative as a linear
map actually includes the cases which we have been studied previously. We have
three cases:

1For all x ∈ K and for all t > 0, tx ∈ K.
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We consider a map f : J → R from an open interval J into R. Then Df(x) is
the linear mapping from R to R define by Df(x)(t) = f ′(x)t.
Let U be an open subset of Rn and let f : U → R be a mapping, differentiable
at a point x ∈ U . Then Df(x) is the linear mapping from Rn to R define by
Df(x)(u) = ∇f(x) · u.
Let J be an interval in R, and let f : J → Rp be a mapping. Then Df(x) is the
linear mapping from R to Rp define by Df(x)(t) = tf ′(x).

Theorem 18 (Maps with coordinates) Let U be open in Rn, let f be a map-
ping from U to Rp1 × . . .×Rpk . Let (f1, . . . , fk) be the coordinate mappings from
U to Rpj , that is f(x) = (f1(x), . . . , fk(x)). Then f is (Frechet)-differentiable
at x if and only if each fj is differentiable at x, and if this is the case, then
Df(x) = (Df1(x), . . . , Dfk(x)).

Theorem 19 Let ψ : Rn → Rp be a linear mapping. Then ψ is (Frechet)-
differentiable at every point of Rn and Dψ(x) = ψ for every x ∈ Rn.

Let φ from Rn × Rp to Rk be a bilinear mapping, that is the partial mapping
φ(x, ·) is linear for all x in Rn and φ(·, y) is linear for all y in Rp. Then φ is
(Frechet)-differentiable at every point of Rn × Rp and for all (u, v) ∈ Rn × Rp,
Dφ(x)(u, v) = φ(u, y) + φ(x, v) for every (x, y) ∈ Rn × Rp.

3.3.2 The Jacobian matrix of a differentiable map

Theorem 20 Let U be an open set of Rn, and let f : U → Rp be a mapping
which is (Frechet)-differentiable at x. Then the continuous linear map Df(x) is
represented by the Jacobian matrix

Jf (x) =

(
∂fi
∂xj

(x)

)
=


∂f1
∂x1

(x) ... ∂f1
∂xn

(x)
...

...
...

∂fp
∂x1

(x) ... ∂fp
∂xn

(x)


where fi is the i-th coordinate function of f .

We see that if f is (Frechet)-differentiable at every point of U , then x 7→ Jf (x)
is a mapping from U into the space of p×nmatrices, which is a space of dimension
pn.

Definition 39 We shall say that f is of class C1 on U , or is a C1 mapping,
if f is (Frechet)-differentiable on U and if in addition the derivative Df : U →
L(Rn, Rp) is continuous, which is equivalent to assume that pn partial derivatives
∂fi
∂xj

are continuous.

Theorem 21 Let U be an open set of Rn, and let f : U → Rp be a mapping. If
the pn partial derivatives ∂fi

∂xj
are defined on U and are continuous, then f is C1

on U .
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3.3.3 Basic Properties of the Derivative

Proposition 62 Let U be open in Rn. Let f, g : U → Rp be two mappings which
are (Frechet)-differentiable at x ∈ U . Then f + g is (Frechet)-differentiable at x
and D(f + g)(x) = Df(x) + Dg(x). If c is real number, then cf is (Frechet)-
differentiable at x and D(cf)(x) = cDf(x).

We recall that a bilinear mapping ψ from Rn × Rp to Rk is a mapping such
that the partial mapping ψ(x, ·) is linear for all x in Rn and ψ(·, y) is linear for
all y in Rp.

Proposition 63 Let ψ be a bilinear mapping ψ from Rn × Rp to Rk. Let U be
an open subset of R` and let f : U → Rn and g : U → Rp be two (Frechet)-
differentiable mappings at x ∈ U . Then ψ(f, g) is differentiable at x and for all
v ∈ R`,

Dψ(f, g)(x)(v) = ψ(Df(x)(v), g(x)) + ψ(f(x), Dg(x)(v))

Remark 13 If ψ is the inner product on Rn×Rn, we have the following formula
for all v ∈ R`,

D(f · g)(x)(v) = Df(x)(v) · g(x) + f(x) ·Dg(x)(v)

or
∇(f · g)(x) = Df(x)t(g(x)) +Dg(x)t(f(x))

where Df(x)t is the transpose of the linear mapping Df(x) and Dg(x)t is the
transpose of the linear mapping Dg(x).

Example: Let J be an open interval in R and let t 7→ A(t) = (aij(t)) and
t 7→ X(t) be two differentiable maps from J into the space of p × n matrices,
and into Rn respectively. Thus for each t, A(t) is an p × n matrix, and X(t) is
a column vector of dimension n. We can form the product A(t)X(t), and thus
the product map t 7→ A(t)X(t), which is differentiable. Our rule in this special
case asserts that ∂

∂t
A(t)X(t) = A′(t)X(t) + A(t)X ′(t) where differentiation with

respect to t is taken componentwise both on the matrix A(t) and the vector X(t).
The product here is the product of a matrix and a vector.

3.3.4 Chain Rule

Proposition 64 (Chain Rule ) Let U be an open subset of Rn and let V be
an open subset of Rp. Let f : U → V and g : V → Rk be two mappings.
Let x ∈ U . Assume that f is (Frechet)-differentiable at x and g is (Frechet)-
differentiable at f(x). Then g◦f is (Frechet)-differentiable at x and D(g◦f)(x) =
Dg(f(x)) ◦Df(x).

Remark 14 Df(x) : Rn → Rp is a linear map, and Dg(f(x)) : Rp → Rs is a
linear map, and so these linear maps can be composed, and the composite is a lin-
ear map, which is continuous because both Dg(f(x)) and Df(x) are continuous.
The composed linear map goes from Rn into Rs, as it should.
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Remark 15 In terms of the Jacobian matrix we have: Jg◦f (x) = Jg(f(x))Jf (x),
the multiplication being that of matrices.

Corollary 2 Let U be an open subset of Rn and f : U → R be a (Frechet)-
differentiable mapping. Let J be an open interval of R and let ϕ : J → Rn be a
differentiable mapping such that ϕ(t) ∈ U for t ∈ J . Then f ◦ ϕ is differentiable
on J and (f ◦ ϕ)′(t) =

∑n
i=1 ϕ

′
i(t)

∂f
∂xi

(ϕ(t)) for all t ∈ J .
In particular if ϕ(t) = x̄ + tu for some x̄ ∈ U and u ∈ Rn, we get (f ◦ ϕ)′(t) =∑n

i=1 ui
∂f
∂xi

(ϕ(t)) = ∇f(x̄+ tu) · u for all t ∈ J .

3.3.5 The Mean Value Theorem

Theorem 22 Let U be an open subset of Rn and f be a differentiable mapping
from U to R. Let x and x̄ two elements of U such that the segment [x, x̄] =
{(1− t)x+ tx̄ | t ∈ [0, 1]} ⊂ U . Then, it exists ξ ∈]x, x̄[ such that f(x̄)− f(x) =
Df(ξ)(x̄− x).

Remark 16 This theorem cannot be generalised to a differentiable mapping f
taken its value in Rp with p > 1. Indeed, let f from R to R2 defined by f(t) =
(cos t, sin t). f is C1 on R. We remark that f(0) = f(2π). It does not exists
t ∈]0, 2π[ such that f(2π)− f(0) = Df(t)(2π). Indeed, Df(t) 6= 0 for all t ∈ R.

Nevertheless, we can obtain an upper bound of the norm f(x̄)− f(x) by using
the norm as a linear mapping of Df(ξ) for ξ ∈ [x, x̄].

Theorem 23 Let U be an open subset of Rn and f be a differentiable mapping
from U to Rp. Let x and x̄ two elements of U such that the segment [x, x̄] =
{(1 − t)x + tx̄ | t ∈ [0, 1]} is included in U . Then, it exists ξ ∈]x, x̄[ such that
‖f(x̄)− f(x)‖p ≤ ‖Df(ξ)‖L‖x̄− x‖n .

Corollary 3 Let U be an open subset of Rn and f be a differentiable mapping
from U to Rp. Let x and x̄ two elements of U such that the segment [x, x̄] = {(1−
t)x + tx̄ | t ∈ [0, 1]} is included in U . Then, ‖f(x̄) − f(x)‖p ≤ max{‖Df(ξ)‖L |
ξ ∈ [x, x̄]}‖x̄− x‖n.

A first consequence of this theorem is the fact that a differentiable mapping f
such that Df(x) is the nul linear mapping for every x is locally constant.

Corollary 4 Let U be an open subset of Rn and f be a differentiable mapping
from U to Rp. If Df(x) = 0L for all x ∈ U , the, for all x̄ ∈ U , f is constant on
the ball B(x̄, r) such that B(x̄, r) ⊂ U .

Another consequence is the fact that a C1 mapping is locally Lipschitz contin-
uous.

Corollary 5 Let U be an open subset of Rn and f be a continuously differentiable
mapping from U to Rp. Let x̄ ∈ U and r > 0 such that the closed ball B̄(x̄, r)
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is included in U . Then it exists k ≥ 0 such that for all (x, x′) ∈ B(x̄, r)2,
‖f(x′)− f(x)‖p ≤ k‖x′ − x‖n.

Exercise 37 Compute the partial derivatives of the following mappings

1) f(x, y) = x(2 ln(x+ 1) + y + 1) + e−y + 2 ln(x+ 1) + y;

2) f(x, y, z) = xαyβzγ; α > 0, β > 0, γ > 0;

3) f(x, y, z) =
√
αx+ βy + γz, α > 0, β > 0, γ > 0;

4) f(x, y, z) = y(x+ x
1
2 z

1
2 + z);

5) f(x, y, z) = (αxρ + βyρ + γzρ)
1
ρ , α > 0, β > 0, γ > 0 ρ > 0;

6) f(x, y, z) = xyz
x+y+z

;

7) f(x, y, z) = eαxeβyeγz;

8) f(x, y, z) = z
(
√
x+
√
y)2

;

9) f(x, y, z) = ln(z)− α ln(x)− β ln(y);

10) f(x, y, z) =
√
x2 + y2 + z2;

11) (x, y) ∈ R2 7→ f(x, y) = x2 + (x+ y − 1)2 + y2;

12) (x, y) ∈ R2 7→ f(x, y) = (x+ y)2 + x4 + y4;

13) (x, y) ∈ R2 7→ f(x, y) = 2x4 − 3x2y + y2;

14) f(x, y) = x2−xy+y2 +x+y, where X = {(x, y) ∈ R2, x ≤ 0, y ≤ 0, x+y ≥
−3};

15) f(x, y) = x2(1 + y)3 + y4;

16) f(x, y) = x2 − y2 + y4/4;

17) f(x, y) = x3 − 3x(1 + y2);

18) f(x, y) =

{ xy(1−x)(1−y)
1−xy if (x, y) 6= (1, 1)

0 if (x, y) = (1, 1)

Exercise 38 Let N be a norm on Rn. Show that N is not differentiable at 0.

Exercise 39 Let f be a linear mapping from Rn to R. Show that f is differen-
tiable on Rn and Df(x) = f for all x ∈ Rn.
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Exercise 40 Let M be a n× p matrix. Let f be the mapping from Rn × Rp to
R defined by:

f(x, y) = x ·My

1) Show that for all (x, y) ∈ Rn × Rp, f(x, y) ≤ ‖M‖L‖x‖‖y‖.
2) Using the definition of the derivative show that f is differentiable on Rn ×Rp

and that the derivative is defined by :

Df(x, y)(h, k) = h ·My + x ·Mk

3) Deduce the derivative of the standard inner product on Rn as a mapping from
Rn × Rn to R.

Exercise 41 Let A be a n × n matrix, b, a vector in Rn and c a real number.
Let f be the mapping from Rn to R defined by:

f(x) = x · Ax+ b · x+ c

1) Compute the partial derivatives of f on Rn.
2) Show that the derivatives are continuous.
3) Provide the formula for the derivative of f at each point x̄ of Rn.

Exercise 42 Let f be the mapping from Rn to R defined by:

f(x) = ‖x‖2 =
n∑
i=1

x2
i

1) Compute the partial derivatives of f at each point x̄.
2) Show that f is differentiable at each point x̄ ∈ Rn and show that Df(x̄) is
defined by Df(x̄)(h) = 2x̄ · h.

Exercise 43 Let f be a mapping from Rn to R. We assume that there exists
c ∈ R+ and α > 0 such that for all (x, y) ∈ (Rn)2,

|f(y)− f(x)| ≤ c‖y − x‖1+α

1) Show that the partial derivatives of f at each point of Rn are vanishing.
2) Deduce that f is constant.

Exercise 44 Let f be a differentiable mapping from R3 to R. We assume that for
all (x, y, z) ∈ R3, the three partial derivatives of f at (x, y, z) are non negative.
Show that if (x′, y′, z′) satisfies x′ ≥ x, y′ ≥ y and z′ ≥ z, then f(x′, y′, z′) ≥
f(x, y, z).

We now assume that for all (x, y, z) ∈ R3 the three partial derivatives of f at
(x, y, z) are positive. Show that if (x′, y′, z′) satisfies x′ ≥ x, y′ ≥ y and z′ ≥ z
with one strict inequality among the three, then f(x′, y′, z′) > f(x, y, z).
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Exercise 45 Let M2 be the space of dimension 4 of the 2 × 2 matrices. We
consider the mapping “determinant” fromM2 to R.

For all M =

(
a b
c d

)
, detM = ad− bc.

1) Compute the partial derivative of the mapping det.
2) Show that the mapping det is differentiable and give its derivative atM ∈M2.
3) Show that D det(M) = 0L if and only if M = 0.

Exercise 46 Let f and g two differentiable mappings from Rn to Rp. Let x̄ ∈ Rn.
We assume that f(x) = g(x) + ‖x− x̄‖ε(x) where ε is a mapping from Rn to Rp

satisfying limx→x̄ ε(x) = 0p. Show that f(x̄) = g(x̄) and Df(x̄) = Dg(x̄).

Exercise 47 Let f be a differentiable mapping from an open subset U of Rn to
Rp. We assume that f is k Lipschitz continuous on U , i.e., ∃k > 0, ∀x, y ∈ U2,
‖f(x)− f(y)‖p ≤ k‖x− y‖n. Show that for all x in U , ‖Df(x)‖L ≤ k.

3.4 Unconstrained Optimisation

Note that the title of this section is somehow misleading since it does not mean
that we are maximising the objective function on the whole space Rn but an open
space, for example of vectors with positive coordinates. So, we may have some
constraints to define the set of feasible points, but no feasible point lies on the
boundary of the feasible set.

3.4.1 First order necessary optimality condition

Let U be an open subset of Rn and f be a continuously differentiable mapping
from U to R. We consider the two following problems:

(P) max
x∈U

f(x) resp. (Q) min
x∈U

f(x)

The first order necessary optimality condition is then:

Theorem 24 If x̄ is a (local) solution of (P) of (Q), then ∇f(x̄) = 0 or, in
terms of partial derivative ∂f

∂xi
(x̄) = 0 for all i = 1, . . . , n.

Proof. We give the proof for a solution of (P). For the problem (Q), it suffices
to reverse the inequalities. Let u ∈ Rn \ {0}. Since U is open, for r > 0 small
enough, B(x̄, r) ⊂ U . So, with ρ = r/‖u‖, for all t ∈] − ρ, ρ[, x̄ + tu ∈ U .
Hence, since x̄ is a local solution of (P), f(x̄ + tu) ≤ f(x̄) for all t ∈] − ρ, ρ[.
Hence, limt→0+

f(x̄+tu)−f(x̄)
t

= ∇f(x̄) · u ≤ 0. For −u, we get the same inequality
∇f(x̄) · (−u) ≤ 0, hence ∇f(x̄) · u = 0. Since these equality is true for all
u ∈ Rn \ {0}, we can conclude that ∇f(x̄) = 0. �

Exercise 48 For the following functions, find the critical points where the gra-
dient vanish.
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1) f(x, y) = ln(1 + xy), (x, y) ∈ {(x′, y′) ∈ R2 | xy > −1}

2) f(x, y) = xy2 + xy − 2x− 12y

3) f(x, y, z) = −2x2 − 2xy − xz − 1
2
y2 + 2xz − 2z2 + x− 2y − z

4) f(x, y) = x2y2 − 4x2 − y2

5) f(x, y) = 2x4 + 2x2y + y2 − 2x2 + 1

6) f(x, y) = 1√
x2+y2

+ 1√
(x−1)2+y2

on R2 \ {(0, 0), (1, 0)}

7) f(x, y) = x(2 ln(x)− y − 1) + ey on R∗+ × R

8) f(x, y) = (x2 + (x− 1)2)(y − 3)2 + y

9) f(x, y) = x4 − 2x2y + x2 + 3y2 − 2xy − 2y + 3

10) f(x, y) = x4 − x2 + y4 + 2xy2 − 2y2 − 2x+ 2

11) f(x, y) = 14x2 − 6xy + 6y2

Exercise 49 Let ϕ be a non zero linear mapping from Rn to R. Let U be an
open subset of Rn. Show that the following optimisation problem{

Minimise ϕ(x)
x ∈ U

{
Maximise ϕ(x)
x ∈ U

have no solution

The following exercise show that the solution of the equation y = ∇f(x) where
y is given and x the unknown is also the solution of an optimisation problem.

Exercise 50 Let f be a continuously differentiable mapping from U an open
subset of Rn to R. Let y ∈ Rn. Show that if the following optimisation problem{

Maximise x · y − f(x)
x ∈ U

has a solution x̄ then y = ∇f(x̄).

3.4.2 Second order necessary optimality condition

We are now considering that f is C2 on U . Then we also get an information on
the second derivative of f or the Hessian matrix of f .

Theorem 25 If x̄ is a solution of (P) (resp. (Q) then ∇f(x̄) = 0 and the
Hessian matrix of f at x̄, Hf (x̄), is negative semi-definite (resp. positive semi-
definite).
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Proof. We are doing the proof for (P) the maximisation problem. The one
for (Q) is the same with the reverse inequalities. Let u ∈ Rn \ {0}. As in the
previous proof, for t ∈] − ρ, ρ[, x̄ + tu ∈ U . So f(x̄ + tu) ≤ f(x̄). The Taylor
development of f at x̄ is

f(x̄+ tu) = f(x̄) +∇f(x̄) · u+
t2

2
u ·Hf (x̄)(u) + t2‖u‖2η(x̄+ tu)

where η is a function from U to R satisfying limx→x̄ η(x) = 0. SInce ∇f(x̄) = 0
from the first order necessary optimality condition, dividing by t2, we obtain:

0 ≥ 1

2
u ·Hf (x̄)(u) + ‖u‖2η(x̄+ tu)

and at the limit at 0+, since limt→0+ η(x̄+ tu) = 0, 0 ≥ 1
2
u ·Hf (x̄)(u). This shows

that Hf (x̄) is negative semi-definite.

Exercise 51 Check for the critical points of Exercise 48 if they satisfy the second
order necessary optimality condition.

3.5 Optimisation with linear equality constraints

We now add to the previous problems several linear equality constraints. This
means that the set of feasible points is defined as the elements x of the open set
U satisfying the following equality:

∀j = 1, . . . , p, aj · x =
n∑
i=1

ajixi = bj

where a1, ... ,ap are p given vectors of Rn and b1, . . . , bp, p given real numbers. In
a matrix form, we can define the p× n matrix A with the rows aj and the vector
b = (b1, . . . , bp) of Rp and the constraints are now summarised in the compact
form Ax = b.

So, we are considering the following optimisation problems:

(P)


Maximise f(x)
Ax = b or ajj · x = bj for all j = 1, . . . , p
x ∈ U

(Q)


Minimise f(x)
Ax = b or ajj · x = bj for all j = 1, . . . , p
x ∈ U

The first order necessary optimality condition is then:

Theorem 26 If x̄ is a (local) solution of (P) or (Q), then there exists a vector
of Lagrange multipliers λ in Rp such that ∇f(x̄) =

∑p
j=1 λ

jaj or, in terms of
partial derivative ∂f

∂xi
(x̄) =

∑p
j=1 λ

jaji for all i = 1, . . . , n.
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Note that x̄ satisfies also the constraints aj · x̄ = bj for all j or Ax̄ = b.

Proof. Let KerA = {u ∈ Rn | Au = 0}. Let x̄ a solution of (P). The proof is
similar for a solution of (Q).

For all u ∈ KerA \ {0}, for all t ∈ R, A(x̄ + tu) = b and for all t in a small
enough interval around 0, x̄ + tu ∈ U . So, f(x̄ + tu) ≥ f(x̄). So the directional
derivative of f at x̄ in the direction u

f ′(x̄, u) = lim
t→0+

f(x̄+ tu)− f(x̄)

t
= ∇f(x̄) · u

is non positive. Since this is also true for −u thanks to the fact that KerA is
a linear subspace, ∇f(x̄) · u = 0. Since, this is true for all u ∈ KerA, ∇f(x̄)
belongs to (KerA)⊥. Hence, since (KerA)⊥ = ImAt, there exists a vector λ ∈ Rp

such that ∇f(x̄) = Atλ =
∑p

j=1 λ
jaj since the vectors aj are the column vectors

of At. �

With the same proof as above, we can obtain the following second-order nec-
essary optimality condition. It suffices to remark that ∇f(x̄) · u = 0 for all
u ∈ KerA.

Theorem 27 If x̄ is a solution of (P) (resp. (Q) then the Hessian matrix of f
at x̄, Hf (x̄), is negative semi-definite (resp. positive semi-definite) on KerA, that
is, for all u ∈ KerA, u ·Hf (x̄)u ≤ (resp. ≥)0.

Remark 17 It is an exercise of Euclidean algebra to prove that the matrixHf (x̄),
is negative semi-definite (resp. positive semi-definite) on KerA if and only if the
p× p matrix AHf (x̄)At is negative semi-definite.

Exercise 52 Let A be a p × n matrix, b a vector of Rp. We assume that F =
{x ∈ Rn | Ax = b} is non empty. Let x̄ ∈ Rn a given vector. We consider the
following problem consisting of finding the closest point in F to x̄.{

Minimise ‖y − x̄‖2

Ay = b

1) Show that this problem has a solution.
1) Letȳ be a solution. Show that ȳ − x is orthogonal to the kernel of A.
2) Let a ∈ Rn \ {0}. The matrix A is the 1×n matrix whose unique row is a, i.e.
Ax = v · x. Let b be a real number.

a) Compute explicitly the unique solution of the problem and the associated
multiplier.

b) Compute the value of the problem, which depends on b. Show that the
value function is differentiable with respect to b and show that the derivative of
the value function with respect to b is equal to the multiplier.
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Exercise 53 1) Using the previous exercise, show that if D = {(x, y) ∈ R2 |
ax + by + c = 0} with (a, b) 6= (0, 0), then the distance of (x, y) to the line D is
equal to:

|ax+ by + c|√
a2 + b2

2) Using the previous exercise, show that if P = {(x, y, z) ∈ R3 | ax+by+cz+d =
0} with (a, b, c) 6= (0, 0, 0), then the distance of (x, y, z) to the plan P is equal to:

|ax+ by + cz + d|√
a2 + b2 + c2

Exercise 54 Let α ∈ Rn
++ = {x ∈ Rn | xi > 0,∀i = 1, . . . , n}.The function f

from Rn
++ to R is defined by

f(x) =
n∑
i=1

αi ln(xi)

where ln(xi) is the standard logarithm function of xi. Let β ∈ Rn
++. We consider

the following optimisation problem:

(P)


Maximise f(x)∑n

i=1 βixi = 1
x ∈ Rn

++

Compute the unique point satisfying the first order necessary condition. Are
the second order necessary condition satisfied at this point?

Exercise 55 Let us consider the following optimisation problem:

(P )

{
Minimise 5x2 + 4xy + y2

3x+ 2y = 5

1) First method: solve the problem by reducing it to a one dimensional optimi-
sation problem.
2) Second method: write the first order necessary condition and find the solutions
and the multipliers.
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Chapter 4

Optimization with equality
contraints and sensitiviy analysis

We consider an objective function f from an open subset U of Rn to R and p
constraints, which are represented by p functions gi from U to R. We consider
the following optimisation problems:

(P)


Minimise f(x)
gi(x) = 0, i = 1, . . . , p
x ∈ U

(Q)


Maximise f(x)
gi(x) = 0, i = 1, . . . , p
x ∈ U

To find the first order necessary conditions of optimality, we need to have a
convenient description of the set {x ∈ U | gi(x) = 0,∀i = 1, . . . , p}. For this, we
will use the implicit function theorem.

4.1 Introduction to the implicit function theorem

Let us first consider the case where we have a unique linear constraint: g1(x) =
a1x1 + a2x2 + . . .+ anxn + b1. Then, if an 6= 0, for all x1, x2, . . . , xn−1 ∈ Rn−1, we
have a unique xn such that g1(x1, x2, . . . , xn) = 0, which is given by the simple
formula: xn = ϕ(x1, x2, , . . . , xn−1) = b1 − (1/an)(a1x1 + a2x2 + . . . + an−1xn−1).
So, the set S = {x ∈ Rn | g1(x) = 0}, implicitly described by g1, is explicitly
described by the function ϕ, as S = {x ∈ Rn | xn = ϕ(x1, x2, . . . , xn−1)}.

We remark that ϕ is a differentiable mapping and

∂ϕ

∂xi
(x1, x2, . . . , xn−1) = −(ai/an) = −

(
∂g1

∂xi
(x1, x2, , . . . , xn)/

∂g1

∂xn
(x1, x2, , . . . , xn)

)
The implicit function theorem tells us that we can generalise this result when
g1 is C1 locally around a point (x̄1, x̄2, . . . , x̄n) such that g1(x̄1, x̄2, . . . , x̄n) = 0
and ∂g1

∂xn
(x̄1, x̄2, . . . , x̄n) 6= 0. For example, let g1(x1, x2, x3) = x2

1 + x2
2 + x2

3 −
1. Then let (x̄1, x̄2, x̄3) such that g1(x̄1, x̄2, x̄3) = 0 and x3 6= 0. We remark
that ∂g1

∂x3
(x̄1, x̄2, x̄3) = 2x̄3 6= 0. In a neighborhood of (x̄1, x̄2) in R2, we have
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g1(x1, x2, ϕ(x1, x2)) = 0 and ϕ(x̄1, x̄2) = x̄3 with ϕ(x1, x2) =
√

1− x2
1 − x2

2 if
x3 > 0 or ϕ(x1, x2) = −

√
1− x2

1 − x2
2 if x3 < 0. So, the unit sphere S = {x ∈

R3 | g1(x) = 0}, implicitly described by g1, is explicitly described by the function
ϕ around the point (x̄1, x̄2, x̄3), as S ∩ [B(x̄1, x̄2, r)×]x̄3 − r, x̄3 + r[] = {x ∈ Rn |
(x1, x2) ∈ B(x̄1, x̄2, r), x3 =

√
1− x2

1 − x2
2} if x̄3 > 0.

We also easily checks that

∂ϕ

∂xi
(x̄1, x̄2) =

−x̄i√
1− x̄2

1 − x̄2
2

= − x̄i
x̄3

= −
(
∂g1

∂xi
(x̄1, x̄2, x̄3)/

∂g1

∂x3

(x̄1, x̄2, x̄3)

)
.

We also remark that if x̄3 = 0, then ∂g1
∂x3

(x̄1, x̄2, x̄3) = 2x̄3 = 0 and x̄2
1 + x̄2

2 =
1. So, it does not exist a function ϕ on a neighborhoud of (x̄1, x̄2) such that
g1(x1, x2, ϕ(x1, x2)) = 0 since it does not exists a real number x3 satisfying
g1(x1, x2, x3) = 0 if we increase even a little bit x1 and x2 starting from (x̄1, x̄2).
Formally if t > 0, there is no solution in x3 to g1(x̄1 + t, x̄2 + t, x3) = 0. So, in
that case, we can not describe the set using the variables (x1, x2).

Now, we remark the following consequence of this explicit description. Let
u ∈ Rn \ {0} such that ∇g1(x̄) · u =

∑n
i=1

∂g1
∂xi

(x̄)ui = 0. Then,

un = −
(

1/
∂g1

∂xn
(x̄)

) n−1∑
i=1

∂g1

∂xi
(x̄)ui

Let us consider the mapping ψ from an open interval around 0 in R to Rn defined
by ψ(t) = (x̄1 + tu1, x̄2 + tu2, . . . , x̄n−1 + tun−1, ϕ(x̄1 + tu1, x̄2 + tu2, . . . , x̄n−1 +
tun−1)). Clearly g1(ψ(t)) = 0 for all t from the property of the mapping ϕ. Now,
we remark that

ψ′(0) =


u1

u2
...

un−1∑n−1
i=1

∂ϕ
∂xi

(x̄1, x̄2, . . . , x̄n−1)ui


From the above computation of the partial derivatives of ϕ, we get that:

n−1∑
i=1

∂ϕ

∂xi
(x̄1, x̄2, . . . , x̄n−1)ui = −

(
1/
∂g1

∂xn
(x̄)

) n−1∑
i=1

∂g1

∂xi
(x̄)ui = un

So, ψ′(0) = u. Hence, for all vectors u orthogonal to ∇g1(x̄), we can draw a
differentiable path ψ on the set S = {x ∈ Rn | g1(x) = 0} such that ψ′(0) = u.
This property will allow us to derive a first order necessary condition of optimality.
Indeed, if x̄ is a (local) solution of the above maximisation problem (Q). Then,
f(ψ(t)) ≤ f(x̄) = f(ψ(0)). So 0 is a maximum of the real function f(ψ(t)). Hence
the derivative of the function is 0 at 0. From the theorem on the composition of
the derivatives, we deduces that ∇f(ψ(0)) · ψ′(0) = ∇f(x̄) · u = 0. So, ∇f(x̄)
is orthogonal to all vectors u, which are orthogonal to ∇g1(x̄). In other words,
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∇f(x̄) is orthogonal to all vectors u in the kernel of the linear mapping from Rn

to R defined by v →
∑n

i=1
∂g1
∂xi

(x̄)vi = ∇g1(x̄) · v. Hence ∇f(x̄) belongs to the
image of the transpose of this linear mapping, which is the mapping from R to
Rn defined by t→ t∇g1(x̄). Consequently, there exists a “Lagrange multiplier” λ
such that ∇f(x̄) = λ∇f(x̄), or, in other words, ∇f(x̄) is proportional to ∇g1(x̄).

Now let us come to the case of several linear constraints. Let us consider the
case where we have p linear constraints: gi(x) = ai1x1 +ai2x2 + . . .+ainxn+ bi. Let
us call G the linear mapping from Rn to Rp defined by G(x) = (ai1x1 + ai2x2 +
. . . + ainxn)pi=1. The entry on the ith row and the j column of the matrix A of
this mapping is aij. So, the set S = {x ∈ Rn | gi(x) = 0, ∀i = 1, . . . , p} is equal to
{x ∈ Rn | G(x) = −b}, that is the set of inverse images of −b by G.

Let us assume that the p× p matrix D extracted from A by choosing the last
p columns is a regular matrix. We call B the the (n − p) × p matrix extracted

from A by choosing the first (n− p) columns. So A = (B
...D).

If we choose arbitrarily (x1, x2, . . . , xn−p) ∈ Rn−p, then there exists a unique
vector (xn−p+1, . . . , xn) in Rp such that

G(x1, x2, . . . , xn−p, xn−p+1, . . . , xn) = B(x1, x2, . . . , xn−p) +D(xn−p+1, . . . , xn) = b

which is given by the following formula:

(xn−p+1, . . . , xn) = −D−1(b+B(x1, x2, . . . , xn−p))

So the mapping ϕ from Rn−p to Rp defined by −D−1(b + B(x1, x2, . . . , xn−p))
describes explicitely the set S in the sense that

S = {x ∈ Rn | (xn−p+1, . . . , xn) = ϕ(x1, x2, . . . , xn−p)}

We remark that the function ϕ is differentiable and the derivative D−1B is com-
putable from the partial derivatives of G.

The implicit function theorem is a generalisation of this properties for non-
linear mapping. Let us illustrate it by an example. Let f from U = {x ∈ R4 |
x3 6= 0} to R2 defined by:

f(x1, x2, x3, x4) =

(
x1 +

x4

x2
3

, x2 −
1

x3

)
We remark that f(0,−1,−1, 0) = 0. The derivative of f is:

Jf (x) =

(
1 0 −2x4

x33

1
x23

0 1 1
x23

0

)

We remark that the 2× 2 matrix D(x) extracted from Jf (x) by choosing the two
last columns

D(x) =

(
−2x4

x33

1
x23

1
x23

0

)
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is regular. In particular:

D(0,−1,−1, 0) =

(
0 1
1 0

)
D−1(0,−1,−1, 0) =

(
0 1
1 0

)
So, we can find a mapping ϕ from a neighborhoud of (0,−1) to R2 such that

ϕ(0,−1) = (−1, 0) and f(x1, x2, ϕ(x1, x2)) = 0. We can do the computation and
we find

ϕ(x1, x2) =

(
1

x2

,−x1

x2
2

)
We can compute the derivative of ϕ.

Jϕ(x1, x2) =

(
0 − 1

x22

− 1
x22

2x1
x32

)
Jϕ(0,−1) =

(
0 −1
−1 0

)
Let B(x) be the matrix extracted from Jf (x) by choosing the two first columns

B(x) =

(
1 0
0 1

)
As in the linear case, we remark that

Jϕ(0,−1) = −D−1(0,−1,−1, 0)B(0,−1,−1, 0)

So, even if, in the general case, we are not able to find a closed form for the
mapping ϕ, the theorem states that this mapping exists, it is continuously differ-
entiable and the Jacobian matrix can be computed explicitly starting from the
Jacobian matrix of f . We also remark the following property of the kernel of the
Jacobian matrix Jf (0,−1,−1, 0). If u belongs to KerJf (0,−1,−1, 0), then,

B(0,−1,−1, 0)

(
x1

x2

)
+D(0,−1,−1, 0)

(
x3

x4

)
=

(
0
0

)
So, (

x3

x4

)
= −D−1(0,−1,−1, 0)B(0,−1,−1, 0)

(
x1

x2

)
= Jϕ(0,−1)

(
x1

x2

)
So, the kernel of Jf (0,−1,−1, 0) is the graph of Jϕ(0,−1), that is:

KerJf (0,−1,−1, 0) =

{
(x1, x2, x3, x4) ∈ R4 |

(
x3

x4

)
= Jϕ(0,−1)

(
x1

x2

)}

4.2 The Implicit Function Theorem

We formally state the implicit function theorem. We consider a C1 mapping g
from an open subset U of Rn to Rp. We denote gi, i = 1, . . . , p the component
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mappings of g. We recall that the row of the Jacobian matrix of g, Jg(x) are the
gradient vectors of the component mappings ∇gi(x). So, Jg(x) is of rank p if and
only if the gradients vectors (∇gi(x))pi=1 are linearly independent. For the sake of
simpler notation, we will assume that the p last columns of the matrix Jg(x) are
linearly independent. We denote Jg1;n−p(x) the matrix extracted from Jg(x) by
choosing the first n−p columns and by Jgn−p+1;n(x) the square matrix extracted

from Jg(x) by choosing the last p columns. So Jg(x) = (Jg1;n−p(x)
...Jgn−p+1;n(x)).

So for all u in Rn, Jg(x)u = Jg1;n−p(x)u1;n−p+Jgn−p+1,n(x)un−p+1;n, where u1;n−p

is the n− p dimensional vector with the first n− p components of u and un−p+1;n

is the p dimensional vector with the last p components of u.

Theorem 28 (Implicit Function Theorem) Let g be a C1 mapping from an open
subset U of Rn to Rp. Let x̄ ∈ U and z̄ = g(x̄). We assume that the p square ma-
trix Jgn−p+1,n(x̄) is regular. Then, it exists an open subset V1 of Rn−p containing
x̄1;n−p, an open subset V2 of Rp containing z̄, an open subset W of Rp containing
x̄n−p+1;n and a C1 mapping ϕ from V1 × V2 to W such that:

1) ϕ(x̄1;n−p, z̄) = x̄n−p+1;n;

2) for all (ξ, z) ∈ V1 × V2, g(ξ, ϕ(ξ, z)) = z;

3) for all (ξ, ζ, z) ∈ V1 ×W × V2 such that z = g(ξ, ζ), then ζ = ϕ(ξ, z).

Furthermore, the Jacobian matrix of ϕ at (x̄1;n−p, z̄) is defined as follows:

Jϕ(x̄1;n−p, z̄) =
[
Jgn−p+1;n(x̄)

]−1
(
−Jg1;n−p(x̄)

... Idp

)
In most of the cases, we do not use the dependency with respect to z of ϕ and

we just consider the partial function ϕ(·, z̄).

Example. Let us consider the mapping g(x, y) = ex−y − x− y − 1 from R2 to
R. We remark that g(0, 0) = 0. Furthermore, ∂g

∂y
(0, 0) = −2 6= 0. So, it exists an

open interval W of 0 in R, an open interval V of 0 in R and a C1 function ψ from
W to V such that ψ(0) = 0, ex−ψ(x)− x−ψ(x)− 1 = 0 for all x ∈ W and ψ(x) is
the unique solution in V of the equation ex−y − x− y − 1 = 0. We can compute
the derivative of ψ at 0 which is −−1

2
× 0 = 0.

For our application in optimisation, we will use the following corollary of the
Implicit Function Theorem.

Corollary 6 Let g be a C1 mapping from an open subset U of Rn to Rp. Let
x̄ ∈ U and z̄ = g(x̄). We assume that the Jacobian square matrix Jg(x) is of
rank p. Then, for all u in the kernel of Jg(x̄), that is satisfying Jg(x̄)(u) = 0,
there exists a C1 mapping ψ from an open interval I in R containing 0 to Rn such
that

1) ψ(0) = x̄;

57



2) ψ′(0) = u;

3) for all t ∈ I, g(ψ(t)) = z̄;

Proof. We will assume that the p square matrix Jgn−p+1,n(x) is regular.
If it is not the case, we just do a permutation of the components, that is a
permutation of the columns of the matrix Jg(x̄) so that the last p columns be
linearly independent. This is always possible since Jg(x) is of rank p so it has p
linearly independent columns among its n columns. Now, we use the mapping ϕ
given by the Implicit Function Theorem and we define ψ as follows:

ψ(t) = (x̄1;n−p + tu1;n−p, ϕ(x̄1;n−p + tu1;n−p, z̄))

The mapping ψ is defined on an open interval I of 0 in R since ϕ is defined
on an open set containing (x̄1;n−p, z̄). ψ(0) = (x̄1;n−p, ϕ(x̄1;n−p, z̄)) = x̄ since
ϕ(x̄1;n−p, z̄) = x̄n−p+1;n. For all t ∈ I, g(ψ(t)) = g((x̄1;n−p + tu1;n−p, ϕ(x̄1;n−p +
tu1;n−p, z̄)) = z̄ from the second property of ϕ in the Implicit Function Theorem.

Let us compute now ψ′(0). From the composition of the derivatives and the
formula defining ψ,

ψ′(0) =


u1
...

un−p

Jϕ(x̄1;n−p, z̄)

(
u1;n−p

0p

)


From the implicit function Theorem,

Jϕ(x̄1;n−p, z̄)

(
u1;n−p

0p

)
= −

[
Jgn−p+1;n(x̄)

]−1
Jg1;n−p(x̄)u1;n−p

Since u is in the kernel of Jg(x̄), we have:

Jg(x̄)u = Jg1;n−p(x̄)u1;n−p + Jgn−p+1;n(x̄)un−p+1;n = 0

so
−
[
Jgn−p+1;n(x̄)

]−1
Jg1;n−p(x̄)u1;n−p = un−p+1;n

and finally,

ψ′(0) =


u1
...

un−p
un−p+1;n

 = u

�
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4.3 First order necessary optimality condition

Let us come back to our optimisation problem with equality constraints.

(P)


Minimise f(x)
gi(x) = 0, i = 1, . . . , p
x ∈ U

(Q)


Maximise f(x)
gi(x) = 0, i = 1, . . . , p
x ∈ U

Using the results presented above, we can state the following first order nec-
essary optimality conditions.

Proposition 65 Let us assume that the mappings f and gi are C1 and that x̄
is a (local) solution of the problem (P) (resp. (Q)). So if the gradient vectors
(∇gi(x̄))pi=1 are linearly independent, there exists a vector of Lagrange multipliers
λ ∈ Rp such that ∇f(x̄) +

∑p
i=1 λi∇gi(x̄) = 0.

In other words, the gradient vector of the objective function is a linear combi-
nation of the gradient vectors of the constraints.

Example. Let f(x, y) = x2 − y and g(x, y) = x2 + y2 − 1. Let us consider the
following optimisation problem:

Minimise f(x, y)
g(x, y) = 0
(x, y) ∈ R2

We remark that this problem has a solution since the set {(x, y) ∈ R2 | x2 + y2 =
1} is closed and bounded and the mapping f is continuous. We remark that for
all (x, y) such that g(x, y) = 0, ∇g(x, y) 6= 0. We look for the points (x̄, ȳ) such
that g(x̄, ȳ) = 0 and it exists a multiplier λ ∈ R such that ∇f(x̄, ȳ) = λ∇g(x̄, ȳ).
We find four points: (0, 1) with λ = −1

2
; (0,−1) with λ = 1

2
; (
√

3
2
, −1

2
) with λ = 1;

(−
√

3
2
, −1

2
) with λ = 1. From the first order necessary condition, we know that the

solution(s) are among these four points. We compute f(0, 1) = −1, f(0,−1) = 1,
f(
√

3
2
, −1

2
) = 5

4
, f(−

√
3

2
, −1

2
) = 5

4
and we deduce that the solution is (0, 1).

Proof. The proof is just the precise argument sketched above in the intro-
duction. We do it for the minimisation problem (P). Let g(x) = (gi(x))pi=1 the
mapping from U to Rn. Since the gradient vectors (∇gi(x̄))pi=1, which are the
rows of the matrix Jg(x̄), are linearly independent, Jg(x̄) is of rank p. We apply
the corollary of the Implicit function Theorem and, for all u ∈ KerJg(x̄), there
exists a C1 mapping ψ from an open interval I in R containing 0 to Rn such that

1) ψ(0) = x̄;

2) ψ′(0) = u;

3) for all t ∈ I, g(ψ(t)) = 0;
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So, f(ψ(t)) ≥ f(x̄) = f(ψ(0)). Hence, 0 is a minimum of f ◦ ψ, hence its
derivative is equal to 0. From the composition of the derivatives, we deduce that
∇f(x̄) · u = 0. Consequently, ∇f(x̄) is orthogonal to all vectors of KerJg(x̄),
hence it belongs to the range of the transpose of Jg(x̄). So, there exists a vector
λ ∈ Rp such that ∇f(x̄) + Jgt(x̄)λ = 0. If we develop this formula, we get
∇f(x̄) +

∑p
i=1 λi∇gi(x̄) = 0. �

Remark 18 Note that the result does not hold if we do not assume the linear
independence of the gradient vectors (∇gi(x̄))pi=1. Indeed, let us consider the
following minimisation problem:

Minimise f(x, y) = x+ y
g1(x, y) = (x− 1)2 + y2 − 1 = 0
g2(x, y) = (x+ 1)2 + y2 − 1 = 0
(x, y) ∈ R2

We remark that the set {(x, y) ∈ R2 | g1(x, y) = g2(x, y) = 0} is the singleton
(0, 0). So the solution of the problem is (0, 0). Now, ∇f(0, 0) = (1, 1), ∇g1(0, 0) =
(−2, 0) and ∇g2(0, 0) = (2, 0). So it does not exist a vector λ ∈ R2 such that
∇f(0, 0) = λ1∇g1(0, 0) + λ2∇g2(0, 0). This is due to the fact that ∇g1(0, 0) is
colinear to ∇g2(0, 0), so the two vectors are not linearly independent.

4.4 Lagrangian function and second order neces-
sary condition

In this section, we consider the problem (P)

(P)


Minimise f(x)
gi(x) = 0, i = 1, . . . , p
x ∈ U

and we left the reader adapt the following result to the problem (Q).

Definition 40 The Lagrangian function L associated to the problem (P) is the
function from U × Rp to R defined by:

L(x, λ) = f(x) +

p∑
i=1

λigi(x)

We remark that the first order necessary optimality conditions can be written
as follows: ∇xL(x̄, λ̄) = ∇f(x̄) +

∑p
i=1 λ̄i∇gi(x̄) = 0 and for all i = 1, . . . , p,

∂L
∂λi

(x̄, λ̄) = gi(x̄) = 0. In other words, all partial derivatives of the Lagrangian
function vanishes at (x̄, λ̄).

We also remark that for all x satisfying the constraints gi(x) = 0 for all i,
L(x, λ) = f(x). So if x̄ is a (local) minimum of the function L(·, λ̄) on U , then x̄
is a (local) solution of the problem (P). The converse is not true.

60



We now state the second order necessary condition of optimality. We denote
by A(x), the tangent space to the feasibility set {x ∈ U | gi(x) = 0,∀i = 1, . . . , p},
that is:

A(x) = {u ∈ Rn | ∇gi(x) · u = 0, ∀i = 1, . . . , p}

Proposition 66 We assume that the functions f and gi, i = 1, . . . , p, are C2

on U . Let x̄ be a local solution of the problem (P). We assume that the vectors
(∇gi(x̄))pi=1 are linearly independent. Let λ̄ ∈ Rp be the multiplier associated to
x̄. Then, for all u ∈ A(x̄),

u ·HxxL(x̄, λ̄)(u) = u ·

(
Hf(x̄) +

p∑
i=1

λ̄iHgi(x̄)

)
(u) ≥ 0

Proof. Let u ∈ A(x̄), u 6= 0. From the corollary of the Implicit Function
Theorem, it exists a C1 mapping ψ from an open interval of R containing 0 to
Rn such that ψ(0) = x̄, ψ′(0) = u, gi(ψ(t)) = 0 for all i = 1, . . . , p. So, for
all t, L(ψ(t), λ̄) = f(ψ(t)) ≥ f(x̄) = L(x̄, λ̄). Let us use a second order Taylor
expansion of the mapping L(·, λ̄) around x̄:

0 ≤ ∇xL(x̄, λ̄) · (ξ(t)− x̄) + 1
2
(ξ(t)− x̄) ·HxxL(x̄, λ̄)(ξ(t)− x̄)

+‖ξ(t)− x̄‖2η̄(ξ(t)− x̄)
= 1

2
(ξ(t)− x̄) ·HxxL(x̄, λ̄, µ̄)(ξ(t)− x̄) + ‖ξ(t)− x̄‖2η̄(ξ(t)− x̄)

with limx→0 η̄(x) = 0. Dividing by t2 and taking the limit at 0+, noticing that
limt→0+

ξ(t)−x̄
t

= u, we obtain

0 ≤ u ·HxxL(x̄, λ̄, µ̄)(u)

which is the desired result. �

Exercise 56 Let U = {x ∈ Rn | ∀i = 1, . . . , n, xi > −1}. The function f from
U to R is defined by

f(x) =
n∑
i=1

ln(xi + 1)

where ln(xi + 1) is the natural logarithm of xi + 1. we consider the following
optimisation problem :

(P)


Maximise f(x)∑n

i=1 xi = 0
x ∈ U

Show that there exists a unique point satisfying the first order necessary con-
dition.
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Exercise 57 Let (f i) be n differentiable functions from R to R. Let E be the
linear subspace of Rn defined by:

E = {x ∈ Rn |
n∑
i=1

xi = 0}

Let x̄ be a solution of the following optimisation problem:{
Minimise

∑n
i=1 f

i(xi)
x ∈ E

Show that for all i = 2, . . . , n, (f i)′(x̄i) = (f 1)′(x̄1).

Exercise 58 Let α ∈ Rn
++ = {x ∈ Rn | xi > 0,∀i = 1, . . . , n}. The function f

from Rn
++ to R is defined by:

f(x) =
n∑
i=1

αi ln(xi)

where ln(xi) is the natural logarithm of xi. Let β ∈ Rn
++. We consider the

following optimisation problem:

(P)


Maximise f(x)∑n

i=1 βixi = 1
x ∈ Rn

++

Compute the unique point satisfying the first order necessary condition.

Exercise 59 Let us consider the following problem:

(P )

{
Minimise 5x2 + 4xy + y2

3x+ 2y = 5

1) Solve this problem by reducing it to a one variable problem using the equality
constraint.
2) Solve the first order necessary condition and find the associated multipliers.

Exercise 60 For the following problem, find the points satisfying the first order
necessary conditions (minimum or maximum):{

Optimise 1
3
x− 1

4
y

x2 − 2x+ y2 = 0
Optimise lnx+ ln y + ln z
x2 + y2 + z2 = 3
x > 0, y > 0, z > 0{
Optimise 4x2 + y2

xy + 2 = 0{
Optimise xy
x2 + 4y2 − 8 = 0

62



{
Optimise 2y4 − 2xy2 + x2 − 4y2 + 2x+ 2
−x+ y2 − 2 = 0{
Optimise x+ 3y − z
x2 + 3y2 + z2 − 2

√
x2 + 3y2 − 4 = 0{

Optimise x2 − 3
2
x+ y2 − 3

2
y

x2 + y2 − 2xy − x− y = 0
Optimise 4x+ y + 2
lnx+ 2 ln y = 0
x > 0, y > 0{
Optimise −2

3
xy + 5

2
y + 8

3
x− 11

6

x2 + y − 1 = 0

Exercise 61 For the above optimisation problems, write explicitly the associated
Lagrangian mapping and check if the second order necessary condition is satisfied
or not at the points satisfying the first order necessary condition.

Exercise 62 LetM be a n×n symmetric matrix n×n. We consider the following
optimisation problem: 

Minimise x ·Mx
‖x‖ = 1,
x ∈ Rn

1) Show that this problem has at least one solution x̄.
2) Show that there exists λ ∈ R such that Mx̄ = λx̄.

4.5 Multipliers and derivative of the value func-
tion

In this section, we consider that the optimisation problem depends on a parameter
y in Rq, which appears in the objective function as well as in the constraint
functions. So, for a given y, we have the following problem:

(Py)


Minimiser f(x, y)
gi(x, y) = 0, i = 1, . . . , p
x ∈ U

We assume that the objective function and the constraint functions are C2. We
start from a point x̄ and a vector of multipliers λ̄ which satisfies the first order
necessary condition for the problem (Pȳ), that is:

∇xf(x̄, ȳ) +

p∑
i=1

λ̄i∇xgi(x̄, ȳ) = 0

We are looking for the existence of points satisfying the first order necessary
condition when the parameter y is closed to ȳ. For this, we need a strong second
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order condition and we use the Implicit Function Theorem. Then we study the
value of the objective function, the derivative of this value function and the
link with the multipliers. Later, using some sufficient second order optimality
conditions, we will show that these points are actually local solutions of the
perturbed problem.

Proposition 67 We assume that the objective function f and the constraint
functions gi are C2. Let x̄ ∈ U such that the gradient vectors (∇gi(x̄, ȳ))pi=1

are linearly independent and a vector of multipliers λ̄ ∈ Rp satisfying

∇xf(x̄, ȳ) +

p∑
i=1

λ̄i∇xgi(x̄, ȳ) = 0

We also assume that for all u ∈ A(x̄, ȳ) = {u ∈ Rn | ∇gi(x̄, ȳ) · u = 0,∀i =
1, . . . , p} \ {0},

u ·HxL(x̄, λ̄)(u) = u · (Hxf(x̄, ȳ) +

p∑
i=1

λ̄iHxgi(x̄, ȳ))(u) > 0

Then, there exists C1 functions ξ and Λ from an open neighborhood W of ȳ to
U × Rp such that for all y ∈ W , gi(ξ(y), y) = 0 for all i = 1, . . . , p and

∇xf(ξ(y), y) +

p∑
i=1

Λi(y)∇xgi(ξ(y), y) = 0

Proof. Let us consider the mapping Γ from U ×Rp×Rq to Rn×Rp defined by:

Γ(x, λ, y) =

(
∇xf(x, y) +

p∑
i=1

λi∇xgi(x, y), (gi(x, y))pi=1

)

Note that Γ(x̄, λ̄, ȳ) = 0. We now show that the partial Jacobian matrix of Γ
with respect to (x, λ) at (x̄, λ̄, ȳ), JΓx,λ(x̄, λ̄, ȳ) is regular

JΓx,λ(x̄, λ̄, ȳ) =


Hxf(x̄, ȳ) +

∑p
i=1 λ̄iHxgi(x̄, ȳ) ∇xg1(x̄, ȳ) . . . ∇xgp(x̄, ȳ)

∇xg1(x̄, ȳ)t 0 . . . 0
...

... . . .
...

∇xgp(x̄, ȳ)t 0 . . . 0


To show that JΓx,λ(x̄, λ̄, ȳ) is regular, we consider an element (z, µ) in its kernel
and we show that it is equal to (0, 0).

[Hxf(x̄, ȳ) +
∑p

i=1 λ̄iHxgi(x̄, ȳ)](z) +
∑p

i=1 µi∇xgi(x̄, ȳ) = 0
∇xg1(x̄, ȳ) · z = 0
...

...
∇xgp(x̄, ȳ) · z = 0
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By doing the inner product of the first line by z, we obtain

z · [Hxf(x̄, ȳ) +

p∑
i=1

λ̄iHxgi(x̄, ȳ)](z) +

p∑
i=1

µi∇xgi(x̄, ȳ) · z = 0

Using the fact that ∇xgi(x̄, ȳ) · z = 0 for all i, we get

z · [Hxf(x̄, ȳ) +

p∑
i=1

λ̄iHxgi(x̄, ȳ)](z) = 0

Noticing that z belongs to A(x̄, ȳ), we conclude from our assumption that z =
0. Using the first equation, we deduce that µ = 0 since the gradient vectors
(∇xgi(x̄, ȳ)) are linearly independent.

We can now apply the Implicit Function Theorem to Γ and we deduce that
there exists an open neighborhood W of ȳ and a C1 mapping (ξ,Λ) from W to
U × Rp such that for all y ∈ W , Γ(ξ(y),Λ(y), y) = 0, ξ(ȳ) = x̄ and Λ(ȳ) = λ̄,
which is the desired result.�

With the same assumption as in the previous proposition, we now study the
value function v from W to R defined by v(y) = f(ξ(y), y). We know that this
mapping is C1. If there is no constraint in the problem, we get the so called
Envelop Theorem:
∇v(ȳ) = ∇fy(x̄, ȳ)

Indeed, ∇v(ȳ) = Jξ(ȳ)t∇fx(x̄, ȳ) +∇fy(x̄, ȳ) but ∇fx(x̄, ȳ) = 0 since the first
order necessary condition are satisfied at x̄. So, the effect of a variation of the
parameter y on the value function is equal to the effect of this parameter on the
objective function at the solution.

Let us now consider a left hand side perturbation. This means that y ∈
Rp, f does not depend on y and gi(x, y) = γi(x) − yi. Note that gi(ξ(y), y) =
γi(ξ(y)) − yi = 0 for all y ∈ W . So, Jξ(ȳ)t∇xγi(x̄) − εi = 0, where εi is the ith
vector of the canonical basis of Rp. Since, ∇xgi(x, y) = ∇xγi(x) and ∇xf(x̄) =
−
∑p

i=1 λ̄i∇xgi(x̄, ȳ), one deduces that

Jξ(ȳ)t∇xf(x̄) = −
p∑
i=1

λ̄iJξ(ȳ)t∇xγi(x̄) = −
p∑
i=1

λ̄iε
i = −λ̄.

Since ∇v(ȳ) = Jξ(ȳ)t∇xf(x̄), one concludes that ∇v(ȳ) = −λ̄. So the multiplier
is actually the vector of the partial derivative of the value function. In economy,
we interpret it as the shadow price of the constraint. Indeed, if the economic
agent tries to minimise the objective function f under the constraints gi and she
has the possibility to buy a quantity t > 0 of the commodities i at the price πi in
R to relax the ith constraint, then the first order approximation of the objective
function v(ȳ + tεi) is v(ȳ)− λ̄it. But the cost increases by πit. So, the economic
agent has a gain if the price πi is strictly smaller than the shadow price λ̄i and
a loss if the price πi is strictly greater than the shadow price λ̄i. So the shadow
price is the price for which the economic agent is indifferent and will not buy or
sell on the commodity market.
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Chapter 5

Convex functions and convex sets

5.1 Properties of convex functions

Let U be a convex open subset of Rn, i.e. for all (x, y) ∈ U × U , for all t ∈ [0, 1],
tx+ (1− t)y ∈ U . Let f be a mapping from U to R.

Definition 41 The mapping f is convex (resp. concave) if for all (x, y) ∈ U ×U
and for all t ∈ [0, 1], f(tx+ (1− t)y) ≤ (resp. ≥) tf(x) + (1− t)f(y).

A function f is convex if and only if −f is concave. So, the results obtained
for convex functions are straightforwardly transposed for concave functions.

For some issues, it is interesting to consider strictly convex (resp. concave)
function, i.e. the functions f satisfying for all (x, y) ∈ U ×U and for all t ∈]0, 1[,
f(tx+ (1− t)y) < (resp. >) tf(x) + (1− t)f(y).

In the following, Sk denotes the simplex of Rk, i.e. Sk = {λ ∈ Rk
+ |
∑k

j=1 λj =
1}.

Definition 42 The epigraph (resp. hypograph) of a function is the set defined
by:

épi (resp. hypo)(f) = {(x, t) ∈ U ×R | t ≥ (resp. ≤)f(x)}.

It is denoted épi(f) (resp. hypo(f)).

Theorem 29 The three following assertions are equivalent:
(i) f is convex (resp. concave);
(ii) For all k ≥ 2, (xi) ∈ (Rn)k and λ ∈ Sk,

f(
∑k

i=1 λixi) ≤ (resp. ≥)
∑k

i=1 λif(xi);
(iii) The epigraph (resp. hypograph) of f is a convex subset of Rn ×R.

Proof of Theorem 29. We are giving the proof only in the convex case. (ii)
implies (i) is obvious. We now show that (i) implies (iii). Let (x, λ) and (y, µ)
two elements of épi(f) and let t ∈ [0, 1]. So f(x) ≤ λ and f(y) ≤ µ. As f is
convex, f(tx+(1− t)y) ≤ tf(x)+(1− t)f(y). So, f(tx+(1− t)y) ≤ tλ+(1− t)µ.
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This is equivalent to t(x, λ) + (1− t)(y, µ) = (tx+ (1− t)y, tλ+ (1− t)µ) belongs
to the epigraph of f . So this set is convex.

We end the proof by showing that (iii) implies (ii). Let k ≥ 2, (xi) ∈ (Rn)k

and λ ∈ Sk. Then, (xi, f(xi)) is an element of the epigraph of f . Since this set is
convex,

k∑
i=1

λi(xi, f(xi)) =

(
k∑
i=1

λixi,

k∑
i=1

λif(xi)

)
is an element of épi(f) (See Proposition 74). So, from the very definition of the
epigraph, f(

∑k
i=1 λixi) ≤

∑k
i=1 λif(xi). �

Examples : All linear or affine functions are convex and concave. If a function
is convex and concave, it is affine. A norm is convex. If C is a nonempty convex
subset of Rn, the distance function to C defined by dC(x) = inf{‖x− c‖ | c ∈ C}
is convex.

Proposition 68 (i) A finite sum of convex (resp. concave) functions defined on
U is convex (resp. concave);

(ii) If f is convex (resp. concave) and λ > 0, λf is convex (resp. concave);
(iii) The supremum (resp. infimum) of a family of convex (resp. concave)

functions defined on U is convex (resp. concave) when it is finite;
(iv) If f is a convex (resp. concave) function from Rn to I, an inteval of R,

and if ϕ is an increasing convex (resp. concave) function from I to R then ϕ ◦ f
is convex (resp. concave).

(v) If g is an affine function from Rn to Rp and f is a convex function from
U ⊂ Rp to R, then f ◦ g is a convex function on g−1(U).

The proof of this proposition is left to the reader. We now state an important
result on the continuity of the convex functions.

Theorem 30 Let f be a convex function from U a convex open subset of Rn to
R. Then f is locally Lipschitz continuous and then continuous on U .

We recall that a function is locally Lipschitz continuous if for all x̄ ∈ U , there
exist r > 0 and k ≥ 0 such that for all (x, x′) ∈ B(x̄, r) × B(x̄, r), |f(x) −
f(x′)| ≤ k‖x− x′‖. One easily prove that a locally Lipschitz continuous function
is continuous.

Proof of Theorem 30. We first show that f is locally upper bounded on U .
Let x0 ∈ U and let (u1, . . . , un), a basis of Rn. So, it exists r > 0 such that for
all i = 1, . . . , n, x0 + rui ∈ U et x0 − rui ∈ U . Let

m = max{f(x0), f(x0 + ru1), . . . , f(x0 + run), f(x0 − ru1), . . . , f(x0 − run)}

Let Λ = {λ ∈ Rn |
∑n

i=1 |λi| < 1} and let ϕ, the affine isomorphism from Rn

to Rn defined by λ → ϕ(λ) = x0 + r
∑n

i=1 λiui. Clearly, Λ is an open subset of
Rn, so ϕ(Λ) is an open subset of Rn containing x0. We show now that ϕ(Λ) is
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included in U and that f is upper bounded on this set, which ends the first part
of the proof.

Let x ∈ ϕ(Λ). It exists λ ∈ Λ such that x = x0 + r
∑n

i=1 λiui = (1 −∑n
i=1 |λi|)x0 +

∑n
i=1 |λi|(x0 + rεiui) with εi = 1 if λi ≥ 0 and −1 otherwise. So x

belongs to U since it is a convex combination of elements of U . Furthermore, as
f is convex:

f(x) ≤ (1−
∑n

i=1 |λi|)f(x0) +
∑n

i=1 |λi|f(x0 + rεiui)
≤ max{f(x0), f(x0 + rε1u1), . . . , f(x0 + rεnun)}
≤ m

So f is upper bounded on ϕ(Λ).
We now show that f is locally Lipschitz continuous around x0. Let r > 0 and

a ∈ R such that f(x) ≤ a for all x ∈ B(x0, r).
Let x ∈ B(x0,

r
2
). For all y ∈ B(x, r

2
) such that y 6= x, let z+ = x+ r

2‖y−x‖(y−x)

and z− = x − r
2‖y−x‖(y − x). It is clear that z+ and z− belong to B(x0, r). So,

f(z+) ≤ a and f(z−) ≤ a.
We remark that y = 2‖y−x‖

r
z+ + (1− 2‖y−x‖

r
)x and x = 2‖y−x‖

r+2‖y−x‖z
−+ r

r+2‖y−x‖y.
Hence, using the convexity of f , one deduces that

f(y) ≤ 2‖y − x‖
r

f(z+) + (1− 2‖y − x‖
r

)f(x)

and
f(x) ≤ 2‖y − x‖

r + 2‖y − x‖
f(z−) +

r

r + 2‖y − x‖
f(y)

So, one deduces that
f(y)− f(x) ≤ 2‖y−x‖

r
(f(z+)− f(x)) ≤ 2‖y−x‖

r
(a− f(x)) (1)

and f(x)− f(y) ≤ 2‖y−x‖
r+2‖y−x‖(f(z−)− f(y)) ≤ 2‖y−x‖

r+2‖y−x‖(a− f(y)) (2)

Rewriting Inequality (2), we obtain

f(y) ≥ 2‖y−x‖+r
r

f(x)− 2‖y−x‖
r

a

which is equivalent to
a− f(y) ≤ −2‖y−x‖+r

r
f(x) + r+2‖y−x‖

r
a = 2‖y−x‖+r

r
(a− f(x)) (3)

Plug in Inequality (3) in Inequality (2), we get

f(x)− f(y) ≤ 2‖y−x‖
r+2‖y−x‖

2‖y−x‖+r
r

(a− f(x)) = 2‖y−x‖
r

(a− f(x)) (4)

One deduces from Inequalities (1) and (4),

|f(y)− f(x)| ≤ 2‖y−x‖
r

(a− f(x)) (5)
Let us consider now and element x ∈ B(x0,

r
4
). Applying Inequality (3) to x

and x0, we obtain
a− f(x) ≤ 2‖x−x0‖+r

r
(a− f(x0)) ≤ 3

2
(a− f(x0)) (6)
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For all y ∈ B(x0,
r
4
), y belongs also to B(x, r

2
). Combining Inequalities (5) and

(6), we then get

|f(y)− f(x)| ≤ 3

r
(a− f(x0))‖y − x‖

So, f is Lipschitz continuous with a constant 3
r
(a− f(x0)) on the ball B(x0,

r
4
).�

We end this part by studying C1 or C2 convex functions. Let U be an open
convex subset of Rn. Let f be a differentiable function from U to R. We denote
by Df(x) the derivative of f at x and by ∇f(x) its gradient vector.

Proposition 69 f is convex if and only if for all (x, y) ∈ U ×U , f(y)− f(x) ≥
Df(x)(y − x) = ∇f(x) · (y − x).

The above condition means that the gradient of f is everywhere a sub-gradient,
that is: f(y) ≥ f(x) +∇f(x) · (y − x) for all (x, y) ∈ U × U .

Exercise 63 Let f be a C1 function on an open convex subset U of Rn. At
x̄ ∈ U , we assumet that f has a sub-gradient that is a vector v ∈ Rn such that
for all y ∈ U , f(y)− f(x̄) ≥ v · (y − x̄). Show that v = ∇f(x̄).

Proof of Proposition 69. Let (x, y) ∈ U × U . If f is convex, then the
function ϕ defined on a neighbourhood of 0 in R by ϕ(t) = f(x + t(y − x))
satisfies ϕ(t) ≤ ψ(t) = f(x) + t(f(y) − f(x)) and ϕ(0) = ψ(0). So the right
derivative of ϕ at 0 is equal to Df(x)(y − x) and it is lower or equal to the one
of ψ, which is equal to f(y)− f(x), which provides the desired result.

Let us now assume that the property on the derivative of f is satisfied. Let
(x, y) ∈ U × U and let t ∈]0, 1[. We have f(x)− f(x+ t(y − x)) ≥ Df(x+ t(y −
x))(−t(y − x)) and f(y) − f(x + t(y − x)) ≥ Df(x + t(y − x))((1 − t)(y − x)).
Multiplying the first inequality by (1 − t) and the second one by t, then by
summing the two inequalities, we get (1− t)(f(x)− f(x + t(y − x))) + t(f(y)−
f(x + t(y − x))) ≥ (−t(1 − t) + t(1 − t))Df(x + t(y − x))(y − x) = 0. So
f(x+ t(y − x)) = f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y) thus f is convex. �

Proposition 70 f is convex if and only if for all (x, y) ∈ U × U , (Df(y) −
Df(x))(y − x) = (∇f(y)−∇f(x)) · (y − x) ≥ 0.

The condition above means that the gradient of f is, in a certain sense, mono-
tone. In the one dimensional case, it means that the derivative f ′ is increasing.

Proof of Proposition 70. Let (x, y) ∈ U×U . If f is convex, from the previous
proposition, f(x) − f(y) ≥ Df(y)(x − y) and f(y) − f(x) ≥ Df(x)(y − x). By
doing the sum of these two inequalities, we obtain the desired result.

For the converse, let us assume by contradiction that f is not convex. Then,
from the previous proposition, it exists (x, y) ∈ U × U such that f(y) − f(x) <
Df(x)(y−x). Let us define the function ϕ defined on a neighbourhood of [0, 1] in
R by ϕ(t) = f(x+ t(y − x)). As ϕ is differentiable on [0, 1], there exists t̄ ∈]0, 1[
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such that f(y) − f(x) = ϕ(1) − ϕ(0) = ϕ′(t̄) = Df(x + t̄(y − x))(y − x). So
(Df(x + t̄(y − x)) − Df(x))(y − x) = f(y) − f(x) − Df(x)(y − x) < 0 hence
(Df(ξ)−Df(x))(ξ−x) < 0 with ξ = x+t̄(y−x) which contradicts our assumption
and ends the proof. �

We now consider the case where f is C2 on U .

Proposition 71 f is convex if and only if for all x ∈ U , Hf(x) is positive
semi-definite.

The above condition means that for all u ∈ Rn,

u ·Hf(x)(u) ≥ 0.

If Hf(x) is positive definite for all x ∈ U , then f is strictly convex.
Proof of Proposition Let us assume that f is convex. For x ∈ U and u ∈ Rn,
let ϕ be the function from a neighbourhood of 0 in R to R defined by ϕ(t) =
f(x+ tu). Using a Taylor expansion, we have ϕ(t)− ϕ(0) = f(x+ tu)− f(x) =
tϕ′(0) + t2

2
ϕ′′(0) + t2ε(t) with limt→0 ε(t) = 0. From the previous proposition,

f(x+tu)−f(x) ≥ Df(x)(tu) = tϕ′(0). So t2

2
ϕ′′(0)+t2ε(t) ≥ 0 and 1

2
ϕ′′(0)+ε(t) ≥

0. Passing to the limit, we obtain ϕ′′(0) ≥ 0. But ϕ′′(0) = u · Hf(x)(u) hence
Hf(x) is positive semi-definite.

Conversely, if (x, y) ∈ U×U , let ϕ defined an neighbourhood of [0, 1] in R to R
by ϕ(t) = f(x+ t(y−x)). Then, using a Taylor expansion, it exists t̄ ∈]0, 1[ such
that ϕ(1) = ϕ(0) +ϕ′(0) + 1

2
ϕ′′(t̄). But ϕ′′(t̄) = (y− x) ·Hf(x+ t̄(y− x))(y− x)

which is non negative by assumption. Thus f(y)− f(x) = ϕ(1)−ϕ(0) ≥ ϕ′(0) =
Df(x)(y − x) which implies that f is convex from the previous proposition. �

We can deduce from the previous result a criterion for a local convexity of a
C2 function.

Proposition 72 Let f be a C2 function on an open subset U of Rn. Let x̄ ∈ U
such that the Hessian matrix Hf(x̄) is positive definite. Then, it exists r > 0
such that for all x ∈ B(x̄, r), the Hessian matrix Hf(x) is positive definite, so
the restriction of f to the ball B(x̄, r) is strictly convex.

Proof. If for all r > 0, the property does not hold, then it exists a sequence(xν , uν)
such that (xν) converges to x̄, ‖uν‖ = 1 and uν ·Hf(xν)uν ≤ 0 for all ν. It exists
a converging subsequence of (uν), (uϕ(ν)), whose limit ū is of norm 1. As f is
C2, the sequence uϕ(ν) · Hf(xϕ(ν))uϕ(ν) converges to ūHf(x̄)ū and we conclude
that ūHf (x̄)ū ≤ 0 which is in contradiction with the fact that Hf (x̄) is positive
definite. For the second part of the proposition, we just remark that the Hessian
matrix of the restriction of f to the ball B(x̄, r) is equal to the Hessian matrix of
f and that it is positive definite on the open convex set B(x̄, r), from which one
concludes that it is strictly convex. �
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Exercise 64 Let a be a real number and f be a function from R3 to R defined
by:

f(x, y, z) = 3x2 + 2y2 + z2 + axy + 2yz + 2xz

For which values of a, the function f is convex?

5.2 Necessary and sufficient condition of optimal-
ity for convex (concave) functions

A fundamental property of the convex (concave) functions in optimisation is the
fact that the first order necessary conditions for a minimisation (maximisation)
problem are sufficient. But another fundamental property is the fact that a local
solution is a global solution.

We consider a C1 convex function on an open convex subset U of Rn. Let A be
a p×n matrix and b be a vector of Rp. Let us consider the following minimisation
problem:

(P)


Minimise f(x)
Ax = b or aj · x = bj for all j = 1, . . . , p
x ∈ U

Let x̄ ∈ U satisfying the constraint Ax̄ = b and the first order optimality
conditions, that is, there exists λ ∈ Rp such that∇f(x̄) = Atλ =

∑p
j=1 λ

jaj where
aj is the j-th row of A. Then, x̄ is a solution of the problem (P). Indeed, for all
x ∈ U satisfying the constraints Ax = b, A(x− x̄) = 0 and so, ∇f(x̄) · (x− x̄) =
Atλ · (x− x̄) = λ · A(x− x̄) = λ · 0 = 0. As f is convex,

f(x) ≥ f(x̄) +∇f(x̄) · (x− x̄) = f(x̄)

which shows that x̄ is a solution of the problem (P).

Theorem 31 Let f be a C1 convex function on an open convex subset U of Rn.
Let A be a p × n matrix and b be a vector of Rp. Let x̄ ∈ U satisfying the
constraints Ax̄ = b. Then x̄ is a solution of the problem (P) if and only if it
exists a vector of multipliers λ ∈ Rp such that ∇f(x̄) = Aty =

∑p
j=1 λ

jaj where
aj is the j-th row of A.

We remark that the optimality condition is necessary and sufficient and that
it involves only a local information concerning f , namely its gradient. So, we can
deduce that a local solution on a neighbourhood of x̄ is also a global solution.
Indeed, if x̄ is a local solution, the necessary condition is satisfied. But, as this
condition is also a sufficient condition for a global minimum, we can conclude
that x̄ is a global solution.

Exercise 65 Let f be a convex function from an open convex subset U of Rn to
R. Let A be a p×n matrix. For all b ∈ Rp, we consider the following minimisation
problem:
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(Pb)


Minimise f(x)
Ax = b,
x ∈ U

We assume that there exists an open convex subset V of Rp such that for all
b ∈ V , the value v(b) of the problem (Pb) is finite. Show that the function v is
convex.

Exercise 66 Let f be a C2 convex function on the open convex subset U of Rn.
We assume that for all x ∈ U , Hf(x) is positive definite. Let V be an open
convex subset of Rn such that for all y ∈ V , the problem:

(Py) max{y · x− f(x) | x ∈ U}

has a solution denoted ξ(y).
1) Using the fact that f is strictly convex, show that the solution ξ(y) is unique.
2) For all y ∈ V , show that y = ∇f(ξ(y)).
3) Using the Implicit Function Theorem, show that ξ(·) is C1 mapping.

Let v be the value function of this problem, that is v(y) = y · ξ(y)− f(ξ(y)).
4) Show that v is a C1 convex function on V .
5) Show that for all (ȳ, y) ∈ V × V , v(y) − v(ȳ) ≥ ξ(ȳ)(y − ȳ) and deduce that
∇v(ȳ) = ξ(ȳ).
6) Show that ȳ is a solution of the problem max{ξ(ȳ) · y− v(y) | y ∈ V } and that
the value function of this problem is f(ξ(ȳ)).

Exercise 67 We consider the function f from R2 to R defined by:

f(x, y) =
√
x2 + y2 − x

1) For all (x, y) ∈ R2 \ {0}, compute the gradient of the function f .
2) Show, without any computation, that the function f is convex.
3) Show that f(x, y) ≥ 0 for all (x, y) ∈ R2.
4) Compute f(0, 0) and give the minimum of f on R2.
5) Give all minima of f on R2.

We consider the sequence (xn, yn) = (n, 1).
6) Show that the sequence ∇f(xn, yn) converges to a limit and compute this
limit. Show that the sequence f(xn, yn) converges to the minimal value of f on
R2. Show that the sequence (xn, yn) does not converge to a minimum of f on R2.

5.3 Sufficient condition for local solutions

To get a sufficient condition for local solutions, we will put a condition on the
Hessian matrix of the objective function, which is a reinforcement of the second
order necessary condition. Then, the objective function being locally strictly
convex, the first order necessary condition becomes a sufficient optimality for a
local solution.

Let us consider the same problem as above:
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(P)


Minimise f(x)
Ax = b
x ∈ U

Theorem 32 Let f be a C2 function on an open subset U of Rn. Let A be
a p × n matrix and b be a vector of Rp. Let x̄ ∈ U satisfying the constraints
Ax̄ = b and the first order necessary condition : it exists λ ∈ Rp such that
∇f(x̄) = Atλ =

∑p
j=1 λ

jaj where aj is the j-th row of A. We assume that the
Hessian matrix of f at x̄, Hf(x̄) is positive definite. Then it exists a real number
r > 0 such that B(x̄, r) ⊂ U and x̄ is the unique solution of (Pr)

(Pr)


Minimise f(x)
Ax = b
x ∈ B(x̄, r)

that is a local solution of (P).

Proof. From Proposition 71, f is strictly convex an on open ball B(x̄, r)
for some r > 0. So, the first order necessary conditions of the problem (Pr)
are sufficient and x̄ satisfies this necessary conditions, since, actually, they are
identical to the one of Problem (P). So x̄ is a solution of the problem (Pr) and
it is the unique solution since the objective function is strictly convex.�

Exercise 68 Let U be an open convex subset of Rn. Let f be a C2 function on
U . We assume that for all x ∈ U ,

1) ∇f(x) 6= 0;

2) for all u ∈ ∇f(x)⊥ \ {0}, u ·Hf (x)(u) > 0.

We show that for all x̄ ∈ U , the set {x ∈ U | f(x) ≤ f(x̄)} is convex. Let us
assume that it does not hold, then it exists (x̄, x, x′, τ) ∈ U × U × U×]0, 1[, such
that f(x) ≤ f(x̄), f(x′) ≤ f(x̄) and f(τx + (1 − τ)x′) > f(x̄). Let ϕ from [0, 1]
to R defined by ϕ(t) = f(tx+ (1− t)x′).
a) Show that the problem max{ϕ(t) | t ∈ [0, 1]} has a solution t̄ in the open
interval ]0, 1[.

We note ξ = t̄x+ (1− t̄)x′.
b) Show that ϕ′(t̄) = 0 and that ϕ′′(t̄) ≤ 0 and deduce that ∇f(ξ) · (x′ − x) = 0
and (x′ − x) ·Hf (ξ)(x

′ − x) ≤ 0. Conclude.
We now show that for all x̄ ∈ U , for all x ∈ U such that f(x) < f(x̄),

∇f(x̄) · (x− x̄) < 0.
c) Show that there exists r > 0 such that x′ = x+ r∇f(x̄) ∈ U and f(x′) < f(x̄).
d) Using the convexity of the set {x ∈ U | f(x) ≤ f(x̄)}, show that:

lim
t→0+

f(x̄+ t(x′ − x̄))− f(x̄)

t
≤ 0
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Deduce that ∇f(x̄) · (x′ − x̄) ≤ 0 and that ∇f(x̄) · (x− x̄) < 0.
Let A be a p × n matrix and b be a vector of Rp. We consider the following

problem:

(P)


Minimise f(x)
Ax = b
x ∈ U

Let x̄ ∈ U satisfying Ax̄ = b and the first order necessary conditions, namely it
exists y ∈ Rp such that ∇f(x̄) = Aty. Show that x̄ is a solution of the problem.
Hint: use a similar argument than the one for convex functions and the properties
of f proved above.

Exercise 69 Show that the function f define on Rn
++ = {x ∈ Rn | ∀i =

1, . . . , n, xi > 0} by f(x) = −x1x2 . . . xn is not convex but it satisfies the as-
sumption of the previous exercise. Deduce the solution of the following problem:

(P)


Minimise f(x)
a1x1 + a2x2 + . . .+ anxn = b
x ∈ Rn

++

where a1, a2, . . . , an, b are n+ 1 non negative real numbers.

Exercise 70 Let f be the function from R2 to R defined by :

f(x, y) = x2y2 − 4x2 − y2

We are looking for the extremum of this function.
1) Compute the gradient vector and Hessian matrix of f at any point (x, y) of
R2.
2) Find the points for which the gradient vanishes.
3) By studying the sign of the Hessian matrix at the points found above, find
the local maximum and minimum of f and the critical points which are neither
a local minimum nor a local maximum.
4) Show that the function f has neither a global maximum nor a global minimum
on R2.

Exercise 71 Let f be the function from R3 to R defined by :

f(x, y, z) = x2 + xy + y2 + 2z4 − z2

We consider the following optimisation problem:

(P)

{
min f(x, y, z)
s.c. (x, y, z) ∈ R3

1) Compute the gradient vector and the Hessian matrix of f at any point (x, y, z)
of R3.
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2) Find the points where the gradient vanishes.
3) By studying the sign of the Hessian matrix at the points found above, find
the local maximum and minimum of f and the critical points which are neither
a local minimum nor a local maximum.
4) By studying f(−x,−y,−z), what can we say about the uniqueness of a solu-
tion?

Exercise 72 Let f be the function from R2 to R defined by f(x, y) = x4 + y4 −
(x− y)2.
1) Compute the points where the gradient of f vanishes and study the sufficient
second order conditions at these points.
2) Show that f is coercice.
3) Show that f has a minimum on R2 and give this minimum.

Exercise 73 Let f be the function from Rn
++ to R defined by f(x) =

∑n
i=1 xi ln

(
1
xi

)
.

Show that this function has a maximum on Rn
++.

5.4 Convex set

To go deeper in the analysis of optimisation problems and, in particular, to in-
troduce inequality constraints, we need to study some properties of the convex
sets, prove the fundamental theorem of convex analysis, which is the separation
theorem, introduce the notion of polarity among convex cones to generalise the or-
thogonality among linear subspaces and finally the Farkas’ Lemma, which allows
us to describe the polar cone to a finitely generated cone.

5.4.1 Basic properties of convex sets

For a pair of elements (x, y) in Rn, we denote by [x, y] the segment joining x to
y that this the set defined by:

[x, y] = {tx+ (1− t)y | t ∈ [0, 1]}

Definition 43 A subset C of Rn is convex if for all (x, y) ∈ C × C, [x, y] is
included in C.

Examples : For all pairs of elements (x, y) of Rn, [x, y] is a convex subset of
Rn. All affine or linear subspaces of Rn are convex. All closed or open balls are
convex whatever is the norm. All sets of solutions of a system of linear equalities
and inequalities is convex. In R, the convex subsets are the intervals.

Proposition 73 (i) Let (Ci)i∈I , be a family of convex subsets of Rn. Then ∩i∈ICi
is convex.

(ii) Let (Ci)i∈I , be a family of convex subsets of Rn such that for all (i, j) ∈
I × I, there exists k ∈ I such that Ci ∪ Cj ⊂ Ck. then ∪i∈ICi is convex.
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(iii) Let (Ci)i∈I , be a finite family of convex subsets of Rn. Then
∑

i∈I Ci =
{
∑

i∈I ci | (ci) ∈
∏

i∈I Ci} is convex.
(iv) Let (Ci)i∈I , be a finite family of convex subsets of Rni. Then

∏
i∈I Ci is a

convex subset of
∏

i∈I Rni.
(v) Let C be convex subset of Rn and let λ ∈ R. Then λC = {λc | c ∈ C} is

convex.
(vi) Let f be an affine mapping from Rn to Rp, and let C be a convex subset

of Rn. Then f(C) is a convex subset of Rp.
(vii) Let f be an affine mapping from Rn to Rp, and let C be a convex subset

of Rp. Then f−1(C) is a convex subset of Rn.

The proof is left to the reader. In the following, we often use the simplex of
Rn defined by:

Sn = {λ ∈ Rn
+ |

n∑
i=1

λi = 1}

as a reference convex set. We remark that Sn is convex, closed and bounded, so
it is compact.

Definition 44 Let (xi)
k
i=1, be k points of Rn. A convex combination of (xi)

k
i=1

is an element x of Rn such that there exists λ ∈ Sk and x =
∑k

j=1 λjxj.

If (x, y) is a pair of elements in Rn, the set of convex combination of x and y
is the segment [x, y].

Proposition 74 Let C be a subset of Rn. C is convex if and only if C contains
all convex combinations of the finite families of elements of C.

Proof of Proposition 74. It is obvious that if C contains all convex combi-
nations of finite families of elements of C then C is a convex subset.

Conversely, we are using an induction argument on the number of elements
of the family. If the family contains one or two elements, the very definition
of a convex subset shows that all convex combinations of this family belongs to
C. Let us assume that is true for all families with at most k elements. Let
(x1, . . . , xk, xk+1), be a family of elements of C. Let λ ∈ Sk+1 and let x =∑k+1

j=1 λjxj. Since
∑k+1

j=1 λj = 1, it exists a least one λj different from 0. Assume
without any loss of generality that λ1 6= 0. Then

x =
( k∑
j=1

λj
)( k∑

j=1

λj∑k
j=1 λj

xj
)

+ λk+1xk+1

From our induction hypothesis

x′ =
k∑
j=1

λj∑k
j=1 λj

xj
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is an element of C since it is a convex combination of a family of k elements of
C. Furthermore, since

(∑k
j=1 λj

)
+ λk+1 = 1, x is a convex combination of x′

and xk+1. So x belongs to C, which ends our proof. �

Definition 45 Let A, be a subset of Rn. The convex hull of A, denoted co(A),
is the intersection of all convex subsets of Rn containing A.

Since Rn is convex, if A is non-empty, co(A) is also nonempty. Since convex
subsets are stable under intersection, co(A) is the smallest (for the intersection)
convex set containing A..

Proposition 75 Let A, be a subset of Rn. co(A) is the set of all convex combi-
nation of finite families of elements of A.

Proof of Proposition 75. We denote by B the set of all convex combinations
of finite families of elements of A. B ⊂ co(A) since co(A) is a convex subset of
Rn containing A.

Let us show that co(A) ⊂ B. Clearly, A ⊂ B. So, to prove the inclusion, it
suffices to show that B is convex from the very definition of co(A). Let x and y
be two elements of B and t ∈ [0, 1]. It exists two finite families (x1 . . . , xk) and
(y1, . . . , yp) of elements of A, λ ∈ Sk and µ ∈ Sp such that x =

∑k
j=1 λjxj and

y =
∑p

j=1 µjyj. So

tx+ (1− t)y =
k∑
j=1

tλjxj +

p∑
j=1

(1− t)µjyj

So tx+ (1− t)y is a convex combination of (x1, . . . , xk, y1 . . . , yp) since

k∑
j=1

tλj +

p∑
j=1

(1− t)µj = t+ (1− t) = 1

and thus, (tλ1, . . . , tλk, (1− t)µ1 . . . , (1− t)µp) belongs to Sk+p. �

A polytope is a convex hull of a finite subset of Rn. For example, the simplex
of Rn is the polytope generated by the elements of the canonical basis of Rn.

Theorem 33 (Carathéodory) Let A, be a nonempty subset of Rn. Then co(A)
is the set of the convex combinations of the families of elements of A containing
at most n+ 1 elements.

Proof of Theorem 33. To prove the result, it suffices to show that a convex
combination of a family containing p > n + 1 elements is also a convex combi-
nation of another family containing at most p − 1 elements. Let p > n + 1, Let
(x1, . . . , xp) ∈ Ap, let λ ∈ Sp and let x =

∑p
i=1 λixi. Since p > n+ 1, the vectors

(x2−x1, . . . , xp−x1) are linearly dependent in Rn. So, it exists a non zero vector

77



(µ2, . . . , µp) such that
∑p

i=2 µi(xi − x1) = 0. Let us define µ1 = −
∑p

i=2 µi. Then
µ ∈ Rp is a non zero vector and the sum of the components is equal to 0. Fur-
thermore

∑p
i=1 µixi = 0. So the set I+ = {i ∈ {1, . . . , p} | µi > 0} is nonempty.

Let
t = min{λi

µi
| i ∈ I+}

and let i0 such that t =
λi0
µi0

. Let us define now βi = λi − tµi for all i. Clearly,

the definition of t implies that the vector β has positive components and βi0 = 0.
Since,

∑p
i=1 µi = 0,

∑
i 6=i0 βi = 1. Furthermore

∑p
i=1 µixi = 0,

x =

p∑
i=1

βixi =
∑
i 6=i0

βixi

So x is a convex combination of a family containing p − 1 elements. This ends
the proof. �

Exercise 74 Let C be a closed convex subset of Rn satisfying ∪t>0tC = Rn.
1) Show that 0 ∈ C and for all (t, t′) ∈ R∗+ × R∗+, tC ⊂ t′C if t < t′.
2) Let (e1, e2, . . . , en) be the canonical basis of Rn. Show that for all i = 1, . . . , n,
it exists ri > 0 such that rei and −rei belongs to C.
3) Show that 0 belongs to the interior of C. Hint: we can use a similar argument
as the one of the first step of the proof of Theorem 30.

Definition 46 A subset K of Rn is a cone of vertex 0 if for all x ∈ K and for all
t > 0, tx belongs to K.

Proposition 76 A cone K is convex if and only if it is stable under addition.

Proof of Proposition 76. Let K be a convex cone. Let x and y two elements
of K. Then 1

2
(x + y) belongs to K since it is convex. Now x + y = 21

2
(x + y)

belongs to K since it is a cone. So K is stable under addition.
Let K be a cone stable under addition and let x and y be two elements of K.

For all t ∈]0, 1[, tx and (1 − t)y are elements of K since it is a cone. As K is
stable under addition, tx+ (1− t)y belongs to K. For t = 0 or t = 1, it is obvious
that tx+ (1− t)y belongs to K and so K is convex. �

Examples : all linear subspaces of Rn are convex cones. All sets of solutions
of a system of linear homogeneous equalities and inequalities is a convex cone.
The image or the inverse image of a convex cone by a linear mapping is a convex
cone. Rn

+ and Rn
++ are convex cone.

Definition 47 Let A be a subset of Rn. The conic hull of A is the smallest
convex cone containing A. It is denoted cone(A).
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One easily shows that all intersections of convex cones is also a convex cone.
So, cone(A) is the intersection of all convex cones containing A. It is also easy
to prove that cone(A) is the set of all non negative linear combination of finite
families of elements of A.

We state now a result which is the adaptation of Caratheodory’s Theorem to
conic hull. The proof is left to the reader since it is very similar to the one for
convex hull and even simpler.

Theorem 34 Let A, be a nonempty subset of Rn. Then, for all y ∈ cone(A)\{0},
it exists a linearly independent family (a1, . . . , ap) of elements of A and a vector
λ ∈ Rp

+ such that y =
∑p

i=1 λiai.

Definition 48 A finitely generated cone is the conic hull of a finite family of
elements in Rn. It is the set of positive linear combinations of a finite family of
elements in Rn.

We conclude this basic properties on convex subsets by two topological prop-
erties on polytopes and finitely generated cones, which are useful in the following,
specially for the Farkas Lemma.

Proposition 77 A polytope is compact. A finitely generated cone is closed.

Proof of Proposition 77. Let (a1, . . . , ap) be a finite family of elements of
Rn and C its convex hull. Let f be the linear mapping from Rp to Rn defined by
f(λ) =

∑p
j=1 λjaj. f is continuous and, furthermore, as C is the set of all convex

combination of (a1, . . . , ap), C is the image of the simplex of Rp by f . As the
simplex is compact and the image of a compact subset by a continuous function
is compact, we conclude that C is compact.

Let (a1, . . . , ap) be a finite family of Rn and

C =

{
p∑
i=1

λiai | λ ∈ Rp
+

}
Let P , the set of nonempty subsets I of {1, . . . , p} such that the family (ai)i∈I is
linearly independent. From Theorem 34,

C = ∪I∈P

{∑
i∈I

λiai | λ ∈ RI
+

}

As P is finite, it suffices to show that for all I ∈ P , CI = {
∑

i∈I λiai | λ ∈ RI
+}

is closed. Let L((ai)i∈I) be the linear space spanned by the family (ai)i∈I and let
ϕ be the linear mapping from RI to L((ai)i∈I) defined by ϕ(λ) =

∑
i∈I λiai. As

the family (ai)i∈I is linearly independent, ϕ is one to one and onto from RI to
L((ai)i∈I) and ϕ and ϕ−1 are continuous. CI is the image of the closed set RI

+

by ϕ that is the inverse image of RI
+ by ϕ−1. So CI is closed in L((ai)i∈I). As

L((ai)i∈I) is a linear subspace of Rn, it is closed in Rn and so CI is closed in Rn.
�
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5.5 Projection on a closed convex set and separa-
tion theorems

We now prove the fundamental property of the nonempty convex closed subsets
of Rn, namely the fact that there exists a unique projection on C of all points of
Rn for the Euclidean norm. We deduce from this result the separation theorem
between two disjoint nonempty convex sets, one being closed and the other one
being compact.

If C is a nonempty closed subset of Rn, for all x ∈ Rn, we can consider the
following minimisation problem for the Euclidean norm:{

Minimiser ‖x− c‖
c ∈ C

A solution of this problem is called a projection of x on C denoted projC(x) and
the value of this problem is the distance from x to C denoted dC(x). We remark
that this problem has always a solution since the objective function is coercive
and the set C, on which one minimises, is closed

The existence of a solution implies that the distance function is finite on Rn.
Furthermore, this function is Lipschitz continuous of constant 1.

Proposition 78 Let C be a nonempty closed subset of Rn. Then for all (x, x′) ∈
Rn × Rn, |dC(x)− dC(x′)| ≤ ‖x− x′‖.

Proof. Let us assume without any loss of generality that dC(x′) ≤ dC(x). Let y
(resp. y′) a projection of x (resp. x′) on C. Then:

dC(x)− dC(x′) ≤ ‖x− y‖ − ‖x′ − y′‖ ≤ ‖x− y′‖ − ‖x′ − y′‖ ≤ ‖x− x′‖

The first inequality comes from the triangular inequality applied to x − y′ =
(x− x′) + (x′ − y′). This leads to the desired inequality. �

An essential characteristic of the convex sets is the fact that the projection is
unique.

Théorème 1 Let C be a nonempty closed convex subset of Rn. For all x ∈ Rn,
there exists a unique element c of C called the projection of x on C denoted
projC(x) such that ‖x− projC(x)‖ = dC(x).

Proof. Let c1 and c2 be two elements of C such that ‖x−c1‖ = ‖x−c2‖ ≤ ‖x−c‖
for all c ∈ C. Then, let us consider the element c̄ = 1

2
(c1 + c2). c̄ ∈ C since C

is convex. Since ‖x − c1‖ = ‖x − c2‖, x − c1 − x + c2 = c2 − c1 is orthogonal to
x−c1 +x−c2 = 2x−(c1 +c2) = 2(x− c̄). So the triangle (x, c̄, c2) has a right angle
at c̄ and from Pythagoras’ Theorem, ‖x−c2‖2 = ‖x− c̄‖2+‖c̄−c2‖2. As c̄ ∈ C, we
have ‖x− c2‖ ≤ ‖x− c̄‖ and, thus, the equality gives ‖c̄− c2‖ = ‖1

2
(c1− c2)‖ = 0.

This implies that c1 = c2, which proves the uniqueness of the projection. �
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Exercise 75 Let B̄(0, 1) be the closed unit ball of Rn. For all x ∈ Rn, compute
the projection of x on B̄(0, 1).

Let C = [−1, 1] × [−1, 1] ⊂ R2. For all x ∈ R2, compute the projection of x
on C.

Let u ∈ Rn \{0}, c ∈ R and H = {x ∈ Rn | u ·x ≤ c}. For all x ∈ Rn, compute
the projection of x on H.

We now provide some properties of the projection.

Proposition 79 Let C be a nonempty closed convex subset of Rn and let (x, y) ∈
Rn × Rn.
1) c ∈ C is the projection of x on C if and only if for all c′ ∈ C, (x−c)·(c′−c) ≤ 0;
2) (projC(x)− projC(y)) · (x− y) ≥ 0;
3) ‖projC(x)− projC(y)‖ ≤ ‖x− y‖.

Proof. 1) If c = projC(x), for all c′ ∈ C, for all t ∈ [0, 1], as (1 − t)c + tc′ ∈ C,
‖x − c‖2 ≤ ‖x − ((1 − t)c + tc′)‖2 = ‖(x − c) + t(c′ − c)‖2. By developing the
square of the norm, we obtain 0 ≤ 2t(x − c) · (c′ − c) + t2‖c′ − c‖2. Dividing by
t and taking the limit when t converges to 0+, we obtain 0 ≤ (x − c) · (c′ − c).
Conversely, ‖x−c′‖2 = ‖(x−c)+(c−c′)‖2 = ‖x−c‖2 +‖c−c′‖2 +2(x−c) ·(c−c′).
So, if (x− c) · (c′− c) ≤ 0, we obtain ‖x− c′‖2 ≥ ‖x− c‖2 and since this inequality
holds true for all c′ ∈ C, c is the projection of x on C.
2) We write the previous inequality at x for projC(y) and at y for projC(x), which
leads to:

(x− projC(x)) · (projC(y)− projC(x)) ≤ 0

(y−projC(y))·(projC(x)−projC(y)) = (projC(y)−y)·(projC(y)−projC(x)) ≤ 0

By summing them, we find
(x − y + projC(y) − projC(x)) · (projC(y) − projC(x)) = (x − y) · (projC(y) −

projC(x)) + ‖projC(y)− projC(x)‖2 ≤ 0

from which we derive the desired inequality since ‖projC(y)− projC(x)‖2 ≥ 0.
3) With the same inequalities as above, (x−y)·(projC(x)−projC(y)) ≥ ‖projC(y)−
projC(x)‖2 and with the Cauchy-Schwartz inequality, one deduces that ‖x −
y‖‖projC(y)−projC(x)‖ ≥ ‖projC(y)−projC(x)‖2, thus, ‖projC(y)−projC(x)‖ ≤
‖x− y‖. �

Exercise 76 Let C be a nonempty closed convex subset of Rn and let x ∈ Rn.
Show that for all t ≥ 0, projC(x+ t(x− projC(x))) = projC(x).

We deduce from the existence of a projection and its continuity a separation
Theorem between two disjoint convex sets, which can be interpreted either from
a geometric point of view or from an analytic point of view. We start by the
analytic form.

Theorem 35 Let C be a nonempty closed convex subset of Rn and let D be a
nonempty compact convex subset of Rn. C ∩ D = ∅ if and only if there exists
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u ∈ Rn such that:

sup{u · d | d ∈ D} = max{u · d | d ∈ D} < inf{u · c | c ∈ C}

A particular case of this theorem is when D is a singleton {x0}. Then, we get
the following inequality sup{u · d | d ∈ D} = u · x0 < inf{u · c | c ∈ C}.

Proof. Let us consider the following optimisation problem:{
Minimise dC(x)
x ∈ D

This problem has a solution since D is nonempty and compact and dC is a con-
tinuous function. Let d̄ be a solution and c̄ = projC(d̄). As C ∩D = ∅ c̄ 6= d̄. Let
u = c̄− d̄.

From Proposition 79 (1), for all c ∈ C, (d̄− c̄) · (c− c̄) ≤ 0 and, thus, u · c ≥
u · c̄ = inf{u · c | c ∈ C}.

For all d ∈ D, ‖d − c̄‖ ≥ dC(d) ≥ dC(d̄) = ‖d̄ − c̄‖, which shows that d̄
is the projection of c̄ on D. Hence, with the same reasoning, we deduce that
sup{u · d | d ∈ D} = u · d̄. But u · c̄− u · d̄ = ‖u‖2 > 0, which leads to the result.
�

The geometric interpretation of this theorem is the following: it exists an
hyperplan H of Rn such that D is included in the open half-space defined by H
and C is included in the other open half-space. For this, we choose a real number
α ∈] sup{u ·d | d ∈ D}, inf{u · c | c ∈ C}[ and we define H = {y ∈ Rn | u · y = α}.
Then D is inclued in the open half-space {y ∈ Rn | u · y < α} and C is included
in the open half-space {y ∈ Rn | u · y > α}. So, the hyperplan H separates D
and C.

Note that the theorem may not be true for two closed convex set. Indeed, let
D = {(x, y) ∈ R2 | x = 0} and C = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, xy ≥ 1}. We
remark that D ∩ C = ∅ but:

Exercise 77 Show that it does not exist a vector u ∈ R2, such that sup{u · d |
d ∈ D} < inf{u · c | c ∈ C}. A graphical representation of C and D may help.

Exercise 78 Let A be an affine subspace of Rn and x /∈ A. Show that if u ∈ Rn

separates x from A in the sense that u · x < inf{u · a | a ∈ A}, then u belongs to
the orthogonal of the direction of A or that the mapping from A to R defined by
a→ u · a is constant on A.

Let B̄(0, 1) be the closed unit ball of Rn. For all x /∈ B̄(0, 1), find a vector u
of Rn such that u · x < inf{u · y | y ∈ B̄(0, 1)}.

Let C = [−1, 1]× [−1, 1] ⊂ R2. For all x /∈ C, find a vector u of Rn such that
u · x < inf{u · y | y ∈ C}.

Let u ∈ Rn \ {0}, c ∈ R and H = {x ∈ Rn | u · x ≤ c}. For all x /∈ H, find a
vector v of Rn such that v · x < inf{v · y | y ∈ H}.
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Let u ∈ Rn \ {0}, a ∈ R and H = {x ∈ Rn | u · x = a}. We assume that
H ∩ B̄(0, 1) = ∅. Find an hyperplan which separates H from B̄(0, 1).

Exercise 79 Let E be a linear subspace of Rn such that E ∩ Rn
+ = {0}. The

goal of the exercise is to show that there exists a vector u ∈ E⊥ ∩ Rn
++.

1) Let S = {x ∈ Rn
+ |
∑n

i= xi = 1}. Show that E ∩ S = ∅.
2) By applying the separation Theorem, show that there exists a vector u ∈
Rn \ {0} such that sup{u · x | x ∈ E} < inf{u · s | s ∈ S}.
3) Show that u ∈ E⊥ and that sup{u · x | x ∈ E} = 0.
4) Using the fact that the vectors of the canonical basis belong to S, deduce that
all components of u are non negative.

Exercise 80 Let C and D be two nonempty closed convex subsets of Rn. We
assume that C ⊂ D. Show that for all x ∈ Rn,

‖projC(x)− projD(x)‖2 ≤ (dC(x))2 − (dD(x))2

We can remark that projC(x) ∈ D and use a characterisation of the projection
on D.

Exercise 81 The goal of this exercise is to show that a compact convex set can
be approximated by a polyhedron, that is a set defined by a finite number of
affine inequalities.

Let C be a nonempty convex compact subset of Rn. Let r > 0 and U =
C +B(0, r).
1) Show that U is an open convex subset and Ū , the closure of U is compact,
Fr(U), the frontier of U , is compact and Fr(U) ∩ C = ∅.
2) Applying a separation theorem, show that, for all x ∈ Fr(U), there exists a
vector ux ∈ Rn \ {0} and a real number ax such that ux · x > ax > sup{ux · c |
c ∈ C}.

Let H+
x be the open half space defined by H+

x = {y ∈ Rn | ux · y > ax}.
3) Show that Fr(U) ⊂ ∪x∈Fr(U)H

+
x .

4) Using the compactness of Fr(U), show that there exists a finite number of
points (x1, x2, . . . , xp) in Fr(U) such that Fr(U) ⊂ ∪pj=1H

+
xj
.

5) Show that C is included in P the polyhedron defined by P = {z ∈ Rn | ∀j =
1, . . . , p, uxj · z ≤ axj}.
6) We now prove that P is a subset of U by contraposition. Let x̄ ∈ P such that
x̄ /∈ U . Let c̄ be an element of C. Show that there exists t ∈ [0, 1[ such that
xt = (1− t)x̄+ tc̄ ∈ Fr(U). Show that xt ∈ P and deduce a contradiction.
7) In R2, provide explicitly the inequalities defining a polyhedron P containing
B̄(0, 1) and included in B(0, 2). Show that it does not exists a polyhedron con-
taining the set C = {(x, y) ∈ R2 | y ≥ x2} and included C + B(0, 1). Hint: we
can show that C + B(0, 1) is included in the epigraph of a parabola and look at
the behaviour at infinity.
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5.6 Farkas’ Lemma

5.6.1 Polarity

We study in this section the notion of polar cones, which generalises the notion
of orthogonality for linear subspaces.

Definition 49 Let A, be a subset of Rn. The negative polar cone of A, denoted
A◦ is defined as follows:

A◦ = {u ∈ Rn | for all a ∈ A, u · a ≤ 0}

Proposition 80 Let A, be a subset of Rn.
(i) A◦ is a closed convex cone of vertex 0;
(ii) If A ⊂ B, then B◦ ⊂ A◦;
(iii) If A is a linear subpace, then A◦ = A⊥;
(iv) If A is a cone, then u belongs to A◦ if and only if the function v → u · v

is upper bounded on A.

The proof is left to the reader.

Exercice 1 Compute the polar cone of the following sets:
2) C = B̄(0, 1);
2) C = Rn

+ = {x ∈ Rn | ∀i = 1, . . . , n, xi ≥ 0};
3) u ∈ Rn \ {0}; C = {x ∈ Rn | u · x ≥ 0};
4) u and v two non zero non colinear vectors of R2; C = {x ∈ R2 | ∃(λ1, λ2) ∈
R2

+, x = λ1u+ λ2v};
4) C = {(x, y, z) ∈ R3 | z ≥ 0, x2 + y2 ≤ z2}.

Proposition 81 Let A be a closed convex cone of Rn and let x /∈ A.
1) Let u ∈ Rn such that u · x ≤ inf{u · a | a ∈ A}. Then −u ∈ A◦.
2) Let a be the projection of x on A. Then x− a is orthogonal to a and x− a is
the projection of x on A◦.
3) Let (a, b) ∈ A×A◦ such that x = a+ b and a · b = 0. Then a is the projection
of x on A and b is the projection of x on A◦.

The second point of this proposition provides a decomposition of a vector x
on a closed convex cone and its negative polar cone similar to the one we have
with a linear subspace and its orthogonal. We can notice that the vector x may
have several decomposition as the sum of an element of A and an element of
A◦ but there exists only one such that the two vectors of the decomposition are
orthogonal.

Proof.
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1) If −u /∈ A◦, the exists a ∈ A such that u · a < 0. For all t > 0, ta ∈ A and
limt→+∞ u · (ta) = −∞, so inf{u · a | a ∈ A} = −∞ which is in contradiction
with u · x ≤ inf{u · a | a ∈ A}.
2) For all t > 0, ta ∈ A and since a is the projection of x on A, ‖x−ta‖2 ≥ ‖x−a‖2.
Thus ‖x−ta‖2 = ‖x−a+(1−t)a‖2 = ‖x−a‖2+2(1−t)(x−a)·a+(1−t)2‖a‖2. So,
2(1− t)(x−a) ·a+ (1− t)2‖a‖2 ≥ 0. For all t < 1, we obtain by dividing by 1− t,
2(x−a)·a+(1−t)‖a‖2 ≥ 0 and taking the limit when t tends to 1−, 2(x−a)·a ≥ 0.
For all t > 1, we obtain by dividing by 1 − t, 2(x − a) · a + (1 − t)‖a‖2 ≤ 0 and
taking the limit when t tends to 1+, 2(x − a) · a ≤ 0. Then we get the result
(x− a) · a = 0.

Let us show that x−a ∈ A◦. For all a′ ∈ A and for all t ∈ [0, 1], as A is convex,
at = (1 − t)a + ta′ ∈ A. Hence ‖x − a‖2 ≤ ‖x − at‖2 = ‖(x − a) + (a − at)‖2,
from which one deduces that 0 ≤ 2(x − a) · (a − at) + ‖a − at‖2 = 2t(x − a) ·
(a− a′) + t2‖a− a′‖2. Dividing by t and taking the limit when t tends to 0+, we
obtain 0 ≤ 2(x− a) · (a− a′) and since (x− a) · a = 0, (x− a) · a′ ≤ 0. Finally,
x− a ∈ A◦.

Let us show now that x − a is the projection of x on A◦. Let b ∈ A◦. Let us
compute ‖x− b‖2. ‖x− b‖2 = ‖x− (x− a) + (x− a− b)‖2 = ‖a+ (x− a− b)‖2 =
‖a‖2 + 2a · (x− a)− 2a · b+ ‖x− a− b‖2. a · (x− a) = 0 from above and, since
a · b ≤ 0 knowing that a ∈ A and b ∈ A◦. So ‖x− b‖2 ≥ ‖a‖2 = ‖x− (x− a)‖2.
This shows that x− a is the closest point from x in A◦.
3) The proof is similar to the one above to show that x− a is the projection of x
on A◦ using the fact that a · b = 0, a · b′ ≤ 0 for all b′ ∈ A◦ and a′ · b ≤ 0 for all
a′ ∈ A. �

Exercise 82 Let K be a closed convex cone of Rn.
1) Show that x ∈ K◦ if and only if projK(x) = 0.
2) Show that for all x ∈ Rn and for all t > 0, projK(tx) = tprojK(x).

We know state the bipolar’s Theorem which is a consequence of the separation’s
Theorem.

Theorem 36 (Bipolar’s Theorem) Let A be a nonempty closed convex cone of
Rn. Then (A◦)◦ = A.

Proof of Theorem 36. (A◦)◦ is a closed convex cone, which obviously contains
A. Les us show the converse inclusion by contradiction. Let x0 ∈ (A◦)◦ such that
x0 /∈ A. Then, we use the Separation Theorem between x0 and the closed convex
set A. So, there exists u ∈ Rn such that sup{u · a | a ∈ A} < u · x0. As
v → u · v is upper bounded on the cone A, one deduces that u ∈ A◦ and that
0 = sup{u · a | a ∈ A}. Then, u · x0 > 0 contradicts x0 ∈ (A◦)◦ which ends the
proof. �

Exercise 83 Let K be a closed convex cone of Rn.
1) Show K ∩ −K is a linear subspace of Rn.
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2) Show that K◦ ⊂ (K ∩ −K)⊥.
3) Show that K = (K ∩ −K) + (K ∩ (K ∩ −K)⊥).
4) Show that K is a linear subspace of Rn if and only if K = −K.

Exercise 84 Let C be a closed convex subset of Rn containing 0. Let

K = {u ∈ Rn | ∀t > 0, tu ∈ C}

1) Show that K is a closed convex cone.
2) Show that K = {0} if C is bounded.
3) Show that C +K = C.
4) We show in this question that K 6= {0} if C is not bounded.

a) Show that for all ν ∈ N∗, there exists cν ∈ C such that ‖cν‖ ≥ ν.
b) Show that the sequence

(
dν = 1

‖cν‖cν

)
has a converging sub-sequence (dϕ(ν))

and that dν ∈ C for all ν.
We denote by d the limit of the sub-sequence. Let t > 0.
c) Show that td = limν→∞ tdϕ(ν) = limν→∞

t
‖cν‖cν and conclude that td ∈ C.

d) Show that d ∈ K and conclude.

5.6.2 Farkas’ Lemma

Theorem 37 (Farkas’ Lemma) Let (ai)i∈I and (bj)j∈J , two finite families of
elements of Rn. Let

A =

{∑
i∈I

λiai +
∑
j∈J

µjbj | λ ∈ RI
+, µ ∈ RJ

}

and
B = {v ∈ Rn | ai · v ≤ 0, ∀i ∈ I, bj · v = 0, ∀j ∈ J}

Then, A◦ = B and B◦ = A.

Proof of Theorem 37. Clearly, A◦ = B, A ⊂ B◦ and B is a closed convex
cone. A is finitely generated by the family

(
(ai)i∈I , (bj)j∈J , (−bj)j∈J

)
. Thus, from

Proposition 77, A is closed. The Bipolar Theorem implies that A = B◦. �

Corollary 7 Let (ai)i∈I be a finite family of elements of Rn. Let

A =

{∑
i∈I

λiai | λ ∈ RI
+

}

and
B = {v ∈ Rn | ai · v ≤ 0, ∀i ∈ I}

Then, A◦ = B and B◦ = A.
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Corollary 8 Let (ai)i∈I , be a finite family of elements in Rn. Let b ∈ Rn satis-
fying the following property:

for all v ∈ Rn satisfying ai · v ≤ 0, for all i ∈ I, then b · v ≤ 0.
Then, it exists λ ∈ RI

+ such that b =
∑

i∈I λiai.

Proof of Corollary 8. Let A = {
∑

i∈I λiai | λ ∈ RI
+} and B = {v ∈ Rn |

ai · v ≤ 0, forall i ∈ I}. Then, the condition
for all v ∈ Rn satisfying ai · v ≤ 0, for all i ∈ I, then b · v ≤ 0.

is equivalent to b ∈ B◦. From the previous corollary, this implies that b ∈ A, that
is b is a non negative linear combination of the vectors (ai)i∈I . �

Exercise 85 Compute the polar cone of the following cones:
1) C = {x ∈ R3 | x1 + x2 + x3 ≤ 0, x1 − 2x2 + x3 = 0};
2) C = {λ(1, 2,−3) + µ(−1,−1, 2) | λ ∈ R, µ ≥ 0}
3) C = {x ∈ R2 | x1 + 2x2 ≥ 0; 2x1 − x2 ≤ 0;−x1 + x2 ≥ 0}.

Exercise 86 LetK be a finitely generated convex cone of Rn such thatK∩Rn
+ =

{0}. The goal of the exercise is to show that there exists u ∈ K◦ ∩ Rn
++. Let Sn

be the simplex of Rn.
1) Show that K ∩ Sn = ∅.
2) By applying the Separation Theorem, show that there exists u ∈ Rn such

that for all (x, s) ∈ K × S, supx∈K{u · x} < infs∈S{u · s}.
3) Deduce first that u ∈ K◦ and then that u ∈ R++.
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Chapter 6

Karush-Kuhn-Tucker Theorem

6.1 Karush-Kuhn-Tucker first order Conditions

In this chapter, we combine the results presented in the previous chapters to deal
with optimisation problems with equality and inequality constraints. We present
the general case before and then the convex case, which exhibits the nice feature
that the first order necessary conditions are also sufficient.

We also provide second order necessary conditions and second order sufficient
conditions for local solutions.

We posit the following framework: U is an open subset of Rn. f , (gi)
p
i=1,

(hj)
q
j=1 are C1 functions from U to R. The optimisation problem is:

(P)


Minimise f(x)
gi(x) = 0, ∀i = 1, . . . p
hj(x) ≤ 0, ∀j = 1 . . . , q
x ∈ U

Let x̄ be a (local) solution of this problem. With inequality constraints, we
need to distinguish binding constraints, j such that hj(x̄) = 0 and non binding
constraints, j such that hj(x̄) < 0. So J(x̄) = {j ∈ {1, . . . , q} | hj(x̄) = 0} is the
set of binding constraints. Roughly speaking, the non-binding constraints have no
influence on the solution and we can forget them like in the case of unconstrained
optimisation where we do not care about the open constraint defining the open
set U .

To obtain the necessary optimality condition, we need to posit a so-called
constraint qualification condition. For this qualification constraint, we need to
distinguish among the inequality constraints between the linear ones and the
non linear ones. We let Ja ⊂ {1, . . . , q} be the set of linear constraints, that is
hj(x) = aj · x + bj and Jna ⊂ {1, . . . , q} be the set of non linear constraints. So,
at x̄, the set of inequality constraints {1, . . . , q} is partitioned into three subsets:
Ja(x̄), linear binding constraints, Jna(x̄), non-linear binding constraints, and the
remaining constraints, which are the non-binding constraints.

We now state the Mangasarian-Fromovitz qualification condition.
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Definition 50 The point x̄ satisfies the Mangasarian-Fromovitz constraint qual-
ification condition if the vectors (∇gi(x̄))pi=1 are linearly independent and it exists
a vector ū ∈ Rn such that ∇gi(x̄)·ū = 0, for all i, ∇hj(x̄)·ū < 0, for all j ∈ Jna(x̄)
and ∇hj(x̄) · ū ≤ 0, for all j ∈ Ja(x̄).

Note that if there is no inequality constraint, we merely recover the condition
on the linear independence of the gradient vectors of the equality constraints.
This qualification condition may be hard to check and we now provide a stronger
one, which is often easier to check.

Definition 51 The point x̄ satisfies the Linear Independence constraint qualifi-
cation condition if the vectors

(
(∇gi(x̄))pi=1, (∇hj(x̄))j∈J(x̄)

)
are linearly indepen-

dent.

Proposition 82 If the point x̄ satisfies the Linear Independence constraint qual-
ification condition then it satisfies the Mangasarian-Fromovitz constraint qualifi-
cation condition.

Proof. Let us consider the linear mapping φ from Rn to Rp+]J(x̄) defined by:

φ(u) =
(
(∇gi(x̄) · u)pi=1, (∇hj(x̄) · u)j∈J(x̄)

)
From the Linear independence condition, φ is of rank p + ]J(x̄) so it is onto.
Hence, there exists an inverse image u of the element ((0, . . . , 0), (−1, . . . ,−1))
and so the MF qualification condition is satisfied.�

We are now able to state the Karush-Kuhn-Tucker Theorem, which provides
the first order necessary condition.

Theorem 38 (Karush-Kuhn-Tucker differentiable) Let x̄ be a (local) solution of
the problem (P). We assume that it satisfies the MF qualification condition. Then
it exists λ ∈ Rp and µ ∈ Rq

+ such that

∇f(x̄) +

p∑
i=1

λi∇gi(x̄) +

q∑
j=1

µj∇hj(x̄) = 0

and µjhj(x̄) = 0 for all j = 1, . . . , q. If the LI qualification condition is satisfied
at x̄, then the multipliers (λ, µ) are unique.

Note that x̄ satisfies the constraints of the problem, that is gi(x̄) = 0 for all i,
hj(x̄) ≤ 0 for all j. The condition µjhj(x̄) = 0 for all j = 1, . . . , q is called the
complementarity condition. Actually, it just means that the multiplier µj = 0 if
the constraint j is not binding. Note that it does not imply that the multiplier
is not equal to 0 when the constraint is binding. So, as mentioned above, the
gradients of the non-binding constraints play no role in the formula since the
coefficients µj are equal to 0.

We can provide the following interpretation. Under the assumptions of the
theorem, x̄ is a solution of the following linearised problem:
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(P`)


Minimise ∇f(x̄) · x
∇gi(x̄) · (x− x̄) = 0, ∀i = 1, . . . , p
∇hj(x̄)(x− x̄) ≤ 0, ∀j ∈ J(x̄)
x ∈ Rn

In other words, x̄ is a minimum of the linear mapping ∇f(x̄) · x, which is the
first order approximation of the objective function around x̄ on the polyhedron

S` = {x ∈ Rn | ∇gi(x̄) · (x− x̄) = 0,∀i = 1, . . . , p,∇hj(x̄)(x− x̄) ≤ 0,∀j ∈ J(x̄)}

Sketch of the Proof of Theorem 38. From the Farkas’ Lemma, it suffices to
show that∇f(x̄)·u ≥ 0 for all u ∈ T (x̄) = {u ∈ Rn | ∇gi(x̄)·u = 0, ∀i,∇hj(x̄)·u ≤
0,∀j ∈ J(x̄)}. From the MF qualification condition T (x̄) is in the closure of
T (x̄) = {u ∈ Rn | ∇gi(x̄) · u = 0,∀i,∇hj(x̄) · u < 0,∀j ∈ Jna(x̄),∇hj(x̄) · u ≤
0,∀j ∈ Ja(x̄)}, so it suffices to show that ∇f(x̄) · u ≥ 0 for all u ∈ T (x̄).

Let us take u ∈ T (x̄). From the independence of the gradient vectors of the
equality constraints, we consider the mapping ψ is in the proof of the Lagrange’s
Theorem. We prove that ψ(t) satisfies the constraints of the problem (P) for t in
an interval [0, τ [ for τ small enough distinguishing the affine binding constraints,
the non-affine binding constraints and the non-binding constraints. Then, as in
the proof of the Lagrange’s Theorem, considering the function f(ψ(t)), we prove
that ∇f(x̄) · ψ′(0) = ∇f(x̄) · u ≥ 0. �

We now consider the convex case, that is we assume that f is convex, the
equality constraints gi are affine and inequality constraints are convex. We remark
that the set S = {x ∈ Rn | gi(x) = 0,∀i = 1, . . . , p, hj(x) ≤ 0,∀j = 1, . . . q} is
convex.

In this framework, we state the Slater qualification condition, which is not
related to an element of S, which is a global property of S.

Definition 52 We assume that the functions (gi)
p
i=1 are affine and that the func-

tions (hj)
q
j=1 are convex. We denote by Ja the subset of {1, . . . , q} such that gj

is linear and by Jna its complement. Then the set S = {x ∈ Rn | gi(x) = 0, ∀i =
1, . . . , p, hj(x) ≤ 0,∀j = 1, . . . q} satisfies the Slater constraint qualification con-
dition if there exists x̄ ∈ S such that hj(x̄) < 0 for all j ∈ Jna.

Note that the Slater’s condition is satisfied when we have only linear constraints
if and only if S is nonempty.

Note that the MF qualification condition may not be satisfied if the Slater’s
condition holds. Indeed, the gradients of the equality constraints may not be
linearly independent. Nevertheless, in this case, since the equality constraints are
linear, the gradient vector does not depend on the point we consider, so we can
delete the useless constraints without modifying the constraint set S. So, without
any loss of generality, we can assume that the gradient vectors of the equality
constraints are linearly independent. In this case, the Slater’s condition implies
that the MF condition is satisfied for all x ∈ S.
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Proposition 83 We assume the set S = {x ∈ Rn | gi(x) = 0,∀i = 1, . . . , p, hj(x) ≤
0,∀j = 1, . . . q} satisfies the Slater constraint qualification condition and that the
gradient vectors (∇gi(0))pi=1 are linearly independent, then for all x ∈ S, the MF
qualification condition is satisfied.

Proof. Let x̄ ∈ S. Let u = x − x̄ where x is given by the Slater condition.
For all i, since x and x̄ belongs to S, gi(x) = ai · x + bi = ai · x̄ + bi = 0, so
ai · u = 0. For all j ∈ Ja(x̄)}, hj(x) = aj · x + bj ≤ 0 = hj(x̄) = ai · x̄ + bi, so
aj ·u ≤ 0. Finally, for all j ∈ Jna(x̄)}, hj(x) < 0 = hj(x̄). But, since hj is convex,
hj(x)− hj(x̄) ≥ ∇hj(x̄) · (x− x̄), so ∇hj(x̄) · u < 0. �

Now we state the convex version of the KKT Theorem. We maintain the initial
assumption that the equality constraint functions are linear and the inequality
constraints functions are split among linear ones and non-linear ones.

Theorem 39 (Karush-Kuhn-Tucker convex) Let us consider the following prob-
lem:

(P)


Minimiser f(x)
gi(x) = 0, i = 1, . . . , p
hj(x) ≤ 0, j = 1, . . . , q
x ∈ U

We assume that U is an open convex subset of Rn, the functions f and hj for
j ∈ Jna are C1 convex on U and the functions gi and hj for j ∈ Ja are linear.
We also assume that the Slater’s condition is satisfied by the set S = {x ∈ Rn |
gi(x) = 0, ∀i = 1, . . . , p, hj(x) ≤ 0,∀j = 1, . . . q}. Let x̄ be a (local) solution.
Then, it exists λ ∈ Rp, µ ∈ Rq

+ such that

∇f(x̄) +

p∑
i=1

λi∇gi(x̄) +

q∑
j=1

µj∇hj(x̄) = 0

and µjhj(x̄) = 0 for all j ∈ J .
Let x̄ an element of S satisfying the above first order condition. Then x̄ is a

solution of Problem (P).

As before, we can interpret this result by saying that x̄ is a solution of a
linearised problem where the objective function and the constraint functions are
all linear. Note that the most interesting part of this theorem is the second one,
which provides a sufficient condition.

Proof. For the necessary condition, we just apply the previous theorem 38
after having deleted the redundant equality constraints if necessary to get the MF
qualification condition as a consequence of the Slater’s condition. At the end, we
can re-enlist these deleted constraints with an associated multiplier equal to 0.

For the sufficient part, let x ∈ S. Using the fact that the functions gi are linear,
we get for all i, gi(x) = ai · x+ bi = ai · x̄+ bi = 0, so ai · u = ∇gi(x̄) · (x− x̄) = 0.

91



For all j ∈ J(x̄), since hj is convex, hj(x) ≤ 0 = hj(x̄), so ∇hj(x̄) ·(x− x̄) ≤ 0 and
µj∇hi(x̄)·(x−x̄) ≤ 0 since µj ≥ 0. For all j /∈ J(x̄), µj = 0 so µj∇hi(x̄)·(x−x̄) =
0. Consequently, [

p∑
i=1

λi∇gi(x̄) +

q∑
j=1

µj∇hj(x̄)

]
· (x− x̄) ≤ 0

Hence ∇f(x̄) · (x− x̄) ≥ 0. Since f is convex, f(x) ≥ f(x̄) +∇f(x̄) · (x− x̄), so
f(x) ≥ f(x̄), which shows that x̄ is a solution of Problem (P). �

Exercise 87 Let u = (u1, u2) be a non zero vector of R2 and let f be the function
from R2 to R defined by f(x) = u · x = u1x1 + u2x2. Using simple argument and
the sign of u1 and u2, find the solution of the following optimisation problem:
1) min{f(x) | x1 ≥ 0, x2 ≥ 0};
2) min{f(x) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1};
3) min{f(x) | x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1};
4) min{f(x) | x1 ∈ [−1, 2], x2 ∈ [0, 1]};
5) min{f(x) | |x1|+ |x2| ≤ 1};
6) min{f(x) | max{|x1|, |x2|} ≤ 1};

Exercise 88 Let f be a C1 function on Rn. We consider the following minimi-
sation problem 

Minimise f(x)
xi ≥ 0, i = 1, . . . , n,
x ∈ Rn

Let x̄ be a (local) solution of this problem. Show that ∇f(x̄) ≥ 0 and ∇f(x̄) · x̄ =
0.

Exercise 89 Solve the following optimisation problem:{
Minimise x2 + y2

2x+ y ≤ −4

Let us consider the following optimisation problem:
Maximise 3x1x2 − x3

2

x1 ≥ 0, x2 ≥ 0
x1 − 2x2 = 5
2x1 + 5x2 ≥ 20

Draw the feasible set and show that the positivity constraints are non binding
at the solution. Write the KKT conditions and find the solution.
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Exercise 90 Solve the following optimisation problems:
Maximise ln(x1x2x3)
x2

1 + x2
2 + x2

3 ≤ 4
x1 + x2 + x3 = 3
x1 > 0, x2 > 0, x3 > 0
Minimise x2

1 + x2
2

x1 + x2 ≥ 1
x1 ≥ 0, x2 ≥ 0

Exercise 91 Let p ∈ Rn
++ and w > 0. We consider the following problem:

Maximise f(x1, x2, x3) = x1x2 . . . xn∑n
i=1 pixi ≤ w

x ∈ Rn
+

1) Show that there exists an element x ∈ Rn
++ such that

∑n
i=1 pixi ≤ w.

2) Show that there exists a least one solution.
3) Show that if x̄ is a solution, then x̄ ∈ Rn

++.
4) Show that if x̄ is a solution, then

∑n
i=1 pix̄i = w.

5) Write the KKT conditions and find the unique solution of the problem.
6) If we denote by x̄(p, w) the optimal solution, compute v(p, w) = f(x̄(p, w))
and compute its partial derivatives. Show the link between the partial derivative
with respect to w and the KKT multipliers.

Exercise 92 Let p ∈ Rn
++ and w > 0. We consider the following problem:

Maximise f(x1, x2, x3) =
√
x1 +

√
x2 + . . .+

√
xn∑n

i=1 pixi ≤ w
x ∈ Rn

+

1) Show that there exists an element x ∈ Rn
++ such that

∑n
i=1 pixi ≤ w.

2) Show that there exists a least one solution.
3) Show that if x̄ is a solution, then

∑n
i=1 pix̄i = w.

5) Write the KKT conditions and find the unique solution of the problem.
6) If we denote by x̄(p, w) the optimal solution, compute v(p, w) = f(x̄(p, w))
and compute its partial derivatives. Show the link between the partial derivative
with respect to w and the KKT multipliers.

Exercise 93 Let p ∈ Rn \ {0} Find the solution of the following problems:{
Maximise

∑n
i=1 pixi∑n

i=1 x
2
i ≤ 1{

Minimise
∑n

i=1 pixi∑n
i=1 x

2
i ≤ 1

What are the solutions when p = 0.

Exercise 94 We are looking for the closest point for the Euclidean norm to the
point (10, 10) in the closed unit ball.
1) Explain that this question is equivalent to solve the following problem:

93



{
Minimise (x− 10)2 + (y − 10)2

x2 + y2 ≤ 1

1) Show that this problem is a convex optimisation problem.
2) Show that this problem has a unique solution.
3) Find the solution of this problem.

Exercise 95 Let f from Rn to R defined by f(x) = exp(‖x‖2) + a · x where a is
a given vector of Rn and ‖ · ‖ is the Euclidean norm.
1) Show that f is convex.
2) Find the solution of the following problem:{

Minimise f(x)
‖x‖ ≤ r

6.2 Second order necessary condition

We are considering again the same optimisation problem:

(P)


Minimise f(x)
gi(x) = 0, ∀i = 1, . . . p
hj(x) ≤ 0, ∀j = 1 . . . , q
x ∈ U

and we assume that the functions f , gi and hj are C2 on U . Let us define the
Lagrangian function of this problem:

L(x, λ, µ) = f(x) +

p∑
i=1

λigi(x) +

q∑
j=1

µjhj(x)

If (x̄, λ̄, µ̄) satisfies the KKT conditions, we denote by J+(x̄, λ̄, µ̄) = {j ∈ J(x̄) |
µ̄j > 0}, and by J0(x̄, λ̄, µ̄) = {j ∈ J(x̄) | µ̄j = 0}. In the following, we consider
the following cone:

A(x̄) = {u ∈ Rn

∣∣∣∣∣∣∣∣
∇f(x̄) · u = 0;
∇gi(x̄) · u = 0, ∀i = 1, . . . , p;
∇hj(x̄) · u = 0, ∀j ∈ J+(x̄, λ̄, µ̄);
∇hj(x̄) · u ≤ 0, ∀j ∈ J0(x̄, λ̄, µ̄);


Proposition 84 Let x̄ be a local solution of Problem (P). We assume that the
linear independence qualification condition is satisfied at x̄, that is, the vectors
((∇gi(x̄))pi=1, (∇hj(x̄))j∈J(x̄)) are linearly independent. Let (λ̄, µ̄) the unique KKT
multipliers associated to x̄. Then for all u ∈ A,

u ·HxxL(x̄, λ̄, µ̄)(u) ≥ 0

Proof. Let u ∈ A(x̄), u 6= 0. Let J̄(x̄) = {j ∈ J(x̄) | ∇hj(x̄) · u = 0}.
As u ∈ A(x̄), J+(x̄) ⊂ J̄(x̄). Since the vectors ((∇gi(x̄))i∈I , (∇hj(x̄))j∈J̄(x̄)) are
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linearly independent, it exists a function ψ C1 from a neighbourhood of 0 in R to
Rn such that ψ(0) = x̄, ψ′(0) = u, gi(ψ(t)) = 0 for all i and hj(ψ(t)) = 0 for all
j ∈ J̄(x̄) (See the proof of the Lagrange’s Theorem). Since ∇hj(x̄) · u < 0 for all
j ∈ J0(x̄) \ J̄(x̄) and hj(x̄) < 0 for all j ∈ J \ J(x̄), one deduces that for all t > 0
small enough, ψ(t) satisfies the constraints of the problem and hj(ψ(t)) = 0 for
all j ∈ J+(x̄). Thus L(ψ(t), λ̄, µ̄) = f(ψ(t)) ≥ f(x̄) = L(x̄, λ̄, µ̄). With a second
order Taylor expansion of L in a neighbourhood of x̄, we get:

0 ≤ ∇xL(x̄, λ̄, µ̄) · (ψ(t)− x̄) + 1
2
(ψ(t)− x̄) ·HxxL(x̄, λ̄, µ̄)(ψ(t)− x̄)

+‖ψ(t)− x̄‖2η(ψ(t)− x̄)
= 1

2
(ψ(t)− x̄) ·HxxL(x̄, λ̄, µ̄)(ψ(t)− x̄) + ‖ψ(t)− x̄‖2η(ψ(t)− x̄)

Dividing by t2 and taking the limit to 0+, noticing that limt→0+
ψ(t)−x̄

t
= u and

limx→0 η(x) = 0, we get
0 ≤ u ·HxxL(x̄, λ̄, µ̄)(u)

which ends the proof.�

We can remark that, in the previous proposition, we have assume the linear
independence qualification condition, which is stronger than the MF condition.
We now provide an example, which illustrates that the proposition does not hold
under the MF condition.
U = R2, f(x, y) = −y, h1(x, y) = y and h2(x, y) = y − x2. We remark that

(0, 0) is a global solution of the following problem:

(P)


Minimise f(x)
h1(x, y) ≤ 0
h2(x, y) ≤ 0

At (0, 0), ∇h1(0, 0) = (0, 1) and ∇h2(0, 0) = (0, 1), so the MF condition is sat-
isfied but not the LI condition. Note that we have an infinity of KKT multipliers:
{λ ∈ R2

+ | λ1 + λ2 = 1}. Depending on the multiplier, A(0, 0) = {(x, 0) | x ∈ R}
if λ � 0 or A(0, 0) = {(x, y) | x ∈ R, y ≤ 0} if λ1 = 0 or λ2 = 1. The Hessian
matrix of the Lagrangian at (0, 0) is:

HxxL(0, 0, λ1, λ2) = λ2

(
−2 0
0 0

)
So the Hessian matrix of the Lagrangian is not positive semi-definite on A(0, 0)
if λ2 > 0. This shows that the second order necessary condition is not satisfied.

6.3 Second order sufficient condition

As in the previous section, We are considering again the same optimisation prob-
lem with equality and inequality constraints:
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(P)


Minimise f(x)
gi(x) = 0, ∀i = 1, . . . p
hj(x) ≤ 0, ∀j = 1 . . . , q
x ∈ U

and we assume that the functions f , gi and hj are C2 on U .
We recall that the KKT necessary conditions are the following: there exists

λ ∈ RI , µ ∈ RJ
+ such that

(KKT)


∇f(x) +

∑p
i=1 λi∇gi(x) +

∑q
j=1 µj∇hj(x) = 0

gi(x) = 0 for all i
hj(x) ≤ 0 and µjhj(x) = 0 for all j

If (x̄, λ̄, µ̄) satisfies KKT conditions, we denote by J+(x̄, λ̄, µ̄) = {j ∈ J(x̄) |
µ̄j > 0} and J0(x̄, λ̄, µ̄) = {j ∈ J(x̄) | µ̄j = 0}. We consider the following cone:

A(x̄) = {u ∈ Rn

∣∣∣∣∣∣∣∣
∇f(x̄) · u = 0;
∇gi(x̄) · u = 0, ∀i;
∇hj(x̄) · u = 0, ∀j ∈ J+(x̄, λ̄, µ̄);
∇hj(x̄) · u ≤ 0, ∀j ∈ J0(x̄, λ̄, µ̄);


Definition 53 Let (x̄, λ̄, µ̄) satisfying the KKT condition. The second order
sufficient condition is satisfied at this point if u ∈ A(x̄), u 6= 0,

HxxL(x̄, λ̄, µ̄)(u) · u > 0

If we have only linear constraints, the Hessian matrix of the Lagrangian is the
Hessian matrix of the objectif function f . If we have only equality constraints
or a strict complementarity slackness condition, that is, J+(x̄, λ̄, µ̄) = J(x̄), then
the second order necessary condition means that the restriction to the subspace
orthogonal to the vectors ∇gi(x̄) for all i and ∇hj(x̄) for j ∈ J(x̄) of the objective
function f is strictly convex in a neighbourhood of x̄.

Lemma 1 If (x̄, λ̄, µ̄) satisfies the KKT condition and the second order necessary
condition, then it exists ρ > 0 such that for all u ∈ A(x̄),

HxxL(x̄, λ̄, µ̄)(u) · u ≥ ρ‖u‖2

Proof. If A(x̄) = {0}, there is nothing to be proved. Otherwise, it exists ū ∈ A,
‖ū‖ = 1, such that

ρ = ū ·HxxL(x̄, λ̄, µ̄)(ū) = min{u ·HxxL(x̄, λ̄, µ̄)(u) | u ∈ A(x̄), ‖u‖ = 1}

Since A(x̄) is a cone, one deduces the desired inequality. �
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Theorem 40 Let (x̄, λ̄, µ̄) satisfying the KKT conditions and the second order
sufficient condition. Let ρ > 0 as given by the previous lemma. Then, for all
ε ∈ [0, ρ[, there exists a neighbourhood V of x̄ such that for all x ∈ V satisfying
x 6= x̄, gi(x) = 0 for all i, hj(x) ≤ 0 for all j,

f(x) > f(x̄) +
1

2
ε‖x− x̄‖2

This implies that x̄ is a local solution and even a strict local solution of the problem
(P).

Proof. Let C = {x ∈ U | gi(x) = 0, ∀i, hj(x) ≤ 0, ∀j}. By contraposition, let
us assume the there exists ε ≥ 0, ε < ρ and a sequence (xν) ⊂ C which converges
to x̄ and xν 6= x̄ for all ν and f(xν) ≤ f(x̄) + 1

2
ε‖xν − x̄‖2. Without any loss

of generality, we can assume that the sequence ( xν−x̄
‖xν−x̄‖) converges to u ∈ Rn of

norm 1. For all i, 0 = gi(xν) − gi(x̄) = ∇gi(x̄) · (xν − x̄) + ‖xν − x̄‖ϕi(xν − x̄)
with limv→0 ϕi(v) = 0. Thus, one deduces that ∇gi(x̄) · u = 0. Identically, for all
j ∈ J(x̄), hj(xν)−hj(x̄) = hj(xν) ≤ 0. So, 0 ≥ ∇hj(x̄)·(xν−x̄)+‖xν−x̄‖ψj(xk−x̄)
with limv→0 ψj(v) = 0. Hence, one deduces that ∇hj(x̄) · u ≤ 0.

We now show that ∇f(x̄) · u = 0. ∇f(x̄) · u ≥ 0 is directly deduces from the
KKT condition: ∇f(x̄)+

∑
i λ̄i∇gi(x̄)+

∑
j µ̄j∇hj(x̄) = 0 and µ̄j = 0 if j /∈ J(x̄).

Let us show the converse inequality. By assumption, we have for all ν

f(x̄) +
1

2
ε‖xν − x̄‖2 ≥ f(xν) = f(x̄) +∇f(x̄) · (xν − x̄) + ‖xkν − x̄‖ϕ(xν − x̄)

with limv→0 ϕ(v) = 0. Dividing by ‖xν − x̄‖, one obtains ∇f(x̄) · u ≤ 0.
We end the proof by showing that for all j ∈ J+(x̄, λ̄, µ̄), we have∇hj(x̄)·u = 0

which implies that u ∈ A(x̄). As

0 = ∇f(x̄) +
∑

i λ̄i∇gi(x̄) +
∑

j∈J µ̄j∇hj(x̄)

= ∇f(x̄) +
∑

i∈I λ̄i∇gi(x̄) +
∑

j∈J+(x̄,λ̄,µ̄) µ̄j∇hj(x̄)

and since 0 = ∇f(x̄)·u = ∇gi(x̄)·u for all i, we deduces that 0 =
∑

j∈J+(x̄,λ̄,µ̄) µ̄j∇hj(x̄)·
u. As µ̄j > 0 and ∇hj(x̄) · u ≤ 0 for all j ∈ J+(x̄, λ̄, µ̄), we conclude that
∇hj(x̄) · u = 0.

From the Taylor expansion of L,

L(xν , λ̄, µ̄) = L(x̄, λ̄, µ̄) +∇xL(x̄, λ̄, µ̄) · (xν − x̄)
+1

2
(HxxL(x̄, λ̄, µ̄)(xν − x̄) · (xν − x̄))

+‖xν − x̄‖2ϕ̄(xν − x̄)

with limv→0 ϕ̄(v) = 0. As
∑

j∈J µ̄jhj(x̄) = 0, we have L(x̄, λ̄, µ̄) = f(x̄) and from
the KKT conditions, ∇xL(x̄, λ̄, µ̄) = 0. So,

L(xν , λ̄, µ̄) = f(x̄) +
1

2
(HxxL(x̄, λ̄, µ̄)(xν − x̄) · (xν − x̄)) + ‖xν − x̄‖2ϕ̄(xν − x̄)
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As f(xν) ≥ L(xν , λ̄, µ̄), using the assumption, we deduces that :

f(x̄) + 1
2
ε‖xν − x̄‖2 ≥ f(xν) ≥ L(xν , λ̄, µ̄)

= f(x̄)
+1

2
(HxxL(x̄, λ̄, µ̄)(xν − x̄) · (xν − x̄))

+‖xν − x̄‖2ϕ̄(xν − x̄)

Dividing by ‖xν − x̄‖2, and taking the limit when ν goes to +∞, we deduces
that:

ε ≥ (HxxL(x̄, λ̄, µ̄)(u) · (u) ≥ ρ‖u‖2 = ρ

which contradicts ε < ρ.�

We have also a stronger sufficient condition when we have a global convesity
of the Lagrangian.

Theorem 41 Let (x̄, λ̄, µ̄) satisfying the KKT conditions. If the open set U is
convex and the partial function L(·, λ̄, µ̄) is convex on U , then x̄ is a solution of
the problem (P).

The above condition holds true when the objective functions and the inequality
constraint functions are convex and the equality constraint functions are linear,
which is the convex case treated above. But, it may happens that the convex-
ity of the inequality constraint functions compensates the lack of convexity of
the objective function in such a way that the Lagrangian is convex even if the
objective function is not convex. The convexity of the objective constraint can
also compensates the lack of convexity of the inequality or equality constraint
functions.

The proof is a direct consequence of the fact that ∇xL(x̄, λ̄, µ̄) = 0 from
the KKT conditions and for all x satisfying the constraints of the problem (P),
L(x, λ̄, µ̄) ≤ f(x).
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