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5.1 Let f(x1, x2) = −8x21−10x22+12x1x2−50x1+80x2. Solve the following
problem:

max
x1,x2

f(x1, x2) s.t.

x1 + x2 ≤ 1

8x21 + x22 ≤ 2

x1 ≥ 0, x2 ≥ 0

Solution: The Lagrangian of the problem is:

L(x1, x2, λ1, λ2) = −8x21−10x22+12x1x2−50x1+80x2+λ1(1−x1−x2)+λ2(2−8x21−x22)
The Kuhn-Tucker conditions are:

∂L

∂x1
= −16x1 + 12x2 − 50− λ1 − 16λ2x1 ≤ 0

x1
∂L

∂x1
= x1(−16x1 + 12x2 − 50− λ1 − 16λ2x1) = 0

∂L

∂x2
= −20x2 + 12x1 + 80− λ1 − 2λ2x2 ≤ 0

x2
∂L

∂x2
= x2(−20x2 + 12x1 + 80− λ1 − 2λ2x2) = 0

∂L

∂λ1
= 1− x1 − x2 ≥ 0

λ1
∂L

∂λ1
= λ1(1− x1 − x2) = 0

∂L

∂λ1
= 2− 8x21 − x22 ≥ 0

λ2
∂L

∂λ2
= λ2(2− 8x21 − x22) = 0

λ1 ≥ 0, λ2 ≥ 0, x1 ≥ 0, x2 ≥ 0
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There are four possible types of solutions:

x1 6= 0, x2 = 0

x1 = 0, x2 = 0

x1 6= 0, x2 6= 0

x1 = 0, x2 6= 0

that have to be examined one-by-one.

Case 1: (x1 6= 0, x2 = 0) In this case, x1 ∂L∂x1 = 0 implies ∂L
∂x1

= 0, that is,

∂L

∂x1
(x1, 0) = −16x1 − 50− λ1 − 16λ2x1 = 0

In turn this imples

x1 = −
50 + λ1

16(1 + λ2)
< 0

contradicting the restriction x1 ≥ 0. Therefore, there is no solution in
Case 1.

Case 2: (x1 = 0, x2 = 0) In this case, ∂L
∂λi

> 0 implying λ1 = λ2 = 0.
Now evaluate

∂L

∂x2
(0, 0)|λ1=0 = 80 > 0

which is a contradiction. Thus, there is no solution in Case 2.

Case 3: (x1 6= 0, x2 6= 0) We organize the analysis of this Case in the study
of four subcases:

(3a) λ1 = λ2 = 0
Because xi > 0, it follows that xi ∂L∂xi = 0 implies ∂L

∂xi
= 0, that is,

−16x1 + 12x2 − 50 = 0

−20x2 + 12x1 + 80 = 0

The solution of this system yields x2 = 85
22 and x1 = −5

22 < 0,
thus violating the restriction x1 > 0. Hence, there is no solution
in Case 3a.

(3b) λ1 > 0, λ2 = 0
Because xi > 0, it follows that xi ∂L∂xi = 0 implies ∂L

∂xi
= 0. Also,

λ1 > 0 implies ∂L
∂λ1

= 0, that is,

−16x1 + 12x2 − 50− λ1 = 0

−20x2 + 12x1 + 80− λ1 = 0

1− x1 − x2 = 0

The solution of this system yields x1 = −49
30 < 0, thus violating

the restriction x1 > 0. Hence, there is no solution in Case 3b.
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(3c) λ1 = 0, λ2 > 0
Because xi > 0, it follows that xi ∂L∂xi = 0 implies ∂L

∂xi
= 0. Also,

λ2 > 0 implies ∂L
∂λ2

= 0, that is,

−16x1 + 12x2 − 50− 16x1λ2 = 0

−20x2 + 12x1 + 80− 2x2λ2 = 0

2− 8x21 − x22 = 0

Instead of solving this system, a more fruitful way to verify if there
may be a solution, is to pay a close look at the frontier of the
feasible set.
The frontier of the restriction x1 + x2 ≤ 1 is a traight line with
slope −1 and extremes (0, 1) and (1, 0).
The frontier of the restriction 8x21 + x22 ≤ 2 can be written as
x2 = (2− 8x21)

1/2. This frontier has the following properties:
• the extreme points are (0,

√
2) and (12 , 0)

• its slope is dx2
dx1

= −8x1
(2−8x21)

1/2 < 0

• also, dx2dx1
|x1=0 = 0 while dx2

dx1
|x1=1/2 = −∞

• compute d2x2
dx21

= −8(2 − 8x21)
1/2[1 + 8x1(2 − 8x21)

−1] <

0,∀x1 ∈ [0, 1/2). Thus, the frontier is concave and has a
maximum at x1 = 0.

Summarizing the feasible set is defined by the intersection of both
restriction and is shown in figure 1.
The assumption λ2 > 0 means that the corresponding restriction
is binding and therefore if a solution exists it will belong to the
frontier of the restriction g(x1, x2) ≡ 8x21+x22 ≤ 2. That is, at or
below x̃.

(a) Also, we know that the gradient ∇g points towards north-east,
while the gradient ∇f points in the north-west direction. This
implies that there cannot be a solution in Case 3c.

(3d) λ1 > 0, λ2 > 0.
Now both restrictions are binding. Hence, we have a system of
four equations with four unknowns. Looking at figure 2 the only
possibility is x̃ = (x̃1, x̃2), that is the solution of x1 + x2 − 1 =
8x21+x22− 2. But x̃ cannot be a solution because at that point the
gradient of f points north-westwards, while the gradients of the
restrictions point north-eastwards.

Summarizing, there is no solution in Case 3.
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Figure 1: Problem 5.1a

Case 4: (x1 = 0, x2 6= 0) In this case, x2 ∂L∂x2 = 0 implies ∂L
∂x2

= 0. Let us
consider the system

∂L

∂x2
= −20x2 + 80− λ1 − 2λ2x2 = 0

λ1
∂L

∂λ1
= λ1(1− x2) = 0

λ2
∂L

∂λ2
= λ2(2− x22) = 0

The first equation can be rewritten as

x2 =
80− λ1

2(10 + λ2)

Substituting the value of x2 into the second equation of the system, we
obtain

λ1

(
1− 80− λ1

2(10 + λ2)

)
= λ1

(λ1 + 2λ2 − 60

2(10 + λ2)

)
= 0

That can be satisfied if λ1 = 0 and/or λ1 + 2λ2 − 60 = 0.

(4a) Let λ1 = 0.
Substituting in the value of x2 we obtain

x2 =
80

2(10 + λ2)
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Figure 2: Problem 5.1b

Substituting this value of x2 in the third equation of the system we
obtain

λ2(2− x22) = λ2

(8(10 + λ2)
2 − 802

4(10 + λ2)2

)
= 0

That can be satisfied if λ2 = 0 and/or 8(10 + λ2)
2 − 802 = 0,

yielding λ2 ≈ 18.285.
(i) Let λ2 = 0. Then, x2 = 4, but the condition ∂L

∂λ1
= 1 −

4 = −3 < 0 is violated. Thus, (x1, x2, λ1, λ2) = (0, 4, 0, 0)
cannot be a solution.

(ii) Let λ2 ≈ 18.285. Then, x2 ≈ 80
56.57 > 1 and as before, the

condition ∂L
∂λ1
≥ 0 is violated.

Summarizing, there is no solution in Case 4a.
4(b) λ1 + 2λ2 − 60 = 0.

Substituting in the value of x2 we obtain x2 = 1, which in turn
implies λ2 = 0 because λ2(2− x22) = λ2 = 0. Given x2 = 1 and
λ2 = 0, substituting these values in x2 it follows that λ1 = 60.

Hence we have identified a candidate solution given by

(x∗1, x
∗
2, λ

∗
1, λ

∗
2) = (0, 1, 60, 0)

described in figure 3. Note that at x∗ the two restrictions that are active
are x1 ≥ 0 and g(x1, x2) ≡ x1 + x2 ≤ 1. The gradient of f lies
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Figure 3: Problem 5.1c

in the cone formed by the gradients of those two restrictions. Note
∇g = (1, 1) and ∇f |(x∗,λ∗) = (−38, 60).

5.2 Let f(x1, x2) = 4x1 +3x2, g(x1, x2) = 2x1 + x2 and x1, x2 ≥ 0. Find the
candidate solutions to the problem

max
x1,x2

f(x1, x2) s.t g(x1, x2) ≤ 10, x1 ≥ 0, x2 ≥ 0

Solution:The Lagrangian function is:

L(x1, x2, λ) = 4x1 + 3x2 + λ(10− 2x1 − x2)
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and the necerssary Kuhn-tucker conditions to identify a maximum point are

∂L

∂x1
= 4− 2λ ≤ 0 (1)

x1
∂L

∂x1
= x1(4− 2λ) = 0 (2)

∂L

∂x2
= 3− λ ≤ 0 (3)

x2
∂L

∂x2
= x2(3− λ) = 0 (4)

∂L

∂λ
= 10− 2x1 − x2 ≥ 0 (5)

λ
∂L

∂λ
= λ(10− 2x1 − x2) = 0 (6)

x1 ≥ 0,x2 ≥ 0, λ ≥ 0 (7)

• Consider (2). It will be verified if x1 = 0 and/or λ = 2.
If λ = 2 substituting it into (3) leads to a contradiction. Thus, it must
be the case that x1 = 0.

• Consider (4). It will be verified if x2 = 0 and/or λ = 3.
If x2 = 0 (together with the fact that x1 = 0), substituting it into (6)
implies λ = 0. Then, substituting x1 = x2 = λ = 0 in (1) leads to a
contradiction. Hence it must be the case that λ = 3.

• Consider (6). Given that x1 = 0 and λ = 3, it reads 3(10 − x2) = 0
so that x2 = 10.

Thus, we have identified a (unique) candidate solution (x∗1, x
∗
2, λ

∗) = (0, 10, 3).

5.3 Let f(x1, x2) = 2x1 + 3x2, g(x1, x2) = x21 + x22 and x1, x2 ≥ 0. Find the
solutions to the problem

max
x1,x2

f(x1, x2) s.t g(x1, x2) ≤ 2, x1 ≥ 0, x2 ≥ 0

Solution:The Lagrangian function is:

L(x1, x2, λ) = 2x1 + 3x2 + λ(2− x21 − x22)
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and the necerssary Kuhn-tucker conditions to identify a maximum point are

∂L

∂x1
= 2− 2λx1 ≤ 0 (8)

x1
∂L

∂x1
= x1(2− λx1) = 0 (9)

∂L

∂x2
= 3− 2λx2 ≤ 0 (10)

x2
∂L

∂x2
= x2(3− 2λx2) = 0 (11)

∂L

∂λ
= 2− x21 − x22 ≥ 0 (12)

λ
∂L

∂λ
= λ(2− x21 − x22) = 0 (13)

x1 ≥ 0,x2 ≥ 0, λ ≥ 0 (14)

• Consider (9). It will be verified if x1 = 0 and/or λx1 = 1.
If x1 = 0 substituting it into (8) leads to a contradiction. Thus, it must
be the case that λx1 = 1. In turn, this implies, x1 > 0, λ > 0 and
x1 = 1/λ.

• Consider (11). It will be verified if x2 = 0 and/or λx1 = 3/2.
If x2 = 0 substituting it into (10) leads to a contradiction. Thus, it must
be the case that λx2 = 3/2. In turn, this implies, x2 > 0, λ > 0 and
x2 = 3/2λ.

• Consider (13) and substitute the values of x1 and x2 to obtain

λ
[
2−

( 1
λ

)2
−
( 3

2λ

)2]
= 0

Given that we already know that λ > 0, it follows that 8λ2 − 13 = 0
or λ =

√
13/8.

Accordingly we have a unique candidate for a maximum point, namely

(x∗1, x
∗
2, λ

∗) =
(√

8/13,
√

18/13,
√
13/8).

To assess whether this candidate is actually a maximum point, we know that
if the objective function f is differentaible and concave and the constraint
g is differentiable and convex, then the candidate solution will maximize the
value of f . In our problem, f is linear thus concave, and both f and g are
differentiable. To assess the convexity of g we have to verify that its Hessian
matrix is positive definite. The Hessian matrix of g is

H =

(
2 0
0 2

)

Clearly |H1| > 0 and |H2| > 0 so that g is convex. We thus conclude that
(x∗1, x

∗
2) =

(√
8/13,

√
18/13) is a maximum of f .
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5.4 Solve the following problem

min
x1,x2

x21 − 4x1 + x22 − 6x2 s.t

x1 + x2 ≤ 3

− 2x1 + x2 ≤ 2

Solution: Following the same methodology,

(x∗1, x
∗
2, λ

∗
1, λ

∗
2) = (1, 2, 2, 0)

emerges as the only solution candidate.

5.5 Let f(x) = (x− 1)3, x ≤ 2 and x ≥ 0. Show that Kuhn-Tucker first-order
conditions are necessary but not sufficient to characterize a maximum of the
problem

max
x1,x2

f(x) s.t

x ≤ 2

x ≥ 0

Solution: The Lagrangian function is:

L(x, λ) = (x− 1)3 + λ(2− x)
and the necessary Kuhn-tucker conditions to identify a maximum point are:

∂L

∂x
= 3(x− 1)2 − λ ≤ 0 (15)

x
∂L

∂x
= x(3(x− 1)2 − λ) = 0 (16)

∂L

∂λ
= 2− x ≥ 0 (17)

λ
∂L

∂λ
= λ(2− x) = 0 (18)

x ≥ 0,λ ≥ 0 (19)

• Consider (16). It will be verified if x = 0 and/or 3(x− 1)2 − λ = 0.
If x = 0 substituting in (18) yields λ = 0. But these values lead to a
contradiction when substituted into (15). Thus it must be the case that
3(x− 1)2 − λ = 0.
• Consider 3(x− 1)2 − λ = 0 and rewrite it as

λ = 3(x− 1)2 (20)

Substituting it in (18) we obtain

3(x− 1)2(2− x) = 0

that has as solutions x = 1 and x = 2.
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• Consider x = 1. Substituting it in (20) yields λ = 0. Therefore,
(x∗, λ∗) = (1, 0) is a candidate solution.

• Consider x = 2. Substituting it in (20) yields λ = 3. Therefore,
(x∗, λ∗) = (2, 3) is also a candidate solution.

An inspection of function f tells us that it is monotonically increasing for
any value of x. Therefore, the maximum of the function has to be located at
x = 2 where the restriction is binding.
Hence, only one of the candidate solutions is actually solving the problem
proposed. In other words, the necessary Kuhn-Tucker conditions are not suf-
ficient to characterize the maxima of f .
Remark: at x = 1, f shows an inflection point. Looking at the second deriva-
tive of f is easy to check that f is concave for x < 1 and convex for x > 1.

5.6 Let f(x, y) = 1
x2+y2

, g1(x, y) = y − (x − 1)3, g2(x, y) = −y, g3(x, y) =

x− 2, with gi(x, y) ≤ 0.

(a) Let S be the set defind by g1, g2 and g3. Provide an argument showing
that f has a maximum and a minimum over S.

(b) Show graphically that f has a maximum at (x, y) = (1, 0)

(c) Verify that the Kuhn-Tucker conditions do not identify that point as a
critical point. Explain why.

Solution:

(a) The first remark is that the point (0, 0) does not belong to S and there-
fore, the function f is continuous over S. The second remark is that
the set S is compact. Obervation of figure 4 tells us that S is de-
fined by points such that x ∈ [1, 2] and y ∈ [0, 1]. In other words
∀(x, y) ∈ S, ‖(x, y)‖ =

√
x2 + y2 ≤ 5, so that S is bounded. Finally,

the intersection of g1, g2, g3 defining S is closed. Applying Weierstrass
theorem, it follows that f has a maximum and a minimum over S.

(b) The level sets of f are circles centered at the origin. The closer the level
set to the origin the higher the value of the function. In other words,
the gradient of f points towards the origin as illustrated in figure 5.
The level set of f with the highest value compatible with S is the one
passing through point (1, 0). It cannot be a level set with smaller radius
because it would violate restriction g2. See figure 6. Accordingly, the
point (1, 0) maximizes f within S. Note that (1, 0) both g1 and g2 are
binding while g3 is not.
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Figure 4: Problem 5.6a

(c) The problem to solve is

max
x,y

f(x) s.t

y ≤ (x− 1)3

y ≥ 0

x ≤ 2

The corresponding Lagrangian function is

L(x.y, λ1, λ2, λ3) =
1

x2 + y2
− λ1(y − (x− 1)3) + λ2y − λ3(x− 2)

and the necessary Kuhn-Tucker conditions to identify a maximum point
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Figure 5: Problem 5.6b

are:

∂L

∂x
=

−2x
(x2 + y2)2

+ 3λ1(x− 1)2 − λ3 ≤ 0

x
∂L

∂x
x
( −2x
(x2 + y2)2

+ 3λ1(x− 1)2 − λ3
)
= 0

∂L

∂y
=

−2y
(x2 + y2)2

− λ1 + λ2 ≤ 0

y
∂L

∂y
= y
( −2y
(x2 + y2)2

− λ1 + λ2

)
= 0

∂L

∂λ1
= y − (x− 1)3 ≤ 0

λ1
∂L

∂λ1
= λ1

(
y − (x− 1)3

)
= 0

∂L

∂λ2
= y ≥ 0

λ2
∂L

∂λ2
= λ2y = 0

∂L

∂λ3
= x− 2 ≤ 0

λ3
∂L

∂λ3
= λ3(x− 2) = 0

Next we evaluate the Kuhn-Tucker conditions at the point (1, 0) that we
have identified as maximizer. All conditions should be satisfied given
that it is a maximizer. Let us list only the conditions that are trivially
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Figure 6: Problem 5.6c

satisfied:

∂L

∂x
(1, 0) = −λ3 − 2 = 0 (21)

λ3
∂L

∂λ3
(1, 0) = −λ3 = 0 (22)

From (22) it follows λ3 = 0. Then, substituting it in (21) we obtain a
contradiction!
Why the Kuhn-Tucker conditions fail to identify (1, 0) as maximizer?
The answer is that at (1, 0) the constraint qualification is not satisfied.
Remeber that at (1, 0) restrictions g1 and g2 are binding. Compute the
gradients of these restrictions. They are

∇g1(1, 0) = (0, 1) and ∇g2(1, 0) = (0,−1)

therefore they linearly dependent, and thus they do not form a cone in
which∇f may lie.

5.7 Let U(x, y) be a utility function with indifference map represented in fig-
ure 7. Let g(x, y) ≤ k be the budget constraint. As the figure shows, utility
is maximized (given the budget constraint) at the point (x∗, y∗). Show that at
that point the indifference curve must be steeper than the budget constraint.

Solution: To compare slopes of the indifference curve and of the restriction
we apply the implicit function theorem. Assuming both U and g have all the
required properties (continuity, differentiability, ...) let y(x) implicitly denote
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g(x, y) = k
∇U

x(x∗, y∗)

y

Figure 7: Problem 5.7

the constraint so that we have g(y(x), x) = k. Implicitly differentiating both
sides with respect to y we obtain

∂g

∂x
+
∂g

∂y
dy/dx = 0

or

dy

dx
= −

∂g(x, y)

∂x
∂g(x, y)

∂y

Evaluated at the point (x∗, y∗) the slope of the restriction is

dy

dx
|(x∗,y∗) = −

∂g(x∗, y∗)

∂x
∂g(x∗, y∗)

∂y

The indifference curve is expressed as U(x, y) = s. In a parallel fashion,
we can also let y(x) implicitly denote the indifference curve so that we have
U(y(x), x) = s. The slope of the indifference curve evaluated at (x∗, y∗) is
given by

dy

dx
|(x∗,y∗) = −

∂U(x∗, y∗)

∂x
∂U(x∗, y∗)

∂y

Formally, the idea that the indifference curve is steeper than the restriction
means that in absolute value the slope of U is greater than the absolute value
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of the slope of g. This gives

∂U(x∗, y∗)

∂x
∂U(x∗, y∗)

∂y

>

∂g(x∗, y∗)

∂x
∂g(x∗, y∗)

∂y

Because each of these derivatives is positive, the inequality can be rear-
ranged as

∂U(x∗, y∗)

∂x
∂g(x∗, y∗)

∂x

>

∂U(x∗, y∗)

∂y
∂g(x∗, y∗)

∂y

(23)

Remark that (x∗, y∗) = (x∗, 0) with x∗ > 0.
To formally solve the maximization problem, the Lagrangean function is

L(x, y, λ) = U(x, y) + λ(k − g(x, y))

The relevant Kuhn-Tucker conditions (evaluated at (x∗, y∗)) is

∂L

∂x
=
∂U(x∗, y∗)

∂x
− λ∗∂g(x

∗, y∗)

∂x
= 0

or

λ∗ =

∂U(x∗, y∗)

∂x
∂g(x∗, y∗)

∂x

(24)

Combining (23) and (24) gives

λ∗ >

∂U(x∗, y∗)

∂y
∂g(x∗, y∗)

∂y

or
∂U(x∗, y∗)

∂y
− λ∗∂g(x

∗, y∗)

∂y
< 0

Summarizing, we have

x∗ > 0,
∂U(x∗, y∗)

∂x
− λ∗∂g(x

∗, y∗)

∂x
= 0

y∗ = 0,
∂U(x∗, y∗)

∂y
− λ∗∂g(x

∗, y∗)

∂y
< 0

λ∗ > 0, g(x∗, y∗)− k = 0

so that the Kuhn-Tucher conditions are satisfied. In other words, the intuition
illustrated in figure 7 is captured by the Kuhn-Tucker conditions.
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