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3.1 Let f(z,y) = 22y
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(b)

(©)

Find V (3, 2)
Solution: The gradient is the vector of partial derivatives. The partial
derivatives of f at the point (z,y) = (3,2) are:
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Therefore, the gradient is
V£(3,2) = (12,9)

Find the derivative of f in the direction of u = (1, 2) at the point (3, 2).
Solution: 7o compute a directional derivative first we need to compute
the unit vector e = (e, e3). Given the direction u = (1, 2), the length

of this vector is
Jull = V12 + 22 = V5
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Then,

The directional derivative requested is
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Find the derivative of f in the direction of u = (2, 1) at the point (3, 2).

Solution: 7o compute a directional derivative first we need to compute
the unit vector e = (e1, e2). Given the direction u = (2,1), the length

of this vector is
Jul| = V22 +12 = V5



Then,
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The directional derivative requested is
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(d) Identify in which direction is the directional derivative maximal at the
point (3, 2). What is the directional derivative in that direction?

V£(3,2) - (e1,e2)’ = (12,9) -

Solution: The gradient points in the direction of the maximal direc-
tional derivative. Therefore, at the point (3,2) the directional deriva-
tive is maximal in the direction of (12,9).

In this direction, the unit vector is

e=lene) = HZH (%%>:<§§)

3.2 Let f(z,y,2) = mye‘”2+z2_5. Calculate the gradient of f at the point

(1,3,—2) and calculate the directional derivative at the point (1,3, —2) in
the direction of the vector u = (3, —1,4).

Solution: To compute the gradient we need to compute the partial deriva-
tives of f:
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sothat Vf(1,3,-2) = (9,1, —12).
Next we have to compute the unit vector e = (eq, ez, e3). Given the direction
u = (3,—1,4), the length of this vector is

ul| = /32 + (—=1)2 + 42 = /26

so that
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Finally, the directional derivative requested is
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3.3 Consider an industry producing a consumption good supplied according to
the following supply function S = S(w, p) where w represents the wage rate
and p the price. Also, demand for the consumption good is captured by the
demand function D = D(m, p) where m denotes income. Assume
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Assess how a change in the wage rate w and in the income m affects the
equilibrium price.

Solution: The equilibrium condition is given by
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The question to be answered is the sign of % and 3—5).
Note that
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so this equation determines the price p as a function of income m and wage
rate w around the equilibrium point.
Compute the partial derivatives of (1) with respect to w and m.:
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Rearranging, we obtain
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Therefore, the price increases with both an increase in income and wage.



3.4 Verifiy the homogeneity of
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Solution: Multiply all variables by t to obtain
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so that f is homogeneous of degree -1.

3.5 Consider a general Cobb-Douglas production function

f(ml,...,:cn):AHm;li

(a) Show that it is homogeneous.
Solution: Let t > 0 and define b = """ | a;. Now compute

f(tz) = Aﬁ(tmi)“i = At? f[g;a = At’f(x)
1 =1

1=
so that f is homogeneous of degree b.

(b) Determine when it has constant, decreasing, or increasing returns to
scale.

Solution: Constant returns to scale: b = 1; Increasing returns to
scale: b > 1; Decreasing returns to scale: b < 1.

3.6 Show that the constant elasticity of substitution (CES) function

- _,\"v/e
fla) = A(Z 5:7; P)
i=1
where A > 0,v > 0,61 >0,) ,0; =1,p > —1,p # 0, is homogeneous of

degree v

Solution: Let t > 0 and compute

f(tz) = A(i 52-(75951-)—0)_”/ = f: 61-33;”)_@/ ’_
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3.7 Consider an individual consuming two goods (x, y) available at prices (p., py).
The individual determines the demand of each good given those prices and
the income m defining the budget constraint m = p,x + p,y. Denote the re-
sulting demands by z(p,, py, m) and y(pz, py, m) Show that these demands
are homogeneous of degree zero in prices and income.

Solution: Consider the demand of good x. Suppose all prices and income
are multiplied by a factor t. The first observation is that the budget constraint
is unaffected by such factor:

M = Pp + Pyy <= tm = tpx + tpyy
Accordingly, the demand of good x is not affected by the factor t:
l“(px,py, m) = l‘(tpx, tpy, tm)

Thus the demand of good x is homogeneous of degree zero in prices and
income. The same argument applies to de demand of good y.

3.8 Approximate /5 to at least accuracy 1/100 around = = 4.
Solution: Consider f(x) = \/x and compute
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The second-order Taylor approximation of f around x = 4 is
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Evaluate P5(x) at x = 5 to obtain P(5) = 16% ~ 2.234375
Taylor’s theorem tells us that the measurement error is given by

7(2) — Ba(a)] < 5 Mo — 4P,

where M < |f"(z)|.

Computing the third derivative we obtain " (x) = %ZL'_E)/Q. This is a de-
creasing function of x. Thus, in the interval [4,5] the maximum of " is
achieved at © = 4. Then, f"'(4) = 345 = 52- and
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Therefore, the approximation given by P5(5) ~ 2.234375 is guaranteed to
be accurate to within at least 5% that is less than 1/100.



