Optimization. A first course on mathematics for economists Problem set 2: Continuity

Xavier Martinez-Giralt

Academic Year 2015-2016

- 2.1 Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x \sin x$. Show that f is continuous. Solution: We know x and $\sin x$ are continuous and f is the product of continuous functions, thus continuous.
- 2.2 Let $f : \mathbb{R} \to \mathbb{R}^2$ be continuous. Show that $g(x) = f(x^2 + x^3)$ is continuous. Solution: Function g is the composition of f on the continuous function $x \to x^2 + x^3$, thus continuous.
- 2.3 Let $f(x) = \frac{x^2}{1+x}$. Find the points where f is continuous.

Solution: Define f for $x \neq -1$. Then, f is the quotient of two continuous functions, thus continuous

- 2.4 Find the sets of points where the following functions are continuous.
 - (i) $f(x) = x \sin(x^2)$ Solution: Everywhere
 - (ii) $f(x) = \frac{x + x^2}{x^2 1}, \ x^2 \neq 1, \ f(\pm 1) = 0$ Solution: f is continuous on $\mathbb{R} \setminus \{1, -1\}$
 - (iii) $f(x) = \frac{\sin x}{x}, x \neq 0, f(0) = 1$ Solution: Everywhere

Solution:

2.5 Let $A = \{x \in \mathbb{R} | \sin x = 0.56\}$. Show that A is a closed set. Is it compact? Solution: Note that $\{0.56\}$ is closed and $\sin x$ is continuous. Then, A is closed but it is not compact. 2.6 Show $f : \mathbb{R} \to \mathbb{R}, x \to \sqrt{|x|}$ is continuous

Solution: Define g(x) = |x| and $h(x) = \sqrt{x}$. Both g and h are continuous functions. Then, $f = g \circ h$ and thus continuous.

2.7 Show $f(x) = \sqrt{x^2 + 1}$ is continuous

Solution: Define $g(x) = \sqrt{x}$ and $h(x) = x^2 + 1$. Both g and h are continuous functions. Then, $f = g \circ h$ and thus continuous.

2.8 Let f(x) be a cubic polynomial. Argue that f has a real root.

Solution: Consider $f(x) = ax^3 + bx^2 + cx + d$, $a \neq 0$. We know that f is continuous. Suppose a > 0. For x > 0 sufficiently large, $ax^3 > 0$ and will induce f(x) > 0. Similarly, for x < 0 sufficiently large, $ax^3 < 0$ and will induce f(x) < 0. Hence, applying the intermediate value theorem we conclude that $\exists x_0$ such that $f(x_0) = 0$.

<u>*Remark:*</u> This statement can be applied to any odd-degree polynomial. However it does not apply to even-degree polynomials.

2.9 Let $f : [1,2] \rightarrow [0,3]$ be a continuous function with f(1) = 0, f(2) = 3. Show that f has a fixed point in [1,2].

Solution: Define g(x) = f(x) - x. Then, g is continuous because is the difference of two continuous functions. Also, g(1) = -1 and g(2) = 1. Hence, applying the intermediate value theorem we conclude that $\exists x_0$ such that $g(x_0) = 0$. Therefore, $g(x_0) = 0 = f(x_0) - x_0$. That is $f(x_0) = x_0$, and x_0 is a fixed point of f.