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1.1 Find the length of the line segment joining (1, 1, 1) to (3, 2, 0).

Solution: This is the length of the vector (3, 2, 0) − (1, 1, 1) = (2, 1,−1) .
The length is ‖(2, 1,−1)‖ =

√
22 + 12 + (−1)2 =

√
6

1.2 For real numbers, prove that

(a) x ≤ |x|,−|x| ≤ x

Solution: If x ≥ 0, then |x| = x. If x < 0, then |x| ≥ x since |x| ≥ 0.
In any case, x ≤ |x|. The other assertion follows a similar argument.

(b) |x| ≤ a⇔ −a ≤ x ≤ a, with a ≥ 0.
Solution: If x ≥ 0, we must show that 0 ≤ x ≤ a ⇔ −a ≤ x ≤ a.
This is obvious. If x < 0, then we must show that 0 ≤ −x ≤ a ⇔
−a ≤ x ≤ a. Again this is obvious. It is so because if c ≤ 0, it follows
that 0 ≤ x ≤ y ⇔ 0 ≥ cx ≥ cy.

(c) |x+ y| ≤ |x|+ |y|
Solution: By (a), −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|. Adding, we
obtain−(|x|+|y|) ≤ x+y ≤ |x|+|y|. Then, by (b) |x+y| ≤ |x|+|y|.

1.3 (a) Let x ≥ 0 be a real number such that for any ε > 0, x ≤ ε. Show that
x = 0.
Solution: Suppose x > 0. Let ε = x/2. Then, x < x/2 implies
0 < x/2 < 0, a contradiction. Hence, x = 0.

(b) Let S = (0, 1). Show that for any ε > 0, there exists x ∈ S such that
x < ε, x 6= 0.
Solution: Let x = min{ε/2, 1/2}.

1.4 Let S = {(x, y) ∈ IR2|0 < x < 1} Show that S is open.

Solution: See figure 1 to verify that around each point (x, y) ∈ S we can
draw a disc of radius r = min{x, 1 − x} and it is entirely contained in
S.Hence, by definition, S is open.
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Figure 1: Problem 1.4

1.5 Let S = {(x, y) ∈ IR2|0 < x ≤ 1} Is S is open?

Solution: No, because any disc about (1, 0) ∈ S contains points (x, 0) with
x > 1.

1.6 Let A ⊂ IRn be open and B ⊂ IRn.
Define A+B = {x+ y ∈ IRn|x ∈ A, y ∈ B}. Prove that A+B is open.

Solution: Let x ∈ A and y ∈ B so that x + y ∈ A + B. By definition,
∃ε > 0 so that D(x, ε) ⊂ A. We claim that D(x+ y, ε) ⊂ A+ B. Indeed,
let z ∈ D(x+y, ε) so that d(x+y, z) < ε. But d(x+y, z) = d(x, z−y) so
z− y ∈ A, and then z = (z− y)+ y ∈ A+B. Thus, D(x+ y, ε) ⊂ A+B,
so A+B is open.

1.7 Let S = {(x, y) ∈ IR2|0 < x ≤ 1} Find int(S).

Solution: To determine the interior points, we just need to locate points
about which it is possible to draw a ε-disc entirely contained in S. By con-
sidering figure 1, we see that these are points (x, y) where 0 < x < 1. Thus,
int(S) = {(x, y)|0 < x < 1}.

1.8 Let S = {(x, y) ∈ IR2|0 < x ≤ 1, 0 ≤ y ≤ 1} Is S closed?

Solution: See figure 2. Intuitively, S is not closed because the portion of
its boundary on the y-axis is not in S. Also, the complement is not open
because any ε-disc about a point on the y-axis, say (0, 1/2) will intersect S,
and hence is not in IR \ S.

1.9 Let S = {x ∈ IR|x ∈ [0, 1], x is rational}. Find the accumulation points
of S.

Solution: The set of accumulation points consists of all points in [0, 1]. In-
deed, let y ∈ [0, 1] and D(y, ε) = (y − ε, y + ε) be a neighborhood of
y. Now we know we can find rational points in [0, 1] arbitrarily close to y
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Figure 2: Problem 1.8

(other than y) and in particular in D(y, ε). Hence, y is an accumulation
point. Any point y 6∈ [0, 1] is not an accumulation point because y has an
ε-disc containing it which does not meet [0, 1] and therefore S.

1.10 Recall the theorem that says that a set A ⊂ IR is closed iff all the accumula-
tion points of A belong to A. Verify the theorem for the set
A = {(x, y) ∈ IR2|0 ≤ x ≤ 1, or x = 2}.
Solution: Figure 3 represents set A. Clearly, A is closed. The accumulation
points of A consist exactly of A itself which lie in A. Note that on IR, [0, 1]∪
{2} has accumulation points [0, 1] without the point {2}.
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Figure 3: Problem 1.10

1.11 Determine which of the following sets are compact

(a) {x ∈ IR|x ≥ 0}
Solution: Non-compact because it is unbounded.

(b) [0, 1] ∪ [2, 3]

Solution: Compact because is closed and bounded.
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(c) {(x, y) ∈ IR2|x2 + y2 < 1}
Solution: Non-compact because in not closed.
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