## Optimization. A first course on mathematics for economists Problem set 1: Topology

## Xavier Martinez-Giralt

Academic Year 2015-2016

1.1 Find the length of the line segment joining (1, 1, 1) to (3, 2, 0).

**Solution**: This is the length of the vector (3, 2, 0) - (1, 1, 1) = (2, 1, -1). The length is  $||(2, 1, -1)|| = \sqrt{2^2 + 1^2 + (-1)^2} = \sqrt{6}$ 

- 1.2 For real numbers, prove that
  - (a)  $x \le |x|, -|x| \le x$  **Solution:** If  $x \ge 0$ , then |x| = x. If x < 0, then  $|x| \ge x$  since  $|x| \ge 0$ . In any case,  $x \le |x|$ . The other assertion follows a similar argument.
  - (b) |x| ≤ a ⇔ -a ≤ x ≤ a, with a ≥ 0.
    Solution: If x ≥ 0, we must show that 0 ≤ x ≤ a ⇔ -a ≤ x ≤ a. This is obvious. If x < 0, then we must show that 0 ≤ -x ≤ a ⇔ -a ≤ x ≤ a. Again this is obvious. It is so because if c ≤ 0, it follows that 0 ≤ x ≤ y ⇔ 0 ≥ cx ≥ cy.</li>
  - (c)  $|x + y| \le |x| + |y|$ **Solution**: By (a),  $-|x| \le x \le |x|$  and  $-|y| \le y \le |y|$ . Adding, we obtain  $-(|x|+|y|) \le x+y \le |x|+|y|$ . Then, by (b)  $|x+y| \le |x|+|y|$ .
- 1.3 (a) Let x ≥ 0 be a real number such that for any ε > 0, x ≤ ε. Show that x = 0.
  Solution: Suppose x > 0. Let ε = x/2. Then, x < x/2 implies</li>

**Solution**: Suppose x > 0. Let  $\varepsilon = x/2$ . Then, x < x/2 implies 0 < x/2 < 0, a contradiction. Hence, x = 0.

(b) Let S = (0, 1). Show that for any ε > 0, there exists x ∈ S such that x < ε, x ≠ 0.</li>

**Solution**: *Let*  $x = \min\{\epsilon/2, 1/2\}$ .

1.4 Let  $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < 1\}$  Show that S is open.

**Solution**: See figure 1 to verify that around each point  $(x, y) \in S$  we can draw a disc of radius  $r = \min\{x, 1 - x\}$  and it is entirely contained in S.Hence, by definition, S is open.



Figure 1: Problem 1.4

1.5 Let  $S = \{(x, y) \in \mathbb{R}^2 | 0 < x \le 1\}$  Is S is open?

**Solution**: *No, because any disc about*  $(1,0) \in S$  *contains points* (x,0) *with* x > 1.

1.6 Let  $A \subset \mathbb{R}^n$  be open and  $B \subset \mathbb{R}^n$ . Define  $A + B = \{x + y \in \mathbb{R}^n | x \in A, y \in B\}$ . Prove that A + B is open.

**Solution**: Let  $x \in A$  and  $y \in B$  so that  $x + y \in A + B$ . By definition,  $\exists \varepsilon > 0$  so that  $D(x, \varepsilon) \subset A$ . We claim that  $D(x + y, \varepsilon) \subset A + B$ . Indeed, let  $z \in D(x + y, \varepsilon)$  so that  $d(x + y, z) < \varepsilon$ . But d(x + y, z) = d(x, z - y) so  $z - y \in A$ , and then  $z = (z - y) + y \in A + B$ . Thus,  $D(x + y, \varepsilon) \subset A + B$ , so A + B is open.

1.7 Let  $S = \{(x, y) \in \mathbb{R}^2 | 0 < x \le 1\}$  Find int(S).

**Solution**: To determine the interior points, we just need to locate points about which it is possible to draw a  $\varepsilon$ -disc entirely contained in S. By considering figure 1, we see that these are points (x, y) where 0 < x < 1. Thus,  $int(S) = \{(x, y) | 0 < x < 1\}$ .

1.8 Let  $S = \{(x, y) \in \mathbb{R}^2 | 0 < x \le 1, 0 \le y \le 1\}$  Is S closed?

**Solution**: See figure 2. Intuitively, S is not closed because the portion of its boundary on the y-axis is not in S. Also, the complement is not open because any  $\varepsilon$ -disc about a point on the y-axis, say (0, 1/2) will intersect S, and hence is not in  $\mathbb{R} \setminus S$ .

1.9 Let  $S = \{x \in \mathbb{R} | x \in [0, 1], x \text{ is rational}\}$ . Find the accumulation points of S.

**Solution**: The set of accumulation points consists of all points in [0, 1]. Indeed, let  $y \in [0, 1]$  and  $D(y, \varepsilon) = (y - \varepsilon, y + \varepsilon)$  be a neighborhood of y. Now we know we can find rational points in [0, 1] arbitrarily close to y



Figure 2: Problem 1.8

(other than y) and in particular in  $D(y, \varepsilon)$ . Hence, y is an accumulation point. Any point  $y \notin [0, 1]$  is not an accumulation point because y has an  $\varepsilon$ -disc containing it which does not meet [0, 1] and therefore S.

1.10 Recall the theorem that says that a set  $A \subset \mathbb{R}$  is closed iff all the accumulation points of A belong to A. Verify the theorem for the set  $A = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1, \text{ or } x = 2\}.$ 

**Solution**: Figure 3 represents set A. Clearly, A is closed. The accumulation points of A consist exactly of A itself which lie in A. Note that on  $\mathbb{R}, [0, 1] \cup \{2\}$  has accumulation points [0, 1] without the point  $\{2\}$ .



Figure 3: Problem 1.10

- 1.11 Determine which of the following sets are compact
  - (a)  $\{x \in \mathbb{R} | x \ge 0\}$ Solution: Non-compact because it is unbounded.
  - (b) [0,1] ∪ [2,3]
    Solution: Compact because is closed and bounded.

(c)  $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ Solution: Non-compact because in not closed.