Optimization. A first course on mathematics for economists Problem set 1: Topology

Xavier Martinez-Giralt

Academic Year 2015-2016

1.1 Find the length of the line segment joining $(1, 1, 1)$ to $(3, 2, 0)$.

Solution: *This is the length of the vector* $(3, 2, 0) - (1, 1, 1) = (2, 1, -1)$. *The length is* $||(2, 1, -1)|| = \sqrt{2^2 + 1^2 + (-1)^2} = \sqrt{6}$

- 1.2 For real numbers, prove that
	- (a) $x \le |x|, -|x| \le x$ **Solution:** *If* $x \ge 0$ *, then* $|x| = x$ *. If* $x < 0$ *, then* $|x| \ge x$ *since* $|x| \ge 0$ *. In any case,* $x \leq |x|$ *. The other assertion follows a similar argument.*
	- (b) $|x| \le a \Leftrightarrow -a \le x \le a$, with $a \ge 0$. **Solution:** *If* $x \geq 0$ *, we must show that* $0 \leq x \leq a \Leftrightarrow -a \leq x \leq a$ *. This is obvious. If* $x < 0$ *, then we must show that* $0 \leq -x \leq a \Leftrightarrow$ −a ≤ x ≤ a*. Again this is obvious. It is so because if* c ≤ 0*, it follows that* $0 \le x \le y \Leftrightarrow 0 \ge cx \ge cy$ *.*
	- (c) $|x + y| \leq |x| + |y|$ **Solution:** *By* (*a*), $-|x| ≤ x ≤ |x|$ *and* $-|y| ≤ y ≤ |y|$ *. Adding, we obtain* −(|x|+|y|) ≤ x + y ≤ |x|+|y|*. Then, by (b)* |x + y| ≤ |x|+|y|*.*
- 1.3 (a) Let $x \ge 0$ be a real number such that for any $\varepsilon > 0, x \le \varepsilon$. Show that $x=0.$ **Solution:** *Suppose* $x > 0$ *. Let* $\varepsilon = x/2$ *. Then,* $x < x/2$ *implies*

 $0 < x/2 < 0$, a contradiction. Hence, $x = 0$.

(b) Let $S = (0, 1)$. Show that for any $\varepsilon > 0$, there exists $x \in S$ such that $x < \varepsilon, x \neq 0.$

Solution: *Let* $x = \min\{\epsilon/2, 1/2\}$ *.*

1.4 Let $S = \{(x, y) \in \mathbb{R}^2 | 0 < x < 1\}$ Show that S is open.

Solution: *See figure [1](#page-1-0) to verify that around each point* $(x, y) \in S$ *we can draw a disc of radius* $r = \min\{x, 1 - x\}$ *and it is entirely contained in* S*.Hence, by definition,* S *is open.*

Figure 1: Problem 1.4

1.5 Let $S = \{(x, y) \in \mathbb{R}^2 | 0 < x \le 1\}$ Is S is open?

Solution: *No, because any disc about* $(1,0) \in S$ *contains points* $(x,0)$ *with* $x > 1$.

1.6 Let $A \subset \mathbb{R}^n$ be open and $B \subset \mathbb{R}^n$. Define $A + B = \{x + y \in \mathbb{R}^n | x \in A, y \in B\}$. Prove that $A + B$ is open.

Solution: *Let* $x \in A$ *and* $y \in B$ *so that* $x + y \in A + B$ *. By definition,* $\exists \varepsilon > 0$ *so that* $D(x, \varepsilon) \subset A$ *. We claim that* $D(x + y, \varepsilon) \subset A + B$ *. Indeed, let* $z \in D(x+y,\varepsilon)$ *so that* $d(x+y,z) < \varepsilon$ *. But* $d(x+y,z) = d(x, z-y)$ *so* $z - y \in A$, and then $z = (z - y) + y \in A + B$. Thus, $D(x + y, \varepsilon) \subset A + B$, *so* $A + B$ *is open.*

1.7 Let $S = \{(x, y) \in \mathbb{R}^2 | 0 < x \le 1\}$ Find $int(S)$.

Solution: *To determine the interior points, we just need to locate points about which it is possible to draw a* ε*-disc entirely contained in* S*. By considering figure* [1,](#page-1-0) we see that these are points (x, y) where $0 < x < 1$. Thus, $int(S) = \{(x, y) | 0 < x < 1\}.$

1.8 Let $S = \{(x, y) \in \mathbb{R}^2 | 0 < x \le 1, 0 \le y \le 1\}$ Is S closed?

Solution: *See figure [2.](#page-2-0) Intuitively,* S *is not closed because the portion of its boundary on the* y*-axis is not in* S*. Also, the complement is not open because any* ε*-disc about a point on the* y*-axis, say* (0, 1/2) *will intersect* S*, and hence is not in* $\mathbb{R} \setminus S$ *.*

1.9 Let $S = \{x \in \mathbb{R} | x \in [0, 1], x \text{ is rational}\}\$. Find the accumulation points of S.

Solution: *The set of accumulation points consists of all points in* [0, 1]*. Indeed, let* $y \in [0,1]$ *and* $D(y,\varepsilon) = (y-\varepsilon, y+\varepsilon)$ *be a neighborhood of* y*. Now we know we can find rational points in* [0, 1] *arbitrarily close to* y

Figure 2: Problem 1.8

(other than y) and in particular in $D(y, \varepsilon)$ *. Hence, y is an accumulation point. Any point* $y \notin [0, 1]$ *is not an accumulation point because* y *has an* ε*-disc containing it which does not meet* [0, 1] *and therefore* S*.*

1.10 Recall the theorem that says that a set $A \subset \mathbb{R}$ is closed iff all the accumulation points of A belong to A. Verify the theorem for the set $A = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1, \text{or } x = 2\}.$

Solution: *Figure [3](#page-2-1) represents set* A*. Clearly,* A *is closed. The accumulation points of A consist exactly of A itself which lie in A. Note that on* \mathbb{R} , $[0,1]$ ∪ {2} *has accumulation points* [0, 1] *without the point* {2}*.*

Figure 3: Problem 1.10

- 1.11 Determine which of the following sets are compact
	- (a) $\{x \in \mathbb{R} | x \ge 0\}$ Solution: *Non-compact because it is unbounded.*
	- (b) $[0, 1] \cup [2, 3]$ Solution: *Compact because is closed and bounded.*

(c) $\{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1 \}$ Solution: *Non-compact because in not closed.*