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A motivating story

® Little girl gets a cake (Walti (2002))
® Decides to eat it all alone

» When?

» all right away
s today better than tomorrow
s but decreasing marginal utility+satiation

# a bit everyday
s finish it before spoilt
s how much every day?
- same quantity every day
- diminishing amounts along time
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A motivating story - Formal statement

c;. amount of cake eaten in day ¢

u(ce): instantaneous utility, v’ > 0,4” <0

B € (0,1): discount rate

V. present value in t = 0 of the consumption path
t=0,1,2,...,T

ko: original size of the cake (given)

© o o o o 0 b

Problem

T

max V(ci,...,cr) = Z B'u(c;) s.t.

{Cl,...,CT} t:O
kt—i—l — k= —c¢
kir1 >0, ko given

CtZO
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A motivating story - Formal statement (2)

Solution
® Optimal consumption path ¢;, t =0,...,T

® Methods: Numerical, Analitical: Optimal control, dynamic
programming

Other examples

® Individuals planning savings for retirement

® fossil fuels (extraction, exploration, polution policy, ...)

® forest managers (age of tress before harvesting), etc, etc, etc
Common features

® managment of stock of an asset over time

® decisions in t affect future opportunities and payoffs

® decisions are functions (time paths of actions)
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Introduction

Definition
o

Allocation of scarce resources among competing ends over a

period of time.
Elements of the problem

1. time

2. state variables

3. control variables
4. equations of motion
5. Objective functional

1. Time

Time may be in continuous or discrete units. Time horizon may be

finite t € [tg, T or infinite t € [tg, 00).
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Introduction (2)

2. State variables

® At any time t, the state of the system is described by state
variables, s(t).

® State variables describe those elements of the system over
which the decision-maker does not have capacity of choice.

3. Control variables
® At any time t, the decisions (actions) to be taken by a

decision-maker are described by control variables, a(t).

® Control variables belong to a set A usually assumed compacit,
convex, and time invariant.

® The evolution of the control variables along time is a control
trajectory.

nnnnnnnnnnnnnnnnnnnnnnnn = OPT - p.6/102



Introduction (3)

4. Equations of motion

9

9

9

The evolution of the state variables along time is a state
trajectory, {s(¢)}

The state trajectory of each state variable is characterized by
equations of motion.

[Continuous time]: An equation of motion is a differential
equation giving the time rate of change of the corresponding
state variable as a function of the state variables, the control
variables, and time:

S(t) = ge(s(t),a(t),t)
[Discrete time]. An equation of motion is a difference equation
involving the state and control variable, where the state is the

unknown and the control variable is a parameter to be
chosen: s(t+ 1) = gi(s(t), a(t))
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Introduction (4)

5. Obijective functional

® The objective functional is a mapping from control trajectories
to a point on the real line, the value of which is to be
maximized:

V(a(t)) = [, fi(s(t),a(t),t)dt + v(sr,T)

® f,(s(t),a(t),t) is the intermediate function. It describes how
(s(t),a(t),t) determine the contemporaneous value of the
period-by-period return function (profits, ...)

® o(sp,T) is the final function. It shows the value of the final
state st (e.g. the value of the stock of production left at 7", of
the assets remaining at 7', ...).

6. Approach
® Focus of analysis: discrete time and problems.
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Introduction (5)

The general control problem in continuous time and finite horizon

{a(t)}
S(t) = gu(s(t),a(t), 1)
to, 1, S(to), ST given

T—1
max V = / fi(s(t),a(t),t)dt + v(sT,T) s.t.
to

{a(t)} € A (set of feasible trajectories)

Solution
® Solutionis a*(t),t € [to, T — 1]
® Then, a*(t),t € [tg,T] is the solution satisfying
5(t) = ge(s(t),a*(t), 1)
® The max value is ftf_l fi(s(t),a*(t),t)dt + v(st,T)
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Introduction (6)

The general control problem in discrete time and finite horizon

T—1
max V' = Z fe(st,ar) +v(sT) st
@oy 4

St+1 :gt(St,CLt), t:O,l,...,T— 1
to, 1, s0, ST given

a; € A (set of feasible trajectories)

Solution
® Solutionis ay,t € [tg, T — 1]
® Then, a},t € [ty,T] is the solution satisfying s;+1 = g¢(s¢, ay)

® The max valueis 3", ™' fi(s¢, af) + v(sr)
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Intuition

L I

Planning a two-day trekking trip. Take w units of food.
How to divide the food between both days?

co IS consumption today (¢t = 0) and ¢ is consumption
tomorrow (¢t = 1)

Optimization problem is

max U (cg,c1) St ¢cog+c1 <w

Co,C1

Optimality requires eat up all food (¢ + ¢; = w) and marginal
utility be equal across both days (U, = U/,)

l.e. the marginal cost of consumption in ¢ = 0 is the
consumption foregone int = 1.

Thus, intertemporal optimization requires allocation of
resources that exhaust intertemporal trade opportunities.
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Intuition (2)

°

Suppose U is separable: U(cgy,c1) = U(cy) + U(c1) and
Stationary U(Co, Cl) = U(Co) + BU(Cl)

With § is the discount rate of future consumption.
Optimality condition is U'(cg) = 8U'(¢1)
If U concave, cp >c1 < <1

© o o o

(Interesting) extensions

o allow for borrowing and lending at an interest rate r (see
problem 9.1)

o allow for a finite horizon of 1" periods (see problem 9.2)
allow for continuous time
» allow for infinite horizon

°
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Describing the optimization problem (finite horizon)

® Att=0
o there is an initial state sg.
An agent chooses an action agy € Ay.
This action generates a contemporary return fy(ao, sg) -
... and leads to a new state s;.

Transition from sg to s; through fy is determined by a
transition equation s; = gg(ao, so)-

e o @0 b

® This decision making takes place every period
# sequence of actions (ag,a1,...,ar_1) generates a
# sequence of states (sg, s1,...,57-1)
o sothat s, = g:(as, st)

® and reaches a final period T" with a final state s with value
v(sT).
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Describing the optimization problem (2)

® Assume separability of the objective function

°

Aim of the agent: choice of (ag,a1,...,ar_1) t0

°

max discounted value of sum of contemporaneous returns +
value of final state:

T-1
max Z Bt fi(ag, s¢) + Bl o(sr) s.t.

(CL(),CLl,...,CLT_l) +—0
St+1 :gt(at,st), t = 0,1,... ,T— 1

1, sg, ST given

® Remark: a;, s; may be vectors.
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On initial and terminal conditions

Initial condition
® Together with terminal condition allow for closing the system
#® [nitial condition typically fixed and exogenous
® Represents the level of stock the planner starts with
Terminal condition
® Requires to specify a terminal date 7" and a terminal state st

® FEach may be fixed or variable — 4 alternative scenarios
» both fixed
» Dboth variable
o one fixed, the other variable
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On terminal conditions

(T, ST) fixed

® example: a fishery regulator seeking to manage harvest over
a T years ensuring a stock of fish left s

® |llustration: Section (a) of figure
T fixed, st variable

® example: mine manager planning extraction over a fixed time
horizon.

® |llustration: Section (b) of figure
T variable, st fixed

® example: environmental regulator to reach a pollution level
w/0 time horizon

® |llustration: Section (c) of figure
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On terminal conditions (2)

(T, sT) variable

® example: manager building capital stock to sell firm at a later
date. Trade-off: the longer to accumulate capital stock the
later will sell: s = ¢(T)

® |llustration: Section (d) of figure
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On terminal conditions (3)

s(t) s(1)
s(T) /\ ?
S0
30 s(T) >0
s(T)=0
T % T 7
(a) (b)

(c) (d)
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Optimal control theory

® We have examined the Kuhn-Tucker theorem to solve static

optimization problems.

® The optimal control theory, applies the same theorem to a
dynamic setting.

® Types of set-up:

» Discrete time
s Finite horizon
s Infinite horizon

o Continuous time
& Finite horizon
& Infinite horizon

nnnnnnnnnnnnnnnnnn
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OCT - discrete time - lllustration

Utility maximization; State equation
® Consumer has wealth in the bank at fixed interest rate » > 0.

® Consumer uses wealth k() to consume ¢(t) in period
t,t €0, T]NN

Suppose borrowing not allowed, k(¢) > 0.

Let £(0) = ko denote the initial wealth

Let k(T + 1) denote wealth left at T

Equation of motion: k(¢ + 1) = (1 +r)k(t) — c(t)

Let k(¢, ko, c) denote the solution of the (difference) equation
of motion

© o o 0o b
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OCT - discrete time - lllustration (2)

Utility maximization; Objective function
® Consumer derives satisfaction (utility) from consumption
® |Instantaneous utility: u(c(t)),t € [0,T] NN

#® Control variables: choose consumption path {cg,ci,...,cp} to
maximize intertemporal utility function U defined as

T
= Z Bu(c(t)) + BT o(k(T + 1)), if finite horizon
Zﬁt ), if infinite horizon

where 3 € (0,1), u, v strictly increasing, concave and C?.
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OCT - discrete time - lllustration (3)

Utility maximization; The problem
® Suppose u belongs to the CES family and given by
l—0c 1
U (C) = , ifo>0,0#1
l—o0
ui(c) =Ine, ifo=1

® |Infinite horizon (¢t € N)

max Us( Z Bhugy (c(

(t) Z 0
k(t, ko, C) > 0
k(0) = ko

M/_VE? unB Lo
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OCT - discrete time - lllustration (4)

Utility maximization; The problem
® Finite horizon (t € [0,7] N N)

maXU Z Blug(c(t)) + frolk(t +1)), s.t.
()zakwm)zakw%=%

Macroeconomic version
® (Consumer representative agent of a community
® equation of motion (re)defined as

k(t+1) = F(k(t) + (1 — 0)k(t) — c(t)

where F'(-) is the production function, and ¢ the depretiation

factor.
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OCT - discrete time - finite horizon

® The problem

T—1
( max Z B filag, s;) + BLou(sr) s.t. (1)
aop,d1,4...,A7 1 —0
T—1
Z Bt—i_l(st—kl —gt(as,s¢)) =0, t=0,1,..., T —1
t=0

1, 50, ST given

® |agrangean function:

T—1

L(a,s,\) = Zﬁ fi(ag, s¢)+p v Ae418  (ser1—ge(ar, s¢))
t=0

M/ VE? UHB LS
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OCT - discrete time - finite horizon (2)

® FOCs
g_i:ﬁt:%+5At+l%} =0, (t=0,...,T—1)
oE =BT (- ar) =0, (=)
g—i = B'(st — g—1(at-1,5:-1)) =0, (t=0,..., T — 1)
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Segi,  Universitat Aubnoma o 5
de Barcelona o OPT - p25/102



OCT - discrete time - finite horizon (3)

® FOCs
8ft 8915
— = — =0.... — 2
aCLt 6)\t+18 t (t Oa 7T 1) ( )
s, 0
M= D =1, T -1 3)
Os, St 0s;’
Ov
- 4
AT D5 4)
St+1 = gt(ata St) (5)

® Remark: Condition (2)) is known as the Euler equation

® Under suitable assumptions on f;, g; and L the problem has a
solution (ag,ai,...,a% ;)
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OCT - discrete time - finite horizon - Interpretation

Condition (2)

® A marginal change in a; two effects

» on instantaneous return g—j:i

# on next period state variable s;.; through g—gi measured
by Ati1

® Thus equation (2) measures the present value of the total
Impact of a marginal change in a;

® Hence, agent in choosing a; optimally foresees present and
future consequences.

elona
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OCT - discrete time - finite horizon - Interpretation (2)

Condition ()

® A marginal change in s; two effects

» on instantaneous return g—ﬁ

# on next period state variable s;.; through g—ii measured
by Ati1

® Thus the present value of the total impact of a marginal
change in s; is given by the rhs of (3)

® The measure of this impact is given by the lhs of (3)), namely
A¢. In other words, )\; is the shadow price of s;

® Equivalently, )\; is the measure of present and future
consequences of a marginal change of s;
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OCT - discrete time - finite horizon - Interpretation (3)

Condition (@)

® Condition (9) is the transition equation
Condition @)

® Condition @) is the transversality condition

#® |t says that the shadow price of s equals the marginal value
of v(s7)

MOVE'; U"B Barcelona S
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OCT - discrete time - finite horizon - An example

® Profit maximizing firm over a finite horizon T°

® Profits in t dependent on labor in ¢ (control variable) and
capital stock in ¢ (state variable), m (I, k+)

® Goal: max profits over the time horizon

® restrictions
» capital accumulation: ki1 — kr = g¢ (I, kt)
» Initial capital stock: kg
s Terminal capital stock: k(T) = K

® no discounting (6 =1)
® Problem:

T
Il’ll?JXZﬂ't(lt, kt) S.t. kt_|_1 — k; = gt(lty kt)

t=0

elona 5
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An example (2)

® |agrangean function:

L(l, k,\)
® FOCs
OL _ Om
oL, ol
(9[/ 87'(}
Ok, Ok
oL
N = k+1 —

Zﬂ't I, k) — )\t(kt—H — ki — g¢ (U, kt))

F L =0,t=0,1,...,T (6)

9
N N, N =0, t=0.1,....T ()
ks

kt_gt(lt7kt):()7t:O717'°'7T (8)

oo teonomes Universitat Autbnoma
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An example (3)

® FOC (6) requires that I; in each period maximizes the
Lagrangian given the stock of capital available in that period

® FOC (®) represents the difference equation of motion
governing the accumulation of capital

® Tointerpret FOC (7)

& ), represents the (marginal) impact on the maximum
attainable value of the sum of profits of an additional unit
of capital.

o Thus, \; — \;_1 represents the rate at which capital
depreciates in value.

» Therefore, (7) requires that the depreciation in value of

capital = sum of its contributions to profits + its
contribution to enhancing the value of the capital stock.
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OCT - discrete time - finite horizon - the Hamiltonian

® Alternative way to solve the control problem
® Define the Hamiltonian as

Ht(ata St, )\t+1) — ft(ata St) + 5)\t+1gt(at, St)

measuring the total return in period t¢.

® The choice of a; has two effects
o the contemporary effect f;(as, s¢)

» the impact on the transition of state variable
BAi+19¢(ayg, s¢), 1.€. the future capacity of generating
returns.

® The use of the Hamiltonian allows for transforming a dynamic
optimization problem into a sequence of static optimization
problems related by the transition equation and by the
equation determining the shadow price ;.
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OCT - discrete time - finite horizon - the Hamiltonian (2)

® The Lagrangean function now becomes

T—1
L(a’7 S, >\) — Ho(aoa S0, >\1) + Z Bt [Ht(at, St, )\t—l—l) — )\tst}
t=1
— BT A\ps(T) + B v(s(T))
® FOCs are:
oL t@Ht(at, St, )\t—l—l)
— = —0,.¢t=0,1,.... T —1 9
8at /B aat Y] Y] Y, Y, ( )
8_[1 :/Bt 3Ht(at,8t7)\t—|—1) —)\ti| :O, t: 1,,T—1 (10)
6875 (3875
— 8T ( o o/ (s(T ) _ 11
5y = 0 (A (1) (1
and
MVE? P8 eSa
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OCT - discrete time - finite horizon - the Hamiltonian (3)

9

Naturally, the optimal plan must also satisfy the transition
equation
St4+1 — gt(at,st), t = 0,1,.. . ,T— 1

FOC Q) characterizes an interior maximum of the Hamiltonian
along the optimal path.

The optimal solution stemming from the Hamiltonian is known
as the

The prescribes that along the optimal
path, a; should be chosen to maximize the total benefits in
each period.

Of course the solution {a;}; ' is the same as previously, but
(in general) simpler to obtain, and with a clear economic
interpretation.

nnnnnnnnnnnnnnnn
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Economic interpretation of the Hamiltonian

® Consider the previous example of the profit maximizing firm.
® Define the Hamiltonian as

Hi(lg, k) = me(le, k) + Aer19e(le, Kt

This is the value of profits in ¢t + the amount of capital
accumulated in ¢, (g¢) x the marginal value of capital at time
t+ 17 ()‘t—l—l)'

® |n other words, \;.1g: captures the future profit effect of /;
through the change in the capital stock. Thus, the Hamiltonian
accounts for the effects on current and future profits of /;.
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Economic interpretation of the Hamiltonian (2)

® Now the Lagrangean function becomes

T

L( b, A) = 3 [ Hile, ) = Mulkier — ko)
t=0
® FOCs
g—i:%—%:(),t:o,l,...j (12)
g—i:%—i;+)\t—)\t_1:(),t:1,...,T (13)
g—i:g—%—(km—kt):o,t:o,1,...,T (14)

f g Barcelona
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Economic interpretation of the Hamiltonian (3)

® FOC (12) can be rewritten as

8Ht 87’(‘ 89,5

— A -
o, o, Mo T
87'(',5 agt
Zt 1
or o, Ap—— o, (15)

o This is the same condition as (6).

» It means that at each point in time the firm chooses [; to
balance the marginal increase in current profits against
the marginal decrease in future profits through the
change in the capital stock.

MOVE[} unB Barcelona )
mmmmmmmmmmmmmmmmmmmmmmm SEE OPT - p.38/102



Economic interpretation of the Hamiltonian (4)

® FOC (13) can be rewritten as

6Ht 671‘,5 89,5
M= M) =k = ok T Mo, (o)

Same as (7). It means that the increase in capital decreases
the value of the capital stock (it is marginally less scarce),

while £ o T At 8gt represents the increase in current and future
profits.

® Equations (13), (16) and the equation of motion
ki1 — ki = gt(lt, k:) (exogenously given), constitute the

® The maximum principle prescribes that along the optimal
path, I; is chosen to maximize total profits in each period.

MOVEQ UHB Barcelona
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Exercise

9

9

© o o @

Profit maximizing monopolist extracting mineral, with a license
expiring on date T’
Notation
o x¢: Initial stock of mineral
x¢. Size of the deposit at beginning of period ¢
g:. volume extracted during period ¢
B: discount rate
pt(qe): inverse demand function
c. constant marginal cost of extraction

o o @0 o 0

(a) Define the transition equation.
(b) Define the instantaneous profit function.
(c) Define the monopolist’s profit maximization problem.

(d) Find the conditions characterizing the (interior) optimal
extraction path.

nnnnnnnnnnnnnnnnnn
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Exercise (2)

® (a) Transition equation: x;y1 = x¢ — ¢
® (b) Instantaneous profit function: m(q;) = |p(qr) — ¢l
® (c) Monopolist's problem:

T-1
max Z 5t7Tt(qt) S.t.

{Qt ZO}

t=0

Tey1 =x¢ —q >0
37(0)237()>O
x(T)=xz7 >0

................

||||||||||
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Exercise (3)

#® (d) Lagrangian function

T-1 T-1
L(x,q,\) = Z Btﬂt(Qt)JrﬂTwT—Z )‘t+15t+1($t+1—$t+%) —
t=0 t=0

T-1 T-1 T—1
= B'mla)+> A1B T @we—a) =Y A w8 er =
(= t=0 t=0
T—1 T—1
= mo(qo0) + A18(z0 —qo) + Z B (qe) + A1 87 (@ — 1) —
t=1 t=1
T
> MBlap+ flar =
=1

MOVEQ U"B Barcelonal
Harket,ogerisions  niversitat Autbnoma
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Exercise (4)

® (d) Lagrangian function (cont'd)

T—1
= WO(QO)+)\15($O—QO)+Z G’ [Wt(Qt)+)\t+15($t_Qt)_)\tft} -
t=1
Al ar + B ar =
T—1
= WO(Q0)+)\15($O—QO)+Z G [Wt(Qt)‘|‘)\t+15($t—Qt) _)\txt} -
t=1

ﬁT.CUT(l — )\T)

MOVEQ U"B Barcelonal
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Exercise (5)

® FOCs
oL ¢ '87'('75((]75)
O 6 " 0q, 5 t—|—1}
oL -
B, A BA1 — )\t} =0
oL T B
% =B (1—=X\)=0

Tit4+1 = Tt — (¢

f g Barcelonal
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Exercise (6)

® Characterizing an (interior) optimal extraction path

or
5(%) = BAt+1
qt
BAtr1 = Mt
1 =X\

Tt4+1 = Tt — q¢

#® Note that 87:5;?’5) = pila)a +pe(q) — ¢

® Denote marginal revenue in period t as
mi(qr) = pi(q)qe + pe(qt)
® Rewrite (I17) as
mi(q) = ¢+ BAt+1

(17)

(18)
(19)
(20)

(21)

nnnnnnnnnnnnnnnnnn
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Exercise (7)

® |Interpretation of (21)
» At every t marginal revenue = marginal cost

# marginal cost = marginal cost of extraction + opportunity
cost of the reduction in stock available for next period

# opportunity cost is measured by the shadow price of the
remaining resource (\:11) discounted to the current
period (?)

® Optimal extraction plan
o Rewrite (21) as
mi(qr) — ¢ = B (22)

o FEvaluate 22) at ¢t + 1:

My+1(qer1) — ¢ = BAggo, OF

B(mi1(gie1) — ) = B2 Ao (23)
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Exercise (8)

® Optimal extraction plan (cont’d)
o Evaluate (18)) at ¢ + 1 and multiply by 3 to obtain

BAry1 = B2 Ai12 (24)

o Substituting (24) into (23) we obtain

B(mir1(qer1) — ¢) = B (25)

# Substituting (22)) into (23)) gives

B(miy1(q+1) — ¢) = me(qe) — ¢

The opportunity cost of selling an additional unit in ¢ + 1

discounted to period t = net profit of selling an additional unit
In period ¢

® Hence, the optimal extraction path is organized such that

MOVE? U"B@e are no profitable opportunities Teft to reallocate
extraction between any two adjacent periods.
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Exercise (9)

Characterizing the solution applying the Maximum Principle
® Define the Hamiltonian as H;(q, x, \) = m(q:) + BAee1 (e — q1)
#® Lagrangian function becomes

T-1

L = Wo(qO)JrMﬁ(:vo—qO)JrZ s* [Ht(% T, )\)_)\tmt} +B8 2 (1-Ar)
t=1
® FOCs

oL  OH; om(qr)
— = — =0= = BA
dq dq; dq; PA+

oL OH

=L N =0= By =N

(%t 83:,5

that are preC|ser condltlons (ll_ZI) and (IED Optimality also
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OCT - discrete time - infinite horizon

® |f a problem does not have a terminal date — model as an
oo-horizon problem.

® Problem is

00
t
;?Ea/}li Z B ft(at, St) S.1.
t=0
St+1 — gt(at, St), t = O, 1, 2, ce

so given

® TJo ensure that the total discounted value of the objective
function is finite, suppose

# f,is bounded Vt
s O<1

elona “
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OCT - discrete time - infinite horizon - lllustration

® Consider an individual’s life-time consumption problem
® ¢ consumption in period ¢;

u(c): concave utility function;

B € (0,1): discount rate;

U({ct}e°): life-time utility function;

Ap: initial wealth (no other income source)

» 7! interest rate

o o o ©

® Life-time utility function:

U({ctio”) Z Bu(cr)

® Budget constraint: 4p = > 7, e

MOVE[} unB Barcelona )
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lllustration (2)

® Problem to solve:

o0

t, Ct
{r?t?fzﬁ (st 4=, oy

— t=0

® |agrangean function:

@

zgﬁtu(CtHA( Dy 1+r ;)

t

® BUT L(c, A) has infinite FOCs.
® How to cope with it?

MOVEQ U"B Barcelona
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lllustration (3)

® Compute FOCs for two consecutive arbitrary periods ¢ and

t+ 1:
oL  _,0u I
PR P (s =
oL .. Ou B 1 B

Ocir1 g Oci41 )\(1 + )ttt 0 27)

® Divide (26) by (27) to obtain:

u'(ct)
— B(1 + 28
Wl T .

This is the equilibrium condition describing the optimal
consumption path.

MOVEq U"B Barcelona
e llnl\';enll::l Autboma S = ‘
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lllustration (4)

® Equilibrium condition (28)) says that the MRS of two
consecutive periods = marginal value in ¢t of income in ¢t + 1,

l.e.
® The individual is willing to delay (a unit of) consumption for

one period until the point where the value in ¢ of the increased
Income (not spent in ¢) compensates.

® o give a feeling of the content of (28)), suppose

u(cy) = In(cy)

® Then, (28) becomes = = 3(1 4 r), or

cti1 = Bl +7)ct (29)

this is a linear difference equation.

nnnnnnnnnnnnnnnnnn 2 OPT - p.53/102
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lllustration (5)

® the solution of (29) is

c; = co(1 + )] (30)
® to pin down the value of ¢y, substitute (30) in the budget
constraint:
— G —ol+m)8" <~ a4 G
AO — == — C 6 —

;(Hr)t ; (1+47)t ; ! 1— 8
® Thatiscy = Ao(l — 5)
#® and the optimal consumption path is

¢t = Ao(1 = B)[(1+7)8)

MOVEQ U"B Barcelona
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On the meaning of the discount rate

Discrete time

9

9

Discount rate 3. present value of 1€ invested at (annual)
Interest rate r.

In other words, to obtain 1€ when the interest rate is r the
amount to be invested is

B 1
I

B(l+r)=1, or f

If the interest is accumulated n» times during the year (daily,
monthly, quarterly), the investment to obtain 1€ is

5(1+%)n:1, or f=

(7).

nnnnnnnnnnnnnnnn
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On the meaning of the discount rate (2)

Continuous time
® To compute the discount rate 5 in continuous time, note that

lim (1 n 5)” _ e

n—00 n

® Then, the present value of 1€ with continuous compounding
over one period Is

f=e

#® and the present value of 1€ with continuous compounding
over t periods is

B — e—?“t

elona :
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OCT - continuous time - finite horizon

® The general dynamic optimization problem in continuous time
IS

T
m(aicf e " fa(t),s(t), )dt+e " u(s(T)) s.t. § = gla(t), s(t),t)
a(t 0

® with s(0) = sg given.

°

Comparing with discrete time

s replace > by [

» replace difference equation describing the equation of
motion by a differential equation describing the transition
equation.

o replace multipliers (A1, ..., A7) by a functional A(z) on
0,T7].

» To define the Lagrangean, first multiply constraint by e="*.

f g Barcelona
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OCT - continuous time - finite horizon (2)

L= / e F(a(t), s(t), )t + e To(s(T))
0
- [ emAOG = atatt). (0, 0)de =
T
- /0 e (Flat), s(6),6) + A®)g(a(t), s(), 1)) de
— /T e "IN(t)sdt + e u(s(T)) =
0
= /T e "' H(a(t),s(t), \(t),t)dt — /T e "IN(t)sdt + e u(s(T))
0 0

where H(a(t), s(t), A(t),t) = f(a(t),s(t),t) + A(t)g(a(t), s(t),t) is the
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OCT - continuous time - finite horizon (3)

® Suppose A(t) is differentiable.
® Integrate fOT e "t \(t)sdt by parts to obtain

/T e "IN(t)sdt = e "I N(T)s(T) — A(0)s(0)—
0

T \ —rtS
—/O € s(t))\dt+7“/Te (L)A(t)dt

0

® Substituting in the Lagrangean

T .
L= /O e (H(a(t), s(6), Mt). 1) + ()& — rs(DA(D) ) de+

+ e u(s(T)) — ™' ANT)s(T) + A(0)s(0)

M OVE 9 u NB s )
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OCT - continuous time - finite horizon (4)

® FOCs - Maximum Principle

oL o7 OH (a(t),s(t), A(t),t) —0
da(t) a(t) N
oL __—rt 8H(a(t)7 S(t)v )‘(t)7 t) ' —
. ( i A r)\(t)) =0

® together with § = 2HULEIADD — g(a(t), 5(¢), 1)

® and wheree " >0

® Maximum principle requires the Hamiltonian being maximized
along the optimal path.

M(,VE’ URB Poem
Heneh Ogeritens  (Jniversitat Autdnioma S o 5
de Barcelony 9
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OCT - continuous time - finite horizon - lllustration

Back with the girl and the cake.

Initial size of the cake: k(0)

Cake to be consumed over a continuous interval [0, T']
Comsumption of cake generate utility u|c(?)]

Size of cake evolves according to k = —c(t)

Terminal condition is £(T) = k > 0

© o o o o 0o @

value of consumtion:

/OT ulc(t)]dt

® Assume away discounting.

elona :
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lllustration (2)

® Solving the problem
® Construct the Hamiltonian

H = ulc(t)] — A(t)c(t)

® FOCs
aiz ; —u/[c(t)] = A(t) = 0
;Tla =—\t)=0
;Tlé) = —¢(t) = k(t)

and the transversality condition \(T')[k(t) — k] = 0.

MOVEq U"B Barcelona
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OCT - continuous time - infinite horizon

® The problem is now

121(%}(/0 e ""fla(t),s(t),t)dt s.t. s = g(a(t), s(t),t)

® with s(0) = sg given.
#® The solution is characterized by the FOCs

da(t) =0
A=rar) — 2 <a<t>ézgga A1), 1)
P aH(a(t)éi% A(),t) oald). o(0), 8

f g Barcelona
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OCT - continuous time - infinite horizon - lllustration

® Let’s recover the illustration used in the discrete time case.
® Now with continuous time, the life-time utility functions is

U({erk) = / e Plu(e(t))

=0

® Budget constraint:

and A(O) = Ay
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lllustration (2)

® The problem:

%’g?ég U({c;}5°) s.t. A(t) = rA(t) — c(t), A(0) = Ag

® to solve the problem, use the Hamiltonian. Two alternatives

» Current value Hamiltonian: H® = u(c;) + A(t)A

o Present value Hamiltonian:
HP = e P H® = e Ply(cy) 4+ p(t) A

® FOCs
He H?
OH< __ OH? __
w4 | o
=4 | =4
o =AM Gk =i

OPT — p.65/102
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lllustration (3)

® letu(c) =In(c)

® Then
H® =In(ct) + M(rA —¢)
® FOCs
OH 1
e o At = (31)
OH .
oy —rA-a=4 (32)
OH .
ga M= A A (33)

MOVE' UMB SRS
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lllustration (4)

® From (@8) we obtain é =\
® taking logs In(X) = In(\;) or —In(c;) = In(A)

® differentiating wrt ¢

Oln(cy)  Jln(\)

ot ot
8111(6,5) 8Ct . 8111()\75) 8)\75
80,5 ot N 8)\75 ot
¢ A
A 59
® From (50) we obtain
A

B-r=1 (35)

MOVEQ U"B Barcelona
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lllustration (5)

® From (52) and (53) we obtain the differential equation

—=r—2

Ct
® that has as solution

#® To find the initial condition for ¢y we use the budget constraint.
In particular, the present discounted value of consumption
must equal the initial assets, i.e.

oo oo oo 1
Ay = / e "e(t)dt = / e "egel "Bt = C()/ eAdE = co—
0 0 0 5

so that ¢y = B Ay
® Therefore, the general solution is

nnnnnnnnnnnnnnnnnn e — .
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OCT - optimal economic growth model

® Let U(c(t)) denote the instantaneous utility function
dependent on aggregate consumption per capita c(t).

® U(c(t)) is assumed differentiable, U’ > 0,U" < 0
® U(c(t)) is thus a measure of the social utility at a point in time

#® Thus a social welfare index obtains from integrating U(-) over
the time horizon.

® Y = F(k(t)) represent total output obtained through a
production function F' expressed in terms of capital per capita.

® TJotal output is allocated between aggregate consumption C
and investment I = K.

Thus F(k(t)) = c(t) + k

® The value of the capital per capita & is given to the economy
at the initial date, namely £(0) = ko.

°
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Optimal growth (2)

® The problem: find a per capita consumption function ¢(t) that
solves the infinite horizon optimal control problem

121%}(/0 e "U(c(t))dt st. k= F(k(t)) —c(t)

with k¢ given.
#® |angrangean function

L= /O T U (1)) di— /O T e )(k F(k(t))— (t)])dt
— / Ooe—“[U(c(t))M(t)[F(k( dt / h e TEN(t) kdt =
0 0

- / —”H(( / eTEN(E)hedlt
0 0

nnnnnnnnnnnnnnnn
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Optimal growth (3)

® where H(-) denotes the Hamiltonian.
® integrating by parts

® FOCs
5= ()=
OL _ e—”(%—z + A — M(t)) = (

MOVEQ U"B Barcelona i
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Optimal growth (4)

® FOCs (cont’d)

o " N

oH .

O 5=t =0 5D
k= F(k(t)) —c(t) G8)

® where

oH

ST = U'(e(t) — A &)

OH /

Sr = AOF (k(1)) 40

MOVE: UMB RS-



Optimal growth (5)

® Substituting (39) and @0) into (36)-(38) yields

U'(c(t)) — A(t) =0 (41)
( JE'(k(t)) + A = 7A(t) = 0 (42)
F(k(t)) — c(t) (43)
® From @1)
U'(c(t)) = Alt) (44)

® Differentiating (d4) with respect to ¢t we obtain

A=U"(c(t))é (45)

nnnnnnnnnnnnnnnn
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Optimal growth (6)

® Substituting (@4) and (@5) into (42) we obtain

U” (e(t))é = ~U"(e(t)) ( F'(k(t)) — 1)

or

=~ Gretd) (F’(k(t)) _ r) (46)

This is the Euler equation.
® Observe that sign ¢ = sign (F' — r).

® The dynamics of the model are described by @3) and {6):

MOVEQ U"B Barcelona S
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Optimal growth - phase diagrams

Solution of system @3) and @6) is a pair of functions c(t), k(t)

Represent them in the space (k,c) — phase diagram

A steady state, (¢*, k*), requires both ¢ = 0 and k = 0.

o o o @

Each condition partitions the space (k, ¢) in regions where
¢>0and ¢ < 0;k>0andk < 0 respectively

°

Suppose ¢ and k together partition the space (c.k) into four
regions as shown in the figure

® Suppose under (above) k = 0 the flow of % is increasing
(decreasing)

® Suppose to the left (right) of ¢ = 0 the flow of & is increasing
(decreasing)

#® Then a unique path passes through every pointin (c, k)

MOVEL; U"B Barcelonal P
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Phase diagrams (2)
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Phase diagrams (3)

® From the direction of the flows in each region, only if the initial
condition kg lies either in the bottom-left or top-right region,
the path will converge towards the stationary equilibrium.

® We conclude that for each initial condition kg in either
bottom-left or top-right region ,there is a unique optimal
trajectory towards the steady state.

® Any other alternative initial condition will give rise to a path
leading away from the steady state.

OPT - p.77/102
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Dynamic programming - Introduction

® Alternative approach to dynamic optimization

°

Suitable to incorporate uncertainty

® Main instrument:
Bellman’s principle of optimality

® Fundamental idea:
the optimal path for the control variable will be the same
whether we solve the problem over the entire time horizon or
for future periods as a function of the initial conditions given
by past optimal solutions
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Dynamic programming

® The problem

C{fleaﬁ Z Bt fi(ag, s¢) + BLor(sr) s.t. (47)

B (si1 — gilag, ) =0, t=0,1,...,T — 1

1, sqg, ST given

® Main feature of this approach: allows for solving the problem
by

® Particularly convenient in computational terms.

® Main elements of dynamic programming approach:
value function and Bellman’s equation.
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An intuitive approach to Bellman’s equation

#® Planning a trip from city A to city H minimizing distance.
® Figure shows the road network and distances (in km x 100)

® Three stage planning trip
o Stage 1: travel from A to either B,C or D
» Stage 2: travel from B,C or Dto E,F or G
o Stage 3: travel from E. F or G to H

mmmmmmmmmmmmmmmmmmmmmmm SEE OPT - p.80/102



An intuitive approach to Bellman’s equation (2)

°

Let M (X) denote min distance from city X to city H
Stage 3: M(F) =3,M(F) =6,M(G) = 2 (no decision).
® Stage 2: traveler may be in either B, C' or D
s Ifin B,M(B) =min{4 + M(E),6 + M(F),7+ M(G)} =
min{7,12,4} =4
o IfinC,M(C)=min{4d4+ M(FE),5+ M(F),7+ M(G)} =
min{7,11,9} =7
s Ifin D, M(D) =min{8 + M(E),4 + M(F),5+ M(G)} =
min{11,10,7} =7
® Stage 1: traveler may go to either B, C or D. Then,
o M(A) =min{7+ M(B),8+ M(C),5+ M(D)} =
min{11,15,12} = 11
® Hence, distance from A to H is minimized going through B
and G. Distance is 11.

°
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An intuitive approach to Bellman’s equation (3)

® The backward induction reasoning is captured by

® |t asserts that “from any point on an optimal path, the
remaining trajectory is optimal for the corresponding problem
initiated at that point".

® Remark: A myopic individual optimizing stage-by-stage,
would have chosen to go from A to D. This is not in the
optimal trajectory from A to H.
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Dynamic programming (2)

The value function
® Attime t = 0 the (maximum) value function for (47) is

T—1
vo(s0) = fo{ > B filas, st) + BT vr(s7)]
=0

St+1 :gt(at,st),t:O,l,...,T— 1}

® Similarly, the value function at time ¢ is

T—1
ve(st) = H({LaX{ > B fr(ar, s0) + Blop(sy)]
. T=t

ST+1:q’T(a”TﬂS’T)ﬂT:tﬂ'°'ﬁT_1l (48)
)
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Dynamic programming (3)

Bellman’s equation

® the value function measures the best that can be obtained
given the current state and the remaining time.

® C(Clearly, we can relate v; and vy as

ve(st) = H%L%X{ft(ata s¢) + Bueri(sie1)|ser1 = ge(ae, st)}

= H}S;X{ft(at, s¢) + Buir1(gi(as, s¢))}  (49)

® This is Bellman’s equation. It shows a recursive relation
between today’s value f; and all future values Svi41(-)

® The solution of Bellman’s equation determines the optimal
policy: “An optimal policy has the property that, whatever the
initial state and decision are, the remaining decisions must
constitute an opt/ma/ po//cy with regard to the state resulting
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Dynamic programming (4)

The principle of optimality

® This property is known as the Principle of Optimality and
guarantees the intertemporal consistency of the optimal
policy.

® Formally, we are looking at the FOC of Bellman’s equation.
o The FOC maximizing Bellman’s equation is

8ft dgi

=0,t=0,..., 7T —1
aat T th+1(8t—|—1) 8&1; ) )

s Let \ir1 = v (si41). Then, we can rewrite the FOC as

af t dgy

A =0,t=0,....T—1 50
at B?H—lat ) ) ) ( )

o Note that (50) is precisely the Euler equation (@) in the
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Dynamic programming (5)

Equivalence with the Lagrangean approach

® To see why \; = v/(s;) suppose a; = h:(s;) defines the policy
function. Then, we can rewrite (49) as

ve(st) = fi(he(se), st) + Bver1(ge(he(st), st)))

Next, compute v;:

ft 8ft 8ht / agt agt 8ht

Ut(St) (98,5 + 8&,5 8375 + Ut—H (88,5 + 8at (98,5)
Jdfy  Of Oy gy dgy Ohy
= 35, T 50, 35 T P 5, T P50, 5

_Ofi dgr  Ohy (Of dgi
8st + B, t+18 Sy * sy ((%Lt + B0 8x3t)

51
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Dynamic programming (6)

Equivalence with the Lagrangean approach (cont'd)

® Using A1 = vy (5¢41), (B0) can be written as

O fy 0gr  Ohy (O f dgi
2
At = aﬁ”t“aﬁast(at B, st) (52)
® Substituting (50) in (52)), it simplifies to
A\t = Ot 6At+1% t=1,2,....T—1 (53)
Os; St 0S;

which is precisely FOC (3).

® Finally, (50), (53) plus the transition equation and terminal
condition constltute the equivalent system of FOCs as in the
Lagrangean approach characterizing the optimal policy.

MOVE? UMB SR8
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The Bellman equation - lllustration

An example to “construct” the Bellman equation
® Consider the discrete-time finite horizon optimization problem:

T
max Z ft(at, St) S.1.

ta} 45

St4+1 = gt(at, St)

so given
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The Bellman equation - lllustration (2)

The backwards induction argument
® Assume we are at t =T and compute the optimal path in the
last period:
vr(st) = max fr(ar, st)

ar

This a static optimization problem. Assume it has a solution.
Denote it by a’.(s7). Then,

vr(st) = fr(ar(st),sT). (54)

4 ) Barcelona
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The Bellman equation - lllustration (3)

The backwards induction argument (cont’d)

® Assume we are att =T — 1 and compute the optimal path in
the last two periods:

® sp_; affects the (instantaneous) payoff through fr_; and the
future payoff though the equation of motion

st = gr—1(ar—_1,87-1)
® Then,

vr—1(s7—1) = max [fT—1(CLT—1, ST_1) + BUT(ST)}

ar—1q

::Inax[fbgi(aT_l,&T_l)+‘5UT(9T—1(GT—175T—l)ﬂ

ar—1q

® Suppose the solution is a%_,(s7—1). Then,

vr_1(s7—1) = fr_1(ap_1(ST7-1), ST—1)+5?JT(QT—1 (ar_1(s7-1),57-1))
MO U,
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The Bellman equation - lllustration (4)

The backwards induction argument (cont’d)

® Assume we are att =T — 2 and compute the optimal path in
the last three periods:

® sp_o affects the (instantaneous) payoff through fr_o and the
future payoff though the equation of motion

s7_1=gr—o(ar_2,57_3)
® Then,

vr_2(S7—2) = max [fT—Q(CLT—Qa ST_2) + BQUT—l(ST—l)}

ar_—_9

= max [fT—Q(aT—% sT—2) + B2vr—1(gr—2(ar—o, ST—Q))}

ar—2

® Suppose the solution is a_,(s7_2). Then, vy_o(sp_2) =

fr—a(ak_o(sT—2),s7—2) + B*vr_1(g9r—2(a_,(s7-2), ST7—2))
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The Bellman equation - lllustration (5)

The backwards induction argument (cont’d)
® We repeat the argument until reaching ¢t =0

® To determine a* we solve the FOC of the Bellman’s equation
In each period:
o Att =T, a%(sr) Is the solution of
Ovr(st) Ofr

8aT N aCLT
o Att=T—-1,a% ,(s7—1) is the solution of
Ovr—i1(sr—1)  Ofr— N Ovr Ost Ogr—1

=0

dar_1  Oap_q OsT Ogr—1 Dar—1 !
o Att=T —2,a% ,(s7—2) is the solution of
Ovr_a(sr—2)  Ofr—o 2 Ovr—1 071 O9g17—2 0
dar—2 dar—2 ds7_1 Ogr—2 Dar—2

® ... and so on and so forth
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ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ SEE:

nnnnnn

OPT - p.92/102



An example

Setting of the problem

9

© o o 0 @

Consider an investment « in a capital stock s that adds to the
stock generating a return of 10€ per unit.

The stock of capital in period ¢t + 1 is given by s;11 = s¢ + ay
Investment is costly according to 0.1a?,

Time interval ist = 0,1, 2, 3. Assume away discounting.
The initial stock of capital is zero.

The problem is to find the optimal path of investment and
capital stock.

Solution

® Formally, we want to solve

max,,) > ,_o(10s — (0.1)a?) subject to
Sty1 = St +ag, so =0, az > 0.
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An example (2)

Solution (cont’d)

® We start computing the optimal path at ¢ = 3:
® v3(s3) = maxg, (10s3 — (0.1)a?)
# This is a static optimization problem.
» Note that 10s3 — (0.1)a3 is decreasing in as.
» Therefore, a5 = 0 and
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An example (3)

Solution (cont’d)

® Next, compute the optimal path at ¢ = 2:
® v5(s2) = maxg, (10sy — (0.1)a3 + v3(a})) s.t.
va3(aj) = 10s3, S3 =52+ as
» It can be rewritten as
?)2(82) = maXa2(1082 — (O.l)a% + 1083) =
maxa2(1032 — (O.l)a% -+ 10(82 + CLQ))

s Note that (10sy — (0.1)a3 + 10(s2 + a2)) is strictly concave

N as.
» Solving for the FOQG, it follows a3 = 50
® ... Yyielding
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An example (4)

Solution (cont’d)

® Next, compute the optimal path at ¢ = 1:

9

v1(s1) = max,, (10s1 — (0.1)ad + va(s})) s.t.

va(ss) = 2082 + 250, s =51+ ag

It can be rewritten as

?)1(81) = InaXg, (1081 — (O.l)a% + 2059 + 250) =
maxal(l()sl — (O.l)a% + 20(81 + al) + 250)

Note that (10s; — (0.1)a% + 20(s1 + a1) + 250) is strictly
concave in as.

Solving for the FOQG, it follows a] = 100

... ylelding
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An example (5)

Solution (cont’d)

® Finally, compute the optimal path at ¢ = 0:

9

vo(80) = maxy, (10sg — (0.1)ag + v1(s?)) s.t.
v1(sy) = 30s1 + 1250, s =359+ ag, sog=0

Combining the constraints, we obtain s; = ag and
?)1(81) = BOCLO + 1250

Substituting them in vy(sg) we obtain
vo(s0) = maxy, (—(0.1)a3 + 30ag + 1250)
Solving for the FOQG, it follows aj = 150
... ylelding
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An example (6)

a; optimal path

St+1 = St +ay; so =0

150
100
50

W N =L O

0

250 (s2 = s1 +aj)
300 (s3 = s2 + a3)
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An example (7)

S, a A
300 -
250 |-
150

50 F--
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The Principle of Optimality

® The additive separability of the objective function, the simple
structure of the law of motion, and the fact that the total return
Is the sum of the period return functions, imply that the total
payoff associated over the whole planning horizon is simply
the sum of the payoffs associated with different portions of the
sequence over the corresponding subperiods.

® More formally, any portion of an optimal trajectory is an
optimal trajectory for an suitable subproblem in which the
endpoint values of the state vector are constrained to be
equal to the corresponding terms of the optimal sequence for
the whole problem.

9 :“An optimal policy has the property that, whatever the
initial state and decision are, the remaining decisions must
constitute an optimal policy with regard to the state rwsulting
from the first decision.” (Bellman, 1957)
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The Principle of Optimality (2)

® This property is known as
(proof see e.g. De la Fuente (2002, ch.12))

® |t guarantees the time-consistency of the optimal policy.

#® This means that if at some point in time we recalculate the
optimal solution from the current time and state, the solution
to this new problem will be the remainder of the original
optimal plan.

® The following figure illustrates (with the liberty of representing continuous
time).
s(t) represents the trajectory over the time interval [tg, T']
iInduced by the optimal path a;. Att = 7 we can envisage a
new problem of finding the optimal path in the time interval
|7, T'| with inital state variable s(7). The Principal of Optimality
says that such path (in red) is the same as the original one.
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The Principle of Optimality (3)
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