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A motivating story

Little girl gets a cake (Wälti (2002))

Decides to eat it all alone

When?

all right away
today better than tomorrow
but decreasing marginal utility+satiation

a bit everyday
finish it before spoilt
how much every day?
· same quantity every day
· diminishing amounts along time
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A motivating story - Formal statement

ct: amount of cake eaten in day t

u(ct): instantaneous utility, u′ > 0, u′′ < 0

β ∈ (0, 1): discount rate

V : present value in t = 0 of the consumption path

t = 0, 1, 2, . . . , T

k0: original size of the cake (given)

Problem

max
{c1,...,cT }

V (c1, . . . , cT ) =

T
∑

t=0

βtu(ct) s.t.

kt+1 − kt = −ct

kt+1 ≥ 0, k0 given

ct ≥ 0
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A motivating story - Formal statement (2)

Solution

Optimal consumption path ct, t = 0, . . . , T

Methods: Numerical, Analitical: Optimal control, dynamic
programming

Other examples

Individuals planning savings for retirement

fossil fuels (extraction, exploration, polution policy, ...)

forest managers (age of tress before harvesting), etc, etc, etc

Common features

managment of stock of an asset over time

decisions in t affect future opportunities and payoffs

decisions are functions (time paths of actions)
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Introduction

Definition

Dynamic economic problem:
Allocation of scarce resources among competing ends over a
period of time.

Elements of the problem

1. time

2. state variables

3. control variables

4. equations of motion

5. Objective functional

1. Time
Time may be in continuous or discrete units. Time horizon may be
finite t ∈ [t0, T ] or infinite t ∈ [t0,∞).
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Introduction (2)

2. State variables

At any time t, the state of the system is described by state
variables, s(t).

State variables describe those elements of the system over
which the decision-maker does not have capacity of choice.

3. Control variables

At any time t, the decisions (actions) to be taken by a
decision-maker are described by control variables, a(t).

Control variables belong to a set A usually assumed compact,
convex, and time invariant.

The evolution of the control variables along time is a control
trajectory.
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Introduction (3)

4. Equations of motion

The evolution of the state variables along time is a state
trajectory, {s(t)}

The state trajectory of each state variable is characterized by
equations of motion.

[Continuous time] : An equation of motion is a differential
equation giving the time rate of change of the corresponding
state variable as a function of the state variables, the control
variables, and time:
ṡ(t) = gt(s(t),a(t), t)

[Discrete time] : An equation of motion is a difference equation
involving the state and control variable, where the state is the
unknown and the control variable is a parameter to be
chosen: s(t+ 1) = gt(s(t), a(t))
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Introduction (4)

5. Objective functional

The objective functional is a mapping from control trajectories
to a point on the real line, the value of which is to be
maximized:

V (a(t)) =
∫ T−1
t0

ft(s(t),a(t), t)dt + v(sT , T )

ft(s(t),a(t), t) is the intermediate function. It describes how

(s(t),a(t), t) determine the contemporaneous value of the

period-by-period return function (profits, ...)

v(sT , T ) is the final function. It shows the value of the final

state sT (e.g. the value of the stock of production left at T , of
the assets remaining at T , ...).

6. Approach

Focus of analysis: discrete time and finite horizon problems.
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Introduction (5)

The general control problem in continuous time and finite horizon

max
{a(t)}

V =

∫ T−1

t0

ft(s(t),a(t), t)dt + v(sT, T ) s.t.

ṡ(t) = gt(s(t),a(t), t)

t0, T, s(t0), sT given

{a(t)} ∈ A (set of feasible trajectories)

Solution

Solution is a∗(t), t ∈ [t0, T − 1]

Then, a∗(t), t ∈ [t0, T ] is the solution satisfying

ṡ(t) = gt(s(t),a
∗(t), t)

The max value is
∫ T−1
t0

ft(s(t),a
∗(t), t)dt+ v(sT, T )
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Introduction (6)

The general control problem in discrete time and finite horizon

max
{a(t)}

V =

T−1
∑

t0

ft(st, at) + v(sT ) s.t.

st+1 = gt(st, at), t = 0, 1, . . . , T − 1

t0, T, s0, sT given

at ∈ A (set of feasible trajectories)

Solution

Solution is a∗t , t ∈ [t0, T − 1]

Then, a∗t , t ∈ [t0, T ] is the solution satisfying st+1 = gt(st, a
∗
t )

The max value is
∑T−1

t0
ft(st, a

∗
t ) + v(sT )
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Intuition

Planning a two-day trekking trip. Take w units of food.

How to divide the food between both days?

c0 is consumption today (t = 0) and c1 is consumption
tomorrow (t = 1)

Optimization problem is

max
c0,c1

U(c0, c1) s.t. c0 + c1 ≤ w

Optimality requires eat up all food (c0 + c1 = w) and marginal

utility be equal across both days (U ′
c0 = U ′

c1)

i.e. the marginal cost of consumption in t = 0 is the
consumption foregone in t = 1.

Thus, intertemporal optimization requires allocation of
resources that exhaust intertemporal trade opportunities.
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Intuition (2)

Suppose U is separable: U(c0, c1) = U(c0) + U(c1) and

stationary U(c0, c1) = U(c0) + βU(c1)

With β is the discount rate of future consumption.

Optimality condition is U ′(c0) = βU ′(c1)

If U concave, c0 > c1 ⇔ β < 1

(Interesting) extensions

allow for borrowing and lending at an interest rate r (see
problem 9.1)

allow for a finite horizon of T periods (see problem 9.2)

allow for continuous time

allow for infinite horizon
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Describing the optimization problem (finite horizon)

At t = 0

there is an initial state s0.

An agent chooses an action a0 ∈ A0.

This action generates a contemporary return f0(a0, s0) ...

... and leads to a new state s1.

Transition from s0 to s1 through f0 is determined by a
transition equation s1 = g0(a0, s0).

This decision making takes place every period

sequence of actions (a0, a1, . . . , aT−1) generates a

sequence of states (s0, s1, . . . , sT−1)

so that st+1 = gt(at, st)

and reaches a final period T with a final state sT with value
v(sT ).
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Describing the optimization problem (2)

Assume separability of the objective function

Aim of the agent: choice of (a0, a1, . . . , aT−1) to

max discounted value of sum of contemporaneous returns +
value of final state:

max
(a0,a1,...,aT−1)

T−1
∑

t=0

βtft(at, st) + βT v(sT ) s.t.

st+1 = gt(at, st), t = 0, 1, . . . , T − 1

T, s0, sT given

Remark: at, st may be vectors.
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On initial and terminal conditions

Initial condition

Together with terminal condition allow for closing the system

Initial condition typically fixed and exogenous

Represents the level of stock the planner starts with

Terminal condition

Requires to specify a terminal date T and a terminal state sT

Each may be fixed or variable → 4 alternative scenarios

both fixed

both variable

one fixed, the other variable
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On terminal conditions

(T, sT ) fixed

example: a fishery regulator seeking to manage harvest over
a T years ensuring a stock of fish left sT

Illustration: Section (a) of figure

T fixed, sT variable

example: mine manager planning extraction over a fixed time
horizon.

Illustration: Section (b) of figure

T variable, sT fixed

example: environmental regulator to reach a pollution level
w/o time horizon

Illustration: Section (c) of figure
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On terminal conditions (2)

(T, sT ) variable

example: manager building capital stock to sell firm at a later
date. Trade-off: the longer to accumulate capital stock the
later will sell: sT = φ(T )

Illustration: Section (d) of figure
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On terminal conditions (3)

t

s(t)

s0

s(T )

T

(a)
t

s(t)

s0

T

(b)

s(T ) > 0

s(T ) = 0

t

s(t)

s0

s(T )

(c)
T1 T2 t

s(t)

s0

s(T )

(d)

φ(T )φ(T )
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Optimal control theory

We have examined the Kuhn-Tucker theorem to solve static
optimization problems.

The optimal control theory, applies the same theorem to a
dynamic setting.

Types of set-up:

Discrete time
Finite horizon
Infinite horizon

Continuous time
Finite horizon
Infinite horizon
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OCT - discrete time - Illustration

Utility maximization; State equation

Consumer has wealth in the bank at fixed interest rate r > 0.

Consumer uses wealth k(t) to consume c(t) in period

t, t ∈ [0, T ] ∩ N

Suppose borrowing not allowed, k(t) > 0.

Let k(0) = k0 denote the initial wealth

Let k(T + 1) denote wealth left at T

Equation of motion: k(t+ 1) = (1 + r)k(t)− c(t)

Let k(t, k0, c) denote the solution of the (difference) equation

of motion
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OCT - discrete time - Illustration (2)

Utility maximization; Objective function

Consumer derives satisfaction (utility) from consumption

Instantaneous utility: u(c(t)), t ∈ [0, T ] ∩ N

Control variables: choose consumption path {c0, c1, . . . , cT } to

maximize intertemporal utility function U defined as

U(k, c) =

T
∑

t=0

βtu(c(t)) + βT v(k(T + 1)), if finite horizon

U(c) =

∞
∑

t=0

βtu(c(t)), if infinite horizon

where β ∈ (0, 1), u, v strictly increasing, concave and C2.
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OCT - discrete time - Illustration (3)

Utility maximization; The problem

Suppose u belongs to the CES family and given by

uσ(c) =
c1−σ − 1

1− σ
, if σ > 0, σ 6= 1

u1(c) = ln c, if σ = 1

Infinite horizon (t ∈ N)

max
c

Uσ(c) =

∞
∑

t=0

βtuσ(c(t)), s.t.

c(t) ≥ 0

k(t, k0, c) ≥ 0

k(0) = k0
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OCT - discrete time - Illustration (4)

Utility maximization; The problem

Finite horizon (t ∈ [0, T ] ∩ N)

max
c

Uσ(c) =

T
∑

t=0

βtuσ(c(t)) + βT v(k(t+ 1)), s.t.

c(t) ≥ 0, k(k0, c) ≥ 0, k(0) = k0

Macroeconomic version

Consumer representative agent of a community

equation of motion (re)defined as

k(t+ 1) = F (k(t)) + (1− δ)k(t)− c(t)

where F (·) is the production function, and δ the depretiation

factor.
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OCT - discrete time - finite horizon

The problem

max
(a0,a1,...,aT−1)

T−1
∑

t=0

βtft(at, st) + βT v(sT ) s.t. (1)

T−1
∑

t=0

βt+1(st+1 − gt(at, st)) = 0, t = 0, 1, . . . , T − 1

T, s0, sT given

Lagrangean function:

L(a, s, λ) =

T−1
∑

t=0

βtft(at, st)+βT v(sT )−

T−1
∑

t=0

λt+1β
t+1(st+1−gt(at, st))
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OCT - discrete time - finite horizon (2)

FOCs

∂L

∂at
= βt

[∂ft

∂at
+ βλt+1

∂gt

∂at

]

= 0, (t = 0, . . . , T − 1)

∂L

∂st
= βt

[∂ft

∂st
+ βλt+1

∂gt

∂st
− λt

]

= 0, (t = 1, . . . , T − 1)

∂L

∂sT
= βT

( ∂v

∂sT
− λT

)

= 0, (t = T )

∂L

∂λt
= βt(st − gt−1(at−1, st−1)) = 0, (t = 0, . . . , T − 1)
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OCT - discrete time - finite horizon (3)

FOCs

∂ft

∂at
= −βλt+1

∂gt

∂at
, (t = 0, . . . , T − 1) (2)

λt =
∂ft

∂st
+ βλt+1

∂gt

∂st
, (t = 1, . . . , T − 1) (3)

λT =
∂v

∂sT
(4)

st+1 = gt(at, st) (5)

Remark: Condition (2) is known as the Euler equation

Under suitable assumptions on ft, gt and L the problem has a
solution (a∗0, a

∗
1, . . . , a

∗
T−1)
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OCT - discrete time - finite horizon - Interpretation

Condition (2)

A marginal change in at two effects

on instantaneous return ∂ft
∂at

on next period state variable st+1 through ∂gt
∂at

measured

by λt+1

Thus equation (2) measures the present value of the total
impact of a marginal change in at

Hence, agent in choosing at optimally foresees present and
future consequences.
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OCT - discrete time - finite horizon - Interpretation (2)

Condition (3)

A marginal change in st two effects

on instantaneous return ∂ft
∂st

on next period state variable st+1 through ∂gt
∂st

measured

by λt+1

Thus the present value of the total impact of a marginal
change in st is given by the rhs of (3)

The measure of this impact is given by the lhs of (3), namely
λt. In other words, λt is the shadow price of st

Equivalently, λt is the measure of present and future
consequences of a marginal change of st
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OCT - discrete time - finite horizon - Interpretation (3)

Condition (5)

Condition (5) is the transition equation

Condition (4)

Condition (4) is the transversality condition

It says that the shadow price of sT equals the marginal value
of v(sT )
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OCT - discrete time - finite horizon - An example

Profit maximizing firm over a finite horizon T

Profits in t dependent on labor in t (control variable) and
capital stock in t (state variable), πt(lt, kt)

Goal: max profits over the time horizon

restrictions

capital accumulation: kt+1 − kt = gt(lt, kt)

initial capital stock: k0

Terminal capital stock: k(T ) = K

no discounting (β = 1)

Problem:

max
lt

T
∑

t=0

πt(lt, kt) s.t. kt+1 − kt = gt(lt, kt)
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An example (2)

Lagrangean function:

L(l, k, λ) =

T
∑

t=0

πt(lt, kt)− λt

(

kt+1 − kt − gt(lt, kt)
)

FOCs

∂L

∂lt
=

∂πt

∂lt
+ λt

∂gt

∂lt
= 0, t = 0, 1, . . . , T (6)

∂L

∂kt
=

∂πt

∂kt
+ λt

∂gt

∂kt
+ λt − λt−1 = 0, t = 0, 1, . . . , T (7)

∂L

∂λt
= kt+1 − kt − gt(lt, kt) = 0, t = 0, 1, . . . , T (8)
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An example (3)

FOC (6) requires that lt in each period maximizes the
Lagrangian given the stock of capital available in that period

FOC (8) represents the difference equation of motion
governing the accumulation of capital

To interpret FOC (7)

λt represents the (marginal) impact on the maximum
attainable value of the sum of profits of an additional unit
of capital.

Thus, λt − λt−1 represents the rate at which capital
depreciates in value.

Therefore, (7) requires that the depreciation in value of
capital = sum of its contributions to profits + its
contribution to enhancing the value of the capital stock.
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OCT - discrete time - finite horizon - the Hamiltonian

Alternative way to solve the control problem

Define the Hamiltonian as

Ht(at, st, λt+1) = ft(at, st) + βλt+1gt(at, st)

measuring the total return in period t.

The choice of at has two effects

the contemporary effect ft(at, st)

the impact on the transition of state variable
βλt+1gt(at, st), i.e. the future capacity of generating
returns.

The use of the Hamiltonian allows for transforming a dynamic
optimization problem into a sequence of static optimization
problems related by the transition equation and by the
equation determining the shadow price λt.

OPT – p.33/102



OCT - discrete time - finite horizon - the Hamiltonian (2)

The Lagrangean function now becomes

L(a, s, λ) = H0(a0, s0, λ1) +

T−1
∑

t=1

βt
[

Ht(at, st, λt+1)− λtst

]

− βTλT s(T ) + βT v(s(T ))

FOCs are:

∂L

∂at
= βt∂Ht(at, st, λt+1)

∂at
= 0, t = 0, 1, . . . , T − 1 (9)

∂L

∂st
= βt

[∂Ht(at, st, λt+1)

∂st
− λt

]

= 0, t = 1, . . . , T − 1 (10)

∂L

∂s(T )
= βT

(

−λT + v′(s(T ))
)

= 0 (11)

and ...
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OCT - discrete time - finite horizon - the Hamiltonian (3)

Naturally, the optimal plan must also satisfy the transition
equation

st+1 = gt(at, st), t = 0, 1, . . . , T − 1

FOC (9) characterizes an interior maximum of the Hamiltonian
along the optimal path.

The optimal solution stemming from the Hamiltonian is known
as the Maximum principle.

The Maximum principle prescribes that along the optimal
path, at should be chosen to maximize the total benefits in
each period.

Of course the solution {at}
T−1
t=0 is the same as previously, but

(in general) simpler to obtain, and with a clear economic
interpretation.
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Economic interpretation of the Hamiltonian

Consider the previous example of the profit maximizing firm.

Define the Hamiltonian as

Ht(lt, kt) = πt(lt, kt) + λt+1gt(lt, kt)

This is the value of profits in t + the amount of capital
accumulated in t, (gt)× the marginal value of capital at time

t+ 1, (λt+1).

In other words, λt+1gt captures the future profit effect of lt
through the change in the capital stock. Thus, the Hamiltonian
accounts for the effects on current and future profits of lt.
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Economic interpretation of the Hamiltonian (2)

Now the Lagrangean function becomes

L(l, k, λ) =

T
∑

t=0

[

Ht(lt, kt)− λt(kt+1 − kt)
]

FOCs

∂L

∂lt
=

∂Ht

∂lt
= 0, t = 0, 1, . . . , T (12)

∂L

∂kt
=

∂Ht

∂kt
+ λt − λt−1 = 0, t = 1, . . . , T (13)

∂L

∂λt
=

∂Ht

∂λt
− (kt+1 − kt) = 0, t = 0, 1, . . . , T (14)
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Economic interpretation of the Hamiltonian (3)

FOC (12) can be rewritten as

∂Ht

∂lt
=

∂πt

∂lt
+ λt

∂gt

∂lt
= 0

or
∂πt

∂lt
= −λt

∂gt

∂lt
(15)

This is the same condition as (6).

It means that at each point in time the firm chooses lt to
balance the marginal increase in current profits against
the marginal decrease in future profits through the
change in the capital stock.
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Economic interpretation of the Hamiltonian (4)

FOC (13) can be rewritten as

−(λt − λt−1) =
∂Ht

∂kt
=

∂πt

∂kt
+ λt

∂gt

∂kt
(16)

Same as (7). It means that the increase in capital decreases
the value of the capital stock (it is marginally less scarce),

while ∂πt

∂kt
+ λt

∂gt
∂kt

represents the increase in current and future

profits.

Equations (15), (16) and the equation of motion
kt+1 − kt = gt(lt, kt) (exogenously given), constitute the
maximum principle

The maximum principle prescribes that along the optimal
path, lt is chosen to maximize total profits in each period.
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Exercise

Profit maximizing monopolist extracting mineral, with a license
expiring on date T

Notation

x0: initial stock of mineral

xt: size of the deposit at beginning of period t

qt: volume extracted during period t

β: discount rate

pt(qt): inverse demand function

c: constant marginal cost of extraction

(a) Define the transition equation.

(b) Define the instantaneous profit function.

(c) Define the monopolist’s profit maximization problem.

(d) Find the conditions characterizing the (interior) optimal
extraction path.
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Exercise (2)

(a) Transition equation: xt+1 = xt − qt

(b) Instantaneous profit function: πt(qt) = [pt(qt)− c]qt

(c) Monopolist’s problem:

max
{qt≥0}

T−1
∑

t=0

βtπt(qt) s.t.

xt+1 = xt − qt ≥ 0

x(0) = x0 > 0

x(T ) = xT ≥ 0
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Exercise (3)

(d) Lagrangian function

L(x, q, λ) =

T−1
∑

t=0

βtπt(qt)+βTxT−

T−1
∑

t=0

λt+1β
t+1(xt+1−xt+qt) =

=

T−1
∑

t=0

βtπt(qt)+

T−1
∑

t=0

λt+1β
t+1(xt−qt)−

T−1
∑

t=0

λt+1β
t+1xt+1+βTxT =

= π0(q0)+λ1β(x0− q0)+

T−1
∑

t=1

βtπt(qt)+

T−1
∑

t=1

λt+1β
t+1(xt− qt)−

T
∑

t=1

λtβ
txt + βTxT =
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Exercise (4)

(d) Lagrangian function (cont’d)

= π0(q0)+λ1β(x0−q0)+

T−1
∑

t=1

βt
[

πt(qt)+λt+1β(xt−qt)−λtxt

]

−

λTβ
TxT + βTxT =

= π0(q0)+λ1β(x0−q0)+

T−1
∑

t=1

βt
[

πt(qt)+λt+1β(xt−qt)−λtxt

]

−

βTxT (1− λT )
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Exercise (5)

FOCs

∂L

∂qt
= βt

[∂πt(qt)

∂qt
− βλt+1

]

= 0

∂L

∂xt
= βt

[

βλt+1 − λt

]

= 0

∂L

∂xT
= βT (1− λt) = 0

xt+1 = xt − qt
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Exercise (6)

Characterizing an (interior) optimal extraction path

∂πt(qt)

∂qt
= βλt+1 (17)

βλt+1 = λt (18)

1 = λt (19)

xt+1 = xt − qt (20)

Note that
∂πt(qt)
∂qt

= p′t(qt)qt + pt(qt)− c

Denote marginal revenue in period t as

mt(qt) ≡ p′t(qt)qt + pt(qt)

Rewrite (17) as

mt(qt) = c+ βλt+1 (21)
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Exercise (7)

Interpretation of (21)

At every t marginal revenue = marginal cost

marginal cost = marginal cost of extraction + opportunity
cost of the reduction in stock available for next period

opportunity cost is measured by the shadow price of the
remaining resource (λt+1) discounted to the current
period (t)

Optimal extraction plan

Rewrite (21) as

mt(qt)− c = βλt+1 (22)

Evaluate (22) at t+ 1:

mt+1(qt+1)− c = βλt+2, or

β(mt+1(qt+1)− c) = β2λt+2 (23)
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Exercise (8)

Optimal extraction plan (cont’d)

Evaluate (18) at t+ 1 and multiply by β to obtain

βλt+1 = β2λt+2 (24)

Substituting (24) into (23) we obtain

β(mt+1(qt+1)− c) = βλt+1 (25)

Substituting (22) into (25) gives

β(mt+1(qt+1)− c) = mt(qt)− c

The opportunity cost of selling an additional unit in t+ 1
discounted to period t = net profit of selling an additional unit
in period t

Hence, the optimal extraction path is organized such that
there are no profitable opportunities left to reallocate
extraction between any two adjacent periods.
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Exercise (9)

Characterizing the solution applying the Maximum Principle

Define the Hamiltonian as Ht(q, x, λ) = πt(qt) + βλt+1(xt − qt)

Lagrangian function becomes

L = π0(q0)+λ1β(x0−q0)+

T−1
∑

t=1

βt
[

Ht(q, x, λ)−λtxt

]

+βTxT (1−λT )

FOCs

∂L

∂qt
=

∂Ht

∂qt
= 0 =⇒

∂πt(qt)

∂qt
= βλt+1

∂L

∂xt
=

∂Ht

∂xt
− λt = 0 =⇒ βλt+1 = λt

that are precisely conditions (17) and (18). Optimality also
requires satisfying the transition equation (20) and the
terminal condition (19). OPT – p.48/102



OCT - discrete time - infinite horizon

If a problem does not have a terminal date → model as an
∞-horizon problem.

Problem is

max
at∈At

∞
∑

t=0

βtft(at, st) s.t.

st+1 = gt(at, st), t = 0, 1, 2, . . .

s0 given

To ensure that the total discounted value of the objective
function is finite, suppose

ft is bounded ∀t

β < 1
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OCT - discrete time - infinite horizon - Illustration

Consider an individual’s life-time consumption problem

ct: consumption in period t;

u(ct): concave utility function;

β ∈ (0, 1): discount rate;

U({ct}
∞
0 ): life-time utility function;

A0: initial wealth (no other income source)

r: interest rate

Life-time utility function:

U({ct}
∞
0 ) =

∞
∑

t=0

βtu(ct)

Budget constraint: A0 =
∑∞

t=0
ct

(1+r)t
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Illustration (2)

Problem to solve:

max
{ct}∞

0

∞
∑

t=0

βtu(ct) s.t. A0 =

∞
∑

t=0

ct

(1 + r)t

Lagrangean function:

L(c, λ) =

∞
∑

t=0

βtu(ct) + λ
(

A0 −

∞
∑

t=0

ct

(1 + r)t

)

BUT L(c, λ) has infinite FOCs.

How to cope with it?
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Illustration (3)

Compute FOCs for two consecutive arbitrary periods t and
t+ 1:

∂L

∂ct
= βt ∂u

∂ct
− λ

1

(1 + r)t
= 0, (26)

∂L

∂ct+1
= βt+1 ∂u

∂ct+1
− λ

1

(1 + r)t+1
= 0 (27)

Divide (26) by (27) to obtain:

u′(ct)

u′(ct+1)
= β(1 + r) (28)

This is the equilibrium condition describing the optimal
consumption path.
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Illustration (4)

Equilibrium condition (28) says that the MRS of two
consecutive periods = marginal value in t of income in t+ 1,
i.e.

The individual is willing to delay (a unit of) consumption for
one period until the point where the value in t of the increased
income (not spent in t) compensates.

To give a feeling of the content of (28), suppose

u(ct) = ln(ct)

Then, (28) becomes ct+1

ct
= β(1 + r), or

ct+1 = β(1 + r)ct (29)

this is a linear difference equation.
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Illustration (5)

the solution of (29) is

ct = c0[(1 + r)β]t (30)

to pin down the value of c0, substitute (30) in the budget
constraint:

A0 =

∞
∑

t=0

ct

(1 + r)t
=

∞
∑

t=0

c0[(1 + r)β]t

(1 + r)t
=

∞
∑

t=0

c0β
t =

c0

1− β

That is c0 = A0(1− β)

and the optimal consumption path is

ct = A0(1− β)[(1 + r)β]t
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On the meaning of the discount rate

Discrete time

Discount rate β: present value of 1e invested at (annual)
interest rate r.

In other words, to obtain 1e when the interest rate is r the
amount to be invested is

β(1 + r) = 1, or β =
1

1 + r

If the interest is accumulated n times during the year (daily,
monthly, quarterly), the investment to obtain 1e is

β
(

1 +
r

n

)n

= 1, or β =
1

(

1 + r
n

)n
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On the meaning of the discount rate (2)

Continuous time

To compute the discount rate β in continuous time, note that

lim
n→∞

(

1 +
r

n

)n

= er

Then, the present value of 1e with continuous compounding
over one period is

β = e−r

and the present value of 1e with continuous compounding
over t periods is

β = e−rt
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OCT - continuous time - finite horizon

The general dynamic optimization problem in continuous time
is

max
a(t)

∫ T

0
e−rtf(a(t), s(t), t)dt+e−rT v(s(T )) s.t. ṡ = g(a(t), s(t), t)

with s(0) = s0 given.

Comparing with discrete time

replace
∑

by
∫

replace difference equation describing the equation of
motion by a differential equation describing the transition
equation.

replace multipliers (λ1, . . . , λT ) by a functional λ(t) on

[0, T ].

To define the Lagrangean, first multiply constraint by e−rt.
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OCT - continuous time - finite horizon (2)

L =

∫ T

0
e−rtf(a(t), s(t), t)dt + e−rT v(s(T ))

−

∫ T

0
e−rtλ(t)(ṡ− g(a(t), s(t), t))dt =

=

∫ T

0
e−rt

(

f(a(t), s(t), t) + λ(t)g(a(t), s(t), t)
)

dt

−

∫ T

0
e−rtλ(t)ṡdt+ e−rT v(s(T )) =

=

∫ T

0
e−rtH(a(t), s(t), λ(t), t)dt −

∫ T

0
e−rtλ(t)ṡdt+ e−rT v(s(T ))

where H(a(t), s(t), λ(t), t) = f(a(t), s(t), t)+λ(t)g(a(t), s(t), t) is the

Hamiltonian.
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OCT - continuous time - finite horizon (3)

Suppose λ(t) is differentiable.

Integrate
∫ T

0 e−rtλ(t)ṡdt by parts to obtain

∫ T

0
e−rtλ(t)ṡdt = e−rTλ(T )s(T ) − λ(0)s(0)−

−

∫ T

0
e−rts(t)λ̇dt+ r

∫

0
Te−rts(t)λ(t)dt

Substituting in the Lagrangean

L =

∫ T

0
e−rt

(

H(a(t), s(t), λ(t), t) + s(t)λ̇− rs(t)λ(t)
)

dt+

+ e−rT v(s(T ))− erTλ(T )s(T ) + λ(0)s(0)
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OCT - continuous time - finite horizon (4)

FOCs - Maximum Principle

∂L

∂a(t)
= e−rt∂H(a(t), s(t), λ(t), t)

∂a(t)
= 0

∂L

∂s(t)
= e−rt

(∂H(a(t), s(t), λ(t), t)

∂s(t)
+ λ̇− rλ(t)

)

= 0

∂L

∂s(T )
= e−rt

(

v′(s(T ))− λ(T )
)

= 0

together with ṡ = ∂H(a(t),s(t),λ(t),t)
∂λ(t) = g(a(t), s(t), t)

and where e−rt > 0

Maximum principle requires the Hamiltonian being maximized
along the optimal path.
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OCT - continuous time - finite horizon - Illustration

Back with the girl and the cake.

Initial size of the cake: k(0)

Cake to be consumed over a continuous interval [0, T ]

Comsumption of cake generate utility u[c(t)]

Size of cake evolves according to k̇ = −c(t)

Terminal condition is k(T ) = k > 0

value of consumtion:

∫ T

0
u[c(t)]dt

Assume away discounting.
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Illustration (2)

Solving the problem

Construct the Hamiltonian

H = u[c(t)]− λ(t)c(t)

FOCs

∂H

∂c(t)
=u′[c(t)]− λ(t) = 0

∂H

∂k(t)
=− λ̇(t) = 0

∂H

∂λ(t)
=− c(t) = k̇(t)

and the transversality condition λ(T )[k(t)− k] = 0.
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OCT - continuous time - infinite horizon

The problem is now

max
a(t)

∫ ∞

0
e−rtf(a(t), s(t), t)dt s.t. ṡ = g(a(t), s(t), t)

with s(0) = s0 given.

The solution is characterized by the FOCs

∂H(a(t), s(t), λ(t), t)

∂a(t)
= 0

λ̇ = rλ(t)−
∂H(a(t), s(t), λ(t), t)

∂s(t)

ṡ =
∂H(a(t), s(t), λ(t), t)

∂λ(t)
= g(a(t), s(t), t)
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OCT - continuous time - infinite horizon - Illustration

Let’s recover the illustration used in the discrete time case.

Now with continuous time, the life-time utility functions is

U({ct}
∞
0 ) =

∫ ∞

t=0
e−βtu(c(t))

Budget constraint:

Ȧ(t) = rA(t)− c(t)

and A(0) = A0
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Illustration (2)

The problem:

max
{ct}∞

0

U({ct}
∞
0 ) s.t. Ȧ(t) = rA(t)− c(t), A(0) = A0

to solve the problem, use the Hamiltonian. Two alternatives

Current value Hamiltonian: Hc = u(ct) + λ(t)Ȧ

Present value Hamiltonian:
Hp = e−βtHc = e−βtu(ct) + µ(t)A

FOCs

Hc Hp

∂Hc

∂c
= 0 ∂Hp

∂c
= 0

∂Hc

∂λ
= Ȧ ∂Hp

∂µ
= Ȧ

∂Hc

∂A
= βλ− λ̇ ∂Hp

∂A
= −µ̇
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Illustration (3)

Let u(ct) = ln(ct)

Then

Hc = ln(ct) + λt(rA− c)

FOCs

∂H

∂c
=

1

ct
− λt = 0 (31)

∂H

∂λ
= rA− ct = Ȧ (32)

∂H

∂A
= λtr = βλt − λ̇ (33)
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Illustration (4)

From (48) we obtain 1
ct

= λt

taking logs ln( 1
ct
) = ln(λt) or − ln(ct) = ln(λt)

differentiating wrt t

∂ ln(ct)

∂t
= −

∂ ln(λt)

∂t

∂ ln(ct)

∂ct

∂ct

∂t
= −

∂ ln(λt)

∂λt

∂λt

∂t

ċ

c
= −

λ̇

λ
(34)

From (50) we obtain

β − r =
λ̇

λ
(35)
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Illustration (5)

From (52) and (53) we obtain the differential equation

ċ

ct
= r − β

that has as solution

ct = c0e
(r−β)t

To find the initial condition for c0 we use the budget constraint.
In particular, the present discounted value of consumption
must equal the initial assets, i.e.

A0 =

∫ ∞

0
e−rtc(t)dt =

∫ ∞

0
e−rtc0e

(r−β)tdt = c0

∫ ∞

0
e(−β)tdt = c0

1

β

so that c0 = βA0

Therefore, the general solution is

ct = βA0e
(r−β)t OPT – p.68/102



OCT - optimal economic growth model

Let U(c(t)) denote the instantaneous utility function

dependent on aggregate consumption per capita c(t).

U(c(t)) is assumed differentiable, U ′ > 0, U ′′ < 0

U(c(t)) is thus a measure of the social utility at a point in time

Thus a social welfare index obtains from integrating U(·) over
the time horizon.

Y = F (k(t)) represent total output obtained through a

production function F expressed in terms of capital per capita.

Total output is allocated between aggregate consumption C

and investment I = K̇.

Thus F (k(t)) = c(t) + k̇

The value of the capital per capita k is given to the economy
at the initial date, namely k(0) = k0.
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Optimal growth (2)

The problem: find a per capita consumption function c(t) that

solves the infinite horizon optimal control problem

max
c(t)

∫ ∞

0
e−rtU(c(t))dt s.t. k̇ = F (k(t))− c(t)

with k0 given.

Langrangean function

L =

∫ ∞

0
e−rtU(c(t))dt−

∫ ∞

0
e−rtλ(t)

(

k̇−[F (k(t))−c(t)]
)

dt =

=

∫ ∞

0
e−rt

[

U(c(t))+λ(t)[F (k(t))−c(t)]
)]

dt−

∫ ∞

0
e−rtλ(t)k̇dt =

=

∫ ∞

0
e−rtH

(

c(t), k(t), λ(t)
)

−

∫ ∞

0
e−rtλ(t)k̇dt
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Optimal growth (3)

where H(·) denotes the Hamiltonian.

integrating by parts

∫ ∞

0
e−rtλ(t)k̇ = −

∫ ∞

0
e−rtk(t)λ̇dt+ r

∫ ∞

0
e−rtk(t)λ(t)dt

FOCs

∂L

∂c
= e−rt

(∂H

∂c

)

= 0

∂L

∂k
= e−rt

(∂H

∂k
+ λ̇− rλ(t)

)

= 0

k̇ = F (k(t))− c(t)
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Optimal growth (4)

FOCs (cont’d)

∂H

∂c
= 0 (36)

∂H

∂k
+ λ̇− rλ(t) = 0 (37)

k̇ = F (k(t))− c(t) (38)

where

∂H

∂c
= U ′(c(t))− λ(t) (39)

∂H

∂k
= λ(t)F ′(k(t)) (40)
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Optimal growth (5)

Substituting (39) and (40) into (36)-(38) yields

U ′(c(t))− λ(t) = 0 (41)

λ(t)F ′(k(t)) + λ̇− rλ(t) = 0 (42)

k̇ = F (k(t))− c(t) (43)

From (41)

U ′(c(t)) = λ(t) (44)

Differentiating (44) with respect to t we obtain

λ̇ = U ′′(c(t))ċ (45)
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Optimal growth (6)

Substituting (44) and (45) into (42) we obtain

U ′′(c(t))ċ = −U ′(c(t))
(

F ′(k(t))− r
)

or

ċ = −
U ′(c(t))

U ′′(c(t))

(

F ′(k(t))− r
)

(46)

This is the Euler equation.

Observe that sign ċ = sign (F ′ − r).

The dynamics of the model are described by (43) and (46):

k̇ = F (k(t))− c(t)

ċ = −
U ′(c(t))

U ′′(c(t))

(

F ′(k(t))− r
)
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Optimal growth - phase diagrams

Solution of system (43) and (46) is a pair of functions c(t), k(t)

Represent them in the space (k, c) → phase diagram

A steady state, (c∗, k∗), requires both ċ = 0 and k̇ = 0.

Each condition partitions the space (k, c) in regions where

ċ > 0 and ċ < 0; k̇ > 0 and k̇ < 0 respectively

Suppose ċ and k̇ together partition the space (c.k) into four

regions as shown in the figure

Suppose under (above) k̇ = 0 the flow of k is increasing
(decreasing)

Suppose to the left (right) of ċ = 0 the flow of k is increasing
(decreasing)

Then a unique path passes through every point in (c, k)
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Phase diagrams (2)

ċ = 0

k̇ = 0

c

c
∗

k
∗ k
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Phase diagrams (3)

From the direction of the flows in each region, only if the initial
condition k0 lies either in the bottom-left or top-right region,
the path will converge towards the stationary equilibrium.

We conclude that for each initial condition k0 in either
bottom-left or top-right region ,there is a unique optimal
trajectory towards the steady state.

Any other alternative initial condition will give rise to a path
leading away from the steady state.
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Dynamic programming - Introduction

Alternative approach to dynamic optimization

Suitable to incorporate uncertainty

Main instrument:
Bellman’s principle of optimality

Fundamental idea:
the optimal path for the control variable will be the same
whether we solve the problem over the entire time horizon or
for future periods as a function of the initial conditions given
by past optimal solutions
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Dynamic programming

The problem

max
at∈At

T−1
∑

t=0

βtft(at, st) + βT vT (sT ) s.t. (47)

βt+1(st+1 − gt(at, st)) = 0, t = 0, 1, . . . , T − 1

T, s0, sT given

Main feature of this approach: allows for solving the problem
by backward induction.

Particularly convenient in computational terms.

Main elements of dynamic programming approach:
value function and Bellman’s equation.
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An intuitive approach to Bellman’s equation

The stagecoach problem

Planning a trip from city A to city H minimizing distance.

Figure shows the road network and distances (in km x 100)

A

B

C

D

E

F

G

H

7

8

5

4

6

2

4

5

7

8
4

5

3

6

2

Three stage planning trip

Stage 1: travel from A to either B,C or D

Stage 2: travel from B,C or D to E,F or G

Stage 3: travel from E,F or G to H
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An intuitive approach to Bellman’s equation (2)

Let M(X) denote min distance from city X to city H

Stage 3: M(E) = 3,M(F ) = 6,M(G) = 2 (no decision).

Stage 2: traveler may be in either B,C or D

If in B,M(B) = min{4 +M(E), 6 +M(F ), 7 +M(G)} =
min{7, 12, 4} = 4

If in C,M(C) = min{4 +M(E), 5 +M(F ), 7 +M(G)} =
min{7, 11, 9} = 7

If in D,M(D) = min{8 +M(E), 4 +M(F ), 5 +M(G)} =
min{11, 10, 7} = 7

Stage 1: traveler may go to either B,C or D. Then,

M(A) = min{7 +M(B), 8 +M(C), 5 +M(D)} =
min{11, 15, 12} = 11

Hence, distance from A to H is minimized going through B

and G. Distance is 11.
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An intuitive approach to Bellman’s equation (3)

The backward induction reasoning is captured by Bellman’s
Principle of Optimality.

It asserts that “from any point on an optimal path, the
remaining trajectory is optimal for the corresponding problem
initiated at that point".

Remark: A myopic individual optimizing stage-by-stage,
would have chosen to go from A to D. This is not in the
optimal trajectory from A to H.
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Dynamic programming (2)

The value function

At time t = 0 the (maximum) value function for (47) is

v0(s0) = max
at

{

T−1
∑

t=0

βtft(at, st) + βT vT (sT )|

st+1 = gt(at, st), t = 0, 1, . . . , T − 1

}

Similarly, the value function at time t is

vt(st) = max
aτ

{

T−1
∑

τ=t

βτ−tfτ (aτ , sτ ) + βT vT (sT )|

sτ+1 = gτ (aτ , sτ ), τ = t, . . . , T − 1

}

(48)
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Dynamic programming (3)

Bellman’s equation

the value function measures the best that can be obtained
given the current state and the remaining time.

Clearly, we can relate vt and vt+1 as

vt(st) = max
at

{ft(at, st) + βvt+1(st+1)|st+1 = gt(at, st)}

= max
at

{ft(at, st) + βvt+1(gt(at, st))} (49)

This is Bellman’s equation. It shows a recursive relation
between today’s value ft and all future values βvt+1(·)

The solution of Bellman’s equation determines the optimal
policy: “An optimal policy has the property that, whatever the
initial state and decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision.” (Bellman, 1957)
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Dynamic programming (4)

The principle of optimality

This property is known as the Principle of Optimality and
guarantees the intertemporal consistency of the optimal
policy.

Formally, we are looking at the FOC of Bellman’s equation.

The FOC maximizing Bellman’s equation is

∂ft

∂at
+ βv′t+1(st+1)

∂gt

∂at
= 0, t = 0, . . . , T − 1

Let λt+1 = v′t+1(st+1). Then, we can rewrite the FOC as

∂ft

∂at
+ βλt+1

∂gt

∂at
= 0, t = 0, . . . , T − 1 (50)

Note that (50) is precisely the Euler equation (2) in the
Lagrangean approach
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Dynamic programming (5)

Equivalence with the Lagrangean approach

To see why λt = v′(st) suppose at = ht(st) defines the policy

function. Then, we can rewrite (49) as

vt(st) = ft(ht(st), st) + βvt+1(gt(ht(st), st)))

Next, compute v′t:

v′t(st) =
∂ft

∂st
+

∂ft

∂at

∂ht

∂st
+ βv′t+1

(∂gt

∂st
+

∂gt

∂at

∂ht

∂st

)

=
∂ft

∂st
+

∂ft

∂at

∂ht

∂st
+ βv′t+1

∂gt

∂st
+ βv′t+1

∂gt

∂at

∂ht

∂st

=
∂ft

∂st
+ βv′t+1

∂gt

∂st
+

∂ht

∂st

(∂ft

∂at
+ βv′t+1

∂gt

∂xst

)

(51)
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Dynamic programming (6)

Equivalence with the Lagrangean approach (cont’d)

Using λt+1 = v′t+1(st+1), (50) can be written as

λt =
∂ft

∂st
+ βλt+1

∂gt

∂st
+

∂ht

∂st

(∂ft

∂at
+ βλt+1

∂gt

∂xst

)

(52)

Substituting (50) in (52), it simplifies to

λt =
∂ft

∂st
+ βλt+1

∂gt

∂st
, t = 1, 2, . . . , T − 1 (53)

which is precisely FOC (3).

Finally, (50), (53) plus the transition equation and terminal
condition constitute the equivalent system of FOCs as in the
Lagrangean approach characterizing the optimal policy.
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The Bellman equation - Illustration

An example to “construct” the Bellman equation

Consider the discrete-time finite horizon optimization problem:

max
{at}

T
∑

t=0

ft(at, st) s.t.

st+1 = gt(at, st)

s0 given
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The Bellman equation - Illustration (2)

The backwards induction argument

Assume we are at t = T and compute the optimal path in the
last period:

vT (sT ) = max
aT

fT (aT , sT )

This a static optimization problem. Assume it has a solution.
Denote it by a∗T (sT ). Then,

vT (sT ) = fT (a
∗
T (sT ), sT ). (54)
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The Bellman equation - Illustration (3)

The backwards induction argument (cont’d)

Assume we are at t = T − 1 and compute the optimal path in
the last two periods:

sT−1 affects the (instantaneous) payoff through fT−1 and the
future payoff though the equation of motion
sT = gT−1(aT−1, sT−1)

Then,

vT−1(sT−1) = max
aT−1

[

fT−1(aT−1, sT−1) + βvT (sT )
]

= max
aT−1

[

fT−1(aT−1, sT−1) + βvT (gT−1(aT−1, sT−1))
]

Suppose the solution is a∗T−1(sT−1). Then,

vT−1(sT−1) = fT−1(a
∗
T−1(sT−1), sT−1)+βvT (gT−1(a

∗
T−1(sT−1), sT−1))
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The Bellman equation - Illustration (4)

The backwards induction argument (cont’d)

Assume we are at t = T − 2 and compute the optimal path in
the last three periods:

sT−2 affects the (instantaneous) payoff through fT−2 and the
future payoff though the equation of motion
sT−1 = gT−2(aT−2, sT−2)

Then,

vT−2(sT−2) = max
aT−2

[

fT−2(aT−2, sT−2) + β2vT−1(sT−1)
]

= max
aT−2

[

fT−2(aT−2, sT−2) + β2vT−1(gT−2(aT−2, sT−2))
]

Suppose the solution is a∗T−2(sT−2). Then, vT−2(sT−2) =

fT−2(a
∗
T−2(sT−2), sT−2) + β2vT−1(gT−2(a

∗
T−2(sT−2), sT−2))
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The Bellman equation - Illustration (5)

The backwards induction argument (cont’d)

We repeat the argument until reaching t = 0

To determine a∗ we solve the FOC of the Bellman’s equation
in each period:

At t = T, a∗T (sT ) is the solution of

∂vT (sT )

∂aT
=

∂fT

∂aT
= 0

At t = T − 1, a∗T−1(sT−1) is the solution of

∂vT−1(sT−1)

∂aT−1
=

∂fT−1

∂aT−1
+ β

∂vT

∂sT

∂sT

∂gT−1

∂gT−1

∂aT−1
= 0

At t = T − 2, a∗T−2(sT−2) is the solution of

∂vT−2(sT−2)

∂aT−2
=

∂fT−2

∂aT−2
+ β2∂vT−1

∂sT−1

∂sT−1

∂gT−2

∂gT−2

∂aT−2
= 0

... and so on and so forth
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An example

Setting of the problem

Consider an investment a in a capital stock s that adds to the
stock generating a return of 10e per unit.

The stock of capital in period t+ 1 is given by st+1 = st + at

Investment is costly according to 0.1a2,

Time interval is t = 0, 1, 2, 3. Assume away discounting.

The initial stock of capital is zero.

The problem is to find the optimal path of investment and
capital stock.

Solution

Formally, we want to solve

max{at}

∑3
t=0(10st − (0.1)a2t ) subject to

st+1 = st + at, s0 = 0, at ≥ 0.
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An example (2)

Solution (cont’d)

We start computing the optimal path at t = 3:

v3(s3) = maxa3
(10s3 − (0.1)a23)

This is a static optimization problem.

Note that 10s3 − (0.1)a23 is decreasing in a3.

Therefore, a∗3 = 0 and v∗3 ≡ v3(s3)|a∗

3
= 10s3
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An example (3)

Solution (cont’d)

Next, compute the optimal path at t = 2:

v2(s2) = maxa2
(10s2 − (0.1)a22 + v3(a

∗
3)) s.t.

v3(a
∗
3) = 10s3, s3 = s2 + a2

It can be rewritten as
v2(s2) = maxa2

(10s2 − (0.1)a22 + 10s3) =

maxa2
(10s2 − (0.1)a22 + 10(s2 + a2))

Note that (10s2 − (0.1)a22 + 10(s2 + a2)) is strictly concave
in a2.

Solving for the FOC, it follows a∗2 = 50

... yielding v∗2 ≡ v2(s2)|a∗

2
= 20s2 + 250
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An example (4)

Solution (cont’d)

Next, compute the optimal path at t = 1:

v1(s1) = maxa1
(10s1 − (0.1)a21 + v2(s

∗
2)) s.t.

v2(s
∗
2) = 20s2 + 250, s2 = s1 + a1

It can be rewritten as
v1(s1) = maxa1

(10s1 − (0.1)a21 + 20s2 + 250) =

maxa1
(10s1 − (0.1)a21 + 20(s1 + a1) + 250)

Note that (10s1 − (0.1)a21 + 20(s1 + a1) + 250) is strictly
concave in a2.

Solving for the FOC, it follows a∗1 = 100

... yielding v∗1 ≡ v1(s1)|a∗

1
= 30s1 + 1250
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An example (5)

Solution (cont’d)

Finally, compute the optimal path at t = 0:

v0(s0) = maxa0
(10s0 − (0.1)a20 + v1(s

∗
1)) s.t.

v1(s
∗
1) = 30s1 + 1250, s1 = s0 + a0, s0 = 0

Combining the constraints, we obtain s1 = a0 and
v1(s1) = 30a0 + 1250

Substituting them in v0(s0) we obtain

v0(s0) = maxa0
(−(0.1)a20 + 30a0 + 1250)

Solving for the FOC, it follows a∗0 = 150

... yielding v∗0 ≡ v0(s0)|a∗

0
= 3500
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An example (6)

at optimal path

t a∗t st+1 = st + a∗t ; s0 = 0

0 150 0

1 100 150 (s1 = (s0 + a∗0) = a∗0)

2 50 250 (s2 = s1 + a∗1)

3 0 300 (s3 = s2 + a∗2)
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An example (7)

0 t321

300

100

150

50

250

st

a
∗

t

s, a
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The Principle of Optimality

The additive separability of the objective function, the simple
structure of the law of motion, and the fact that the total return
is the sum of the period return functions, imply that the total
payoff associated over the whole planning horizon is simply
the sum of the payoffs associated with different portions of the
sequence over the corresponding subperiods.

More formally, any portion of an optimal trajectory is an
optimal trajectory for an suitable subproblem in which the
endpoint values of the state vector are constrained to be
equal to the corresponding terms of the optimal sequence for
the whole problem.

Recall:“An optimal policy has the property that, whatever the
initial state and decision are, the remaining decisions must
constitute an optimal policy with regard to the state rwsulting
from the first decision.” (Bellman, 1957)
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The Principle of Optimality (2)

This property is known as The Principle of Optimality
(proof see e.g. De la Fuente (2002, ch.12))

It guarantees the time-consistency of the optimal policy.

This means that if at some point in time we recalculate the
optimal solution from the current time and state, the solution
to this new problem will be the remainder of the original
optimal plan.

The following figure illustrates (with the liberty of representing continuous

time):
s(t) represents the trajectory over the time interval [t0, T ]
induced by the optimal path a∗t . At t = τ we can envisage a

new problem of finding the optimal path in the time interval
[τ, T ] with inital state variable s(τ). The Principal of Optimality

says that such path (in red) is the same as the original one.
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The Principle of Optimality (3)

0 tTτt0

t ∈ [t0, T ]

t ∈ [τ, T ]

s(T )

s(τ)

s(t0)

s

s(t)

s(t)
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