Optimization. A first course of mathematics foreconomists

Xavier Martinez-Giralt

Universitat Autònoma de Barcelona

xavier.martinez.giralt@uab.eu

IV. Dynamic optimization

A motivating story

- Little girl gets ^a cake (Wälti (2002))
- Decides to eat it all alone
- When? \bullet
	- all right away
		- today better than tomorrow
		- but decreasing marginal utility+satiation \bullet
	- \bullet a bit everyday
		- finish it before spoilt
		- how much every day? \bullet
			- . same quantity eve \cdot same quantity every day
			- diminishing amounts along time·

A motivating story - Formal statement

- c_t : amount of cake eaten in day t
- $u(c_t)$: instantaneous utility, $u'>0, u''< 0$
- $\beta\in(0,1)$: discount rate
- V : present value in $t=0$ of the consumption path
- $t=0,1,2,\ldots,T$
- k_{0} : original size of the cake (given)
- Problem \bullet

$$
\max_{\{c_1,\dots,c_T\}} V(c_1,\dots,c_T) = \sum_{t=0}^T \beta^t u(c_t) \quad \text{s.t.}
$$
\n
$$
k_{t+1} - k_t = -c_t
$$
\n
$$
k_{t+1} \ge 0, \quad k_0 \text{ given}
$$
\n
$$
c_t \ge 0
$$

Solution

- Optimal consumption path $c_t,~t = 0, \ldots, T$
- Methods: Numerical, Analitical: Optimal control, dynamicprogramming

Other examples

- Individuals planning savings for retirement \bullet
- fossil fuels (extraction, exploration, polution policy, ...) \bullet
- forest managers (age of tress before harvesting), etc, etc, etc \bullet

Common features

- managment of stock of an asset over time \bullet
- decisions in t affect future opportunities and payoffs \bullet
- decisions are functions (time paths of actions)

Introduction

Definition

Dynamic economic problem: Allocation of scarce resources among competing ends over ^aperiod of time.

Elements of the problem

- 1. time
- 2. state variables
- 3. control variables
- 4. equations of motion
- 5. Objective functional

1. Time

 Time may be in continuous or discrete units. Time horizon may befinite $t\in [t_0,T]$ or infinite $t\in [t_0,\infty).$

2. State variables

- At any time $t,$ the state of the system is described by state \bullet variables, $\mathbf{s}(t)$.
- **•** State variables describe those elements of the system over which the decision-maker does not have capacity of choice.

3. Control variables

- At any time t , the decisions (actions) to be taken by a \bullet decision-maker are described by control variables, $a(t)$.
- Control variables belong to a set A usually assumed compact, convex, and time invariant.
- The evolution of the control variables along time is a control trajectory.

4. Equations of motion

- The evolution of the state variables along time is ^a state \bullet trajectory, $\{ {\bf s}(t) \}$
- The state trajectory of each state variable is characterized by \bullet equations of motion.
- *[Continuous time]*: An equation of motion is ^a differential equation giving the time rate of change of the corresponding state variable as ^a function of the state variables, the control variables, and time:

 $\dot{\mathbf{s}}(t) = \mathbf{g}_{\mathbf{t}}(\mathbf{s}(t), \mathbf{a}(t), t)$

[Discrete time]: An equation of motion is ^a difference equation involving the state and control variable, where the state is theunknown and the control variable is ^a parameter to bechosen: $s(t + 1) = g_t(s(t), a(t))$

5. Objective functional

- **•** The objective functional is a mapping from control trajectories to ^a point on the real line, the value of which is to bemaximized: $V(\mathbf{a}(t)) = \int_{t_0}^{T-1} f_t(\mathbf{s}(t), \mathbf{a}(t), t)dt + v(s_T, T)$
- $f_t(\mathbf{s}(t),\mathbf{a}(t),t)$ is the intermediate function. It describes how $(\mathbf{s}(t), \mathbf{a}(t), t)$ determine the contemporaneous value of the period-by-period return function (profits, ...)
- $v(s_T, T)$ is the final function. It shows the value of the final state s_T (e.g. the value of the stock of production left at T , of the assets remaining at $T, ...$).

6. Approach

Focus of analysis: discrete time and finite horizon problems.

Introduction (5)

The general control problem in continuous time and finite horizon

$$
\max_{\{\mathbf{a}(t)\}} V = \int_{t_0}^{T-1} f_t(\mathbf{s}(t), \mathbf{a}(t), t) dt + v(\mathbf{s_T}, T) \text{ s.t.}
$$

\n
$$
\dot{\mathbf{s}}(t) = \mathbf{g}_t(\mathbf{s}(t), \mathbf{a}(t), t)
$$

\n
$$
t_0, T, \mathbf{s}(t_0), \mathbf{s_T}
$$
 given
\n
$$
\{\mathbf{a}(t)\} \in A \text{ (set of feasible trajectories)}
$$

Solution

- Solution is $\mathbf{a}^*(t), t \in [t_0, T-1]$
- Then, $\mathbf{a}^*(t), t\in [t_0,T]$ is the solution satisfying \bullet $\dot{\mathbf{s}}(t) = \mathbf{g}_{\mathbf{t}}(\mathbf{s}(t), \mathbf{a}^{*}(t), t)$
	- The max value is $\int_{t_0}^{T-1} f_t(\mathbf{s}(t), \mathbf{a}^*(t), t) dt + v(\mathbf{s_T}, T)$

Introduction (6)

The general control problem in discrete time and finite horizon

$$
\max_{\{\mathbf{a}(t)\}} V = \sum_{t_0}^{T-1} f_t(s_t, a_t) + v(s_T) \text{ s.t.}
$$
\n
$$
s_{t+1} = g_t(s_t, a_t), \ t = 0, 1, \dots, T-1
$$
\n
$$
t_0, T, s_0, s_T \text{ given}
$$
\n
$$
a_t \in A \text{ (set of feasible trajectories)}
$$

Solution

- Solution is $a_t^*, t \in [t_0, T-1]$
- Then, $a_t^*, t\in [t_0, T]$ is the solution satisfying $s_{t+1} = g_t(s_t, a_t^*)$

• The max value is
$$
\sum_{t_0}^{T-1} f_t(s_t, a_t^*) + v(s_T)
$$

Intuition

- Planning a two-day trekking trip. Take w units of food. \bullet
- How to divide the food between both days? \bullet
- c_0 is consumption today $(t=0)$ and c_1 is consumption ᠊ tomorrow $\left(t=1\right)$
- Optimization problem is

$$
\max_{c_0, c_1} U(c_0, c_1) \text{ s.t. } c_0 + c_1 \le w
$$

- Optimality requires eat up all food $(c_0 + c_1 = w)$ and marginal
wility ha equal serses heth days (U/ utility be equal across both days $(U_{c_0}^{\prime}=U_{c_1}^{\prime})$
- i.e. the marginal cost of consumption in $t=0$ is the consumption foregone in $t=1.$
- Thus, intertemporal optimization requires allocation of resources that exhaust intertemporal trade opportunities.

Intuition (2)

- Suppose U is separable: $U(c_0, c_1) = U(c_0) + U(c_1)$ and stationary $U(c_0, c_1) = U(c_0) + \beta U(c_1)$
- With β is the discount rate of future consumption. \bullet
- Optimality condition is $U'(c_0) = \beta U'(c_1)$ \bullet
- If U concave, $c_0 > c_1 \Leftrightarrow \beta < 1$
- (Interesting) extensions \bullet
	- allow for borrowing and lending at an interest rate r (see \bullet problem 9.1)
	- allow for a finite horizon of T periods (see problem 9.2)
	- allow for continuous time
	- allow for infinite horizon

Describing the optimization problem (finite horizon)

- At $t = 0$
	- there is an initial state $s_0.$
	- An agent chooses an action $a_0\in A_0.$ \bullet
	- This action generates a contemporary return $f_0(a_0, s_0)$... \bullet
	- ... and leads to a new state $s_1.$
	- Transition from s_0 to s_1 transition equation $s_1=g_0(a_0,s_0)$. $_1$ through f_0 is determined by a
- **•** This decision making takes place every period
	- sequence of actions $(a_0, a_1, \ldots, a_{T-1})$ generates a
	- sequence of states $(s_0, s_1, \ldots, s_{T-1})$
	- so that $s_{t+1}=g_t(a_t,s_t)$
- and reaches a final period T with a final state s_T $_T$ with value $v(s_T)$.

Describing the optimization problem (2)

- Assume separability of the objective function \bullet
- Aim of the agent: choice of $(a_0, a_1, \ldots, a_{T-1})$ to \bullet
- max discounted value of sum of contemporaneous returns ⁺ \bullet value of final state:

$$
\max_{(a_0, a_1, \dots, a_{T-1})} \sum_{t=0}^{T-1} \beta^t f_t(a_t, s_t) + \beta^T v(s_T) \text{ s.t.}
$$

$$
s_{t+1} = g_t(a_t, s_t), \ t = 0, 1, \dots, T-1
$$

$$
T, s_0, s_T \text{ given}
$$

Remark: a_t, s_t may be vectors.

Initial condition

- Together with terminal condition allow for closing the system \bullet
- Initial condition typically fixed and exogenous \bullet
- Represents the level of stock the planner starts with \bullet

Terminal condition

- Requires to specify a terminal date T and a terminal state s_T \bullet
- Each may be fixed or variable \rightarrow 4 alternative scenarios
say both fixed
	- both fixed \bullet
	- both variable
	- one fixed, the other variable

On terminal conditions

- (T,s_T) fixed
	- example: ^a fishery regulator seeking to manage harvest overa T years ensuring a stock of fish left s_T
	- **Illustration: Section (a) of figure**

T fixed, s_T variable

- example: mine manager planning extraction over ^a fixed timehorizon.
- **Illustration: Section (b) of figure**

T variable, s_T fixed

- example: environmental regulator to reach ^a pollution level D w/o time horizon
- **Illustration: Section (c) of figure**

$\left(T,s_{T}\right)$ variable

- example: manager building capital stock to sell firm at ^a laterdate. Trade-off: the longer to accumulate capital stock thelater will sell: $s_T=\phi(T)$
- **Illustration: Section (d) of figure**

On terminal conditions (3)

Optimal control theory

- We have examined the Kuhn-Tucker theorem to solve static \bullet optimization problems.
- The optimal control theory, applies the same theorem to ^a \bullet dynamic setting.
- **•** Types of set-up:
	- **Discrete time**
		- Finite horizon \bullet
		- Infinite horizon
	- **Continuous time**
		- Finite horizon
		- Infinite horizon

OCT - discrete time - Illustration

Utility maximization; State equation

- Consumer has wealth in the bank at fixed interest rate $r>0.$
- Consumer uses wealth $k(t)$ to consume $c(t)$ in period $t, t \in [0, T] \cap \mathbb{N}$
- Suppose borrowing not allowed, $k(t)>0.$
- Let $k(0) = k_0$ $_{\rm 0}$ denote the initial wealth \bullet
- Let $k(T+1)$ denote wealth left at T \bullet
- Equation of motion: $k(t + 1) = (1 + r)k(t)$ $- \, c(t)$
- Let $k(t, k_0, c)$ denote the solution of the (difference) equation of motion

Utility maximization; Objective function

- **•** Consumer derives satisfaction (utility) from consumption
- Instantaneous utility: $u(c(t)), t\in[0,T]\cap\mathbb{N}$
- Control variables: choose consumption path $\{c_0, c_1, \ldots, c_T\}$ to maximize intertemporal utility function U defined as

$$
U(k, c) = \sum_{t=0}^{T} \beta^t u(c(t)) + \beta^T v(k(T+1)),
$$
 if finite horizon

$$
U(c) = \sum_{t=0}^{\infty} \beta^t u(c(t)),
$$
 if infinite horizon

where $\beta\in(0,1)$, u,v strictly increasing, concave and C^2 .

Utility maximization; The problem

Suppose u belongs to the CES family and given by

$$
u_{\sigma}(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma}, \text{ if } \sigma > 0, \sigma \neq 1
$$

$$
u_1(c) = \ln c, \text{ if } \sigma = 1
$$

Infinite horizon ($t\in\mathbb{N}$)

$$
\max_{c} U_{\sigma}(c) = \sum_{t=0}^{\infty} \beta^{t} u_{\sigma}(c(t)), \text{ s.t.}
$$

$$
c(t) \ge 0
$$

$$
k(t, k_0, c) \ge 0
$$

$$
k(0) = k_0
$$

Utility maximization; The problem

Finite horizon $(t\in[0,T]\cap\mathbb{N})$

$$
\max_{c} U_{\sigma}(c) = \sum_{t=0}^{T} \beta^{t} u_{\sigma}(c(t)) + \beta^{T} v(k(t+1)), \text{ s.t.}
$$

$$
c(t) \ge 0, \ k(k_0, c) \ge 0, \ k(0) = k_0
$$

Macroeconomic version

- Consumer representative agent of ^a community \bullet
- **e** equation of motion (re)defined as

$$
k(t+1) = F(k(t)) + (1 - \delta)k(t) - c(t)
$$

where $F(\cdot)$ is the production function, and δ the depretiation factor.

OCT - discrete time - finite horizon

o The problem

$$
\max_{(a_0, a_1, \dots, a_{T-1})} \sum_{t=0}^{T-1} \beta^t f_t(a_t, s_t) + \beta^T v(s_T) \text{ s.t. } (1)
$$

$$
\sum_{t=0}^{T-1} \beta^{t+1} (s_{t+1} - g_t(a_t, s_t)) = 0, \ t = 0, 1, \dots, T-1
$$

$$
T, s_0, s_T \text{ given}
$$

C Lagrangean function:

$$
L(a, s, \lambda) = \sum_{t=0}^{T-1} \beta^t f_t(a_t, s_t) + \beta^T v(s_T) - \sum_{t=0}^{T-1} \lambda_{t+1} \beta^{t+1} (s_{t+1} - g_t(a_t, s_t))
$$

OCT - discrete time - finite horizon (2)

SFOCs

$$
\frac{\partial L}{\partial a_t} = \beta^t \left[\frac{\partial f_t}{\partial a_t} + \beta \lambda_{t+1} \frac{\partial g_t}{\partial a_t} \right] = 0, \ (t = 0, \dots, T - 1)
$$

\n
$$
\frac{\partial L}{\partial s_t} = \beta^t \left[\frac{\partial f_t}{\partial s_t} + \beta \lambda_{t+1} \frac{\partial g_t}{\partial s_t} - \lambda_t \right] = 0, \ (t = 1, \dots, T - 1)
$$

\n
$$
\frac{\partial L}{\partial s_T} = \beta^T \left(\frac{\partial v}{\partial s_T} - \lambda_T \right) = 0, \ (t = T)
$$

\n
$$
\frac{\partial L}{\partial \lambda_t} = \beta^t (s_t - g_{t-1}(a_{t-1}, s_{t-1})) = 0, \ (t = 0, \dots, T - 1)
$$

OCT - discrete time - finite horizon (3)

S FOCs

$$
\frac{\partial f_t}{\partial a_t} = -\beta \lambda_{t+1} \frac{\partial g_t}{\partial a_t}, \ (t = 0, \dots, T - 1)
$$
\n(2)

$$
\lambda_t = \frac{\partial f_t}{\partial s_t} + \beta \lambda_{t+1} \frac{\partial g_t}{\partial s_t}, \ (t = 1, \dots, T - 1)
$$
 (3)

$$
\lambda_T = \frac{\partial v}{\partial s_T} \tag{4}
$$

$$
s_{t+1} = g_t(a_t, s_t) \tag{5}
$$

- Remark: Condition [\(2\)](#page-25-0) is known as the Euler equation
- Under suitable assumptions on f_t, g_t and L the problem has a set with ζ solution $(a_0^\ast$ $_0^*,a_1^*$ $_1^\ast,\ldots,a_7^\ast$ $_{T-1}^{\ast}$)

OCT - discrete time - finite horizon - Interpretation

Condition [\(2\)](#page-25-0)

- A marginal change in a_t two effects
	- on instantaneous return $\frac{\partial f_t}{\partial a_t}$
	- on next period state variable s_{t+1} through $\frac{\partial g_t}{\partial a_t}$ measured by λ_{t+1}
- Thus equation [\(2\)](#page-25-0) measures the present value of the total impact of a marginal change in a_t
- Hence, agent in choosing a_t optimally foresees present and \bullet future consequences.

Condition [\(3\)](#page-25-1)

- A marginal change in s_t two effects
	- on instantaneous return $\frac{\partial f_t}{\partial s_t}$
	- on next period state variable s_{t+1} through $\frac{\partial g_t}{\partial s_t}$ measured by λ_{t+1}
- Thus the present value of the total impact of a marginal change in s_t is given by the rhs of (3)
- The measure of this impact is given by the lhs of [\(3\)](#page-25-1), namely \bullet $\lambda_t.$ In other words, λ_t is the shadow price of s_t
- Equivalently, λ_t is the measure of present and future consequences of a marginal change of s_t

OCT - discrete time - finite horizon - Interpretation (3)

Condition [\(5\)](#page-25-2)

Condition [\(5\)](#page-25-2) is the transition equation

Condition [\(4\)](#page-25-3)

- Condition [\(4\)](#page-25-3) is the transversality condition \bullet
- It says that the shadow price of s_T \scriptstyle_T equals the marginal value \bullet of $v(s_T)$

OCT - discrete time - finite horizon - An example

- Profit maximizing firm over a finite horizon T
- Profits in t dependent on labor in t (control variable) and \bullet capital stock in t (state variable), $\pi_t(l_t,k_t)$
- Goal: max profits over the time horizon \bullet
- restrictions
	- capital accumulation: $k_{t+1} k_t = g_t(l_t, k_t)$ \bullet
	- initial capital stock: k_0 \bullet
	- Terminal capital stock: $k(T) = K$
- no discounting $(\beta = 1)$
- Problem:

$$
\max_{l_t} \sum_{t=0}^{T} \pi_t(l_t, k_t) \text{ s.t. } k_{t+1} - k_t = g_t(l_t, k_t)
$$

An example (2)

C Lagrangean function:

$$
L(l, k, \lambda) = \sum_{t=0}^{T} \pi_t(l_t, k_t) - \lambda_t \Big(k_{t+1} - k_t - g_t(l_t, k_t)\Big)
$$

SFOCs

$$
\frac{\partial L}{\partial l_t} = \frac{\partial \pi_t}{\partial l_t} + \lambda_t \frac{\partial g_t}{\partial l_t} = 0, \ t = 0, 1, \dots, T
$$
 (6)

$$
\frac{\partial L}{\partial k_t} = \frac{\partial \pi_t}{\partial k_t} + \lambda_t \frac{\partial g_t}{\partial k_t} + \lambda_t - \lambda_{t-1} = 0, \ t = 0, 1, \dots, T \tag{7}
$$

$$
\frac{\partial L}{\partial \lambda_t} = k_{t+1} - k_t - g_t(l_t, k_t) = 0, \ t = 0, 1, \dots, T
$$
\n(8)

An example (3)

- FOC [\(6\)](#page-30-0) requires that l_t in each period maximizes the low- \bullet Lagrangian given the stock of capital available in that period
- FOC [\(8\)](#page-30-1) represents the difference equation of motion governing the accumulation of capital
- To interpret FOC [\(7\)](#page-30-2)
	- λ_t represents the (marginal) impact on the maximum attainable value of the sum of profits of an additional unit of capital.
	- Thus, $\lambda_t \lambda_{t-1}$ represents the rate at which capital
depreciates in value depreciates in value.
	- Therefore, [\(7\)](#page-30-2) requires that the depreciation in value of capital $=$ sum of its contributions to profits $+$ its contribution to enhancing the value of the capital stock.

OCT - discrete time - finite horizon - the Hamiltonian

- Alternative way to solve the control problem \bullet
- Define the Hamiltonian as

 $H_t(a_t, s_t, \lambda_{t+1}) = f_t(a_t, s_t) + \beta \lambda$ $_{t+1}g_{t}(a_{t},s_{t})$

measuring the total return in period $t.$

- The choice of a_t has two effects
	- the contemporary effect $f_t(a_t, s_t)$
	- **the impact on the transition of state variable** $\beta \lambda_{t+1} g_t(a_t, s_t),$ i.e. the future capacity of generating returns.
- The use of the Hamiltonian allows for transforming a dynamic optimization problem into ^a sequence of static optimizationproblems related by the transition equation and by theequation determining the shadow price $\lambda_t.$

OCT - discrete time - finite horizon - the Hamiltonian (2)

P The Lagrangean function now becomes

$$
L(a,s,\lambda) = H_0(a_0,s_0,\lambda_1) + \sum_{t=1}^{T-1} \beta^t \Big[H_t(a_t,s_t,\lambda_{t+1}) - \lambda_t s_t \Big] - \beta^T \lambda_T s(T) + \beta^T v(s(T))
$$

P FOCs are:

and ...

MOVE⁹

AВ

$$
\frac{\partial L}{\partial a_t} = \beta^t \frac{\partial H_t(a_t, s_t, \lambda_{t+1})}{\partial a_t} = 0, \ t = 0, 1, \dots, T - 1 \tag{9}
$$

$$
\frac{\partial L}{\partial s_t} = \beta^t \left[\frac{\partial H_t(a_t, s_t, \lambda_{t+1})}{\partial s_t} - \lambda_t \right] = 0, \ t = 1, \dots, T - 1 \tag{10}
$$

$$
\frac{\partial L}{\partial s(T)} = \beta^T \left(-\lambda_T + v'(s(T)) \right) = 0 \tag{11}
$$

OCT - discrete time - finite horizon - the Hamiltonian (3)

Naturally, the optimal plan must also satisfy the transition \bullet equation

$$
s_{t+1} = g_t(a_t, s_t), t = 0, 1, \ldots, T-1
$$

- FOC ([9\)](#page-33-0) characterizes an interior maximum of the Hamiltonian
class: the entimel noth \bullet along the optimal path.
- The optimal solution stemming from the Hamiltonian is knownas the Maximum principle.
- The Maximum principle prescribes that along the optimal \bullet path, a_t should be chosen to maximize the total benefits in each period.
- Of course the solution $\{a_t\}_{t=1}^T$ (in general) simpler to obtain, and with ^a clear economic1 $t{=}0$ $\frac{1}{0}$ is the same as previously, but interpretation.

Economic interpretation of the Hamiltonian

- Consider the previous example of the profit maximizing firm. L
- Define the Hamiltonian as

$$
H_t(l_t, k_t) = \pi_t(l_t, k_t) + \lambda_{t+1} g_t(l_t, k_t)
$$

This is the value of profits in t + the amount of capital accumulated in $t,(g_t)\times$ the marginal value of capital at time $t + 1, (\lambda_{t+1}).$

In other words, $\lambda_{t+1}g_t$ captures the future profit effect of l_t through the change in the capital stock. Thus, the Hamiltonianaccounts for the effects on current and future profits of $l_t.$

Economic interpretation of the Hamiltonian (2)

O Now the Lagrangean function becomes

$$
L(l, k, \lambda) = \sum_{t=0}^{T} \Big[H_t(l_t, k_t) - \lambda_t(k_{t+1} - k_t) \Big]
$$

S FOCs

$$
\frac{\partial L}{\partial l_t} = \frac{\partial H_t}{\partial l_t} = 0, \ t = 0, 1, \dots, T
$$
\n(12)

$$
\frac{\partial L}{\partial k_t} = \frac{\partial H_t}{\partial k_t} + \lambda_t - \lambda_{t-1} = 0, \ t = 1, \dots, T
$$
 (13)

$$
\frac{\partial L}{\partial \lambda_t} = \frac{\partial H_t}{\partial \lambda_t} - (k_{t+1} - k_t) = 0, \ t = 0, 1, ..., T
$$
 (14)

Economic interpretation of the Hamiltonian (3)

FOC [\(12\)](#page-36-0) can be rewritten as

$$
\frac{\partial H_t}{\partial l_t} = \frac{\partial \pi_t}{\partial l_t} + \lambda_t \frac{\partial g_t}{\partial l_t} = 0
$$

or
$$
\frac{\partial \pi_t}{\partial l_t} = -\lambda_t \frac{\partial g_t}{\partial l_t}
$$
 (15)

- This is the same condition as (6) (6) .
- It means that at each point in time the firm chooses l_t to \bullet balance the marginal increase in current profits against the marginal decrease in future profits through thechange in the capital stock.

Economic interpretation of the Hamiltonian (4)

FOC [\(13\)](#page-36-1) can be rewritten as

$$
-(\lambda_t - \lambda_{t-1}) = \frac{\partial H_t}{\partial k_t} = \frac{\partial \pi_t}{\partial k_t} + \lambda_t \frac{\partial g_t}{\partial k_t}
$$
(16)

Same as [\(7\)](#page-30-1). It means that the increase in capital decreases the value of the capital stock (it is marginally less scarce), while $\frac{\partial \pi_t}{\partial k_t}+\lambda_t \frac{\partial g_t}{\partial k_t}$ represents the increase in current and future profits.

- Equations [\(15\)](#page-37-0), [\(16\)](#page-38-0) and the equation of motion $k_{t+1}-k_t=g_t(l_t,k_t)$ (exogenously given), constitute the maximum principle
- The maximum principle prescribes that along the optimal path, l_t is chosen to maximize total profits in each period.

Exercise

- Profit maximizing monopolist extracting mineral, with ^a licenseexpiring on date T
- **Notation**
	- x_0 : initial stock of mineral
	- x_t : size of the deposit at beginning of period t
	- q_t : volume extracted during period t
	- β : discount rate \bullet
	- $p_t(q_t)$: inverse demand function
	- ^c: constant marginal cost of extraction
- (a) Define the transition equation. \bullet
- (b) Define the instantaneous profit function. \bullet
- (c) Define the monopolist's profit maximization problem. \bullet
	- (d) Find the conditions characterizing the (interior) optimal extraction path.

Exercise (2)

- \bullet (a) Transition equation: $x_{t+1} = x_t - q_t$
- (b) Instantaneous profit function: $\pi_t(q_t) = [p_t(q_t) c]q_t$ \bullet
- (c) Monopolist's problem:

$$
\max_{\{q_t \ge 0\}} \sum_{t=0}^{T-1} \beta^t \pi_t(q_t) \quad \text{s.t.}
$$

$$
x_{t+1} = x_t - q_t \ge 0
$$

$$
x(0) = x_0 > 0
$$

$$
x(T) = x_T \ge 0
$$

Exercise (3)

(d) Lagrangian function

$$
L(x, q, \lambda) = \sum_{t=0}^{T-1} \beta^t \pi_t(q_t) + \beta^T x_T - \sum_{t=0}^{T-1} \lambda_{t+1} \beta^{t+1} (x_{t+1} - x_t + q_t) =
$$

\n
$$
= \sum_{t=0}^{T-1} \beta^t \pi_t(q_t) + \sum_{t=0}^{T-1} \lambda_{t+1} \beta^{t+1} (x_t - q_t) - \sum_{t=0}^{T-1} \lambda_{t+1} \beta^{t+1} x_{t+1} + \beta^T x_T =
$$

\n
$$
= \pi_0(q_0) + \lambda_1 \beta (x_0 - q_0) + \sum_{t=1}^{T-1} \beta^t \pi_t(q_t) + \sum_{t=1}^{T-1} \lambda_{t+1} \beta^{t+1} (x_t - q_t) - \sum_{t=1}^{T} \lambda_t \beta^t x_t + \beta^T x_T =
$$

Exercise (4)

(d) Lagrangian function (cont'd)

$$
= \pi_0(q_0) + \lambda_1 \beta(x_0 - q_0) + \sum_{t=1}^{T-1} \beta^t \left[\pi_t(q_t) + \lambda_{t+1} \beta(x_t - q_t) - \lambda_t x_t \right] -
$$

$$
\lambda_T \beta^T x_T + \beta^T x_T =
$$

$$
= \pi_0(q_0) + \lambda_1 \beta(x_0 - q_0) + \sum_{t=1}^{T-1} \beta^t \left[\pi_t(q_t) + \lambda_{t+1} \beta(x_t - q_t) - \lambda_t x_t \right] -
$$

$$
\beta^T x_T (1 - \lambda_T)
$$

Exercise (5)

SFOCs

$$
\frac{\partial L}{\partial q_t} = \beta^t \left[\frac{\partial \pi_t(q_t)}{\partial q_t} - \beta \lambda_{t+1} \right] = 0
$$

$$
\frac{\partial L}{\partial x_t} = \beta^t \left[\beta \lambda_{t+1} - \lambda_t \right] = 0
$$

$$
\frac{\partial L}{\partial x_T} = \beta^T (1 - \lambda_t) = 0
$$

$$
x_{t+1} = x_t - q_t
$$

Exercise (6)

Characterizing an (interior) optimal extraction path

$$
\frac{\partial \pi_t(q_t)}{\partial q_t} = \beta \lambda_{t+1} \tag{17}
$$

$$
\beta \lambda_{t+1} = \lambda_t \tag{18}
$$

$$
1 = \lambda_t \tag{19}
$$

$$
x_{t+1} = x_t - q_t \tag{20}
$$

● Note that
$$
\frac{\partial \pi_t(q_t)}{\partial q_t} = p'_t(q_t)q_t + p_t(q_t) - c
$$

Denote marginal revenue in period t as \bullet $m_t(q_t) \equiv p'_t(q_t)q_t + p_t(q_t)$

Rewrite [\(17](#page-44-0)) as

$$
m_t(q_t) = c + \beta \lambda_{t+1} \tag{21}
$$

Exercise (7)

- Interpretation of [\(21](#page-44-1)) \bullet
	- At every t marginal revenue = marginal cost
	- marginal cost $=$ marginal cost of extraction $+$ opportunity cost of the reduction in stock available for next period
	- opportunity cost is measured by the shadow price of the remaining resource (λ_{t+1}) discounted to the current period (t)
- Optimal extraction plan
	- Rewrite [\(21\)](#page-44-1) as \bullet

$$
m_t(q_t) - c = \beta \lambda_{t+1} \tag{22}
$$

Evaluate [\(22\)](#page-45-0) at $t + 1$:

$$
m_{t+1}(q_{t+1}) - c = \beta \lambda_{t+2}, \text{ or}
$$

$$
\beta(m_{t+1}(q_{t+1}) - c) = \beta^2 \lambda_{t+2}
$$
 (23)

Exercise (8)

- Optimal extraction plan (cont'd)
	- Evaluate (18) at $t+1$ and multiply by β to obtain \bullet

$$
\beta \lambda_{t+1} = \beta^2 \lambda_{t+2} \tag{24}
$$

Substituting [\(24\)](#page-46-0) into [\(23\)](#page-45-1) we obtain

$$
\beta(m_{t+1}(q_{t+1}) - c) = \beta \lambda_{t+1} \tag{25}
$$

Substituting [\(22\)](#page-45-0) into [\(25\)](#page-46-1) gives

$$
\beta(m_{t+1}(q_{t+1}) - c) = m_t(q_t) - c
$$

The opportunity cost of selling an additional unit in $t + 1$ discounted to period t = net profit of selling an additional unit in period t

Hence, the optimal extraction path is organized such that

MOVE^T UMB there are no profitable opportunities left to reallocate extraction between any two adjacent periods.

Exercise (9)

Characterizing the solution applying the Maximum Principle

- Define the Hamiltonian as $H_t(q,x,\lambda) = \pi_t(q_t) + \beta \lambda_{t+1}(x_t q_t)$
- Lagrangian function becomes

$$
L = \pi_0(q_0) + \lambda_1 \beta(x_0 - q_0) + \sum_{t=1}^{T-1} \beta^t \left[H_t(q, x, \lambda) - \lambda_t x_t \right] + \beta^T x_T (1 - \lambda_T)
$$

FOCs

$$
\frac{\partial L}{\partial q_t} = \frac{\partial H_t}{\partial q_t} = 0 \Longrightarrow \frac{\partial \pi_t(q_t)}{\partial q_t} = \beta \lambda_{t+1}
$$

$$
\frac{\partial L}{\partial x_t} = \frac{\partial H_t}{\partial x_t} - \lambda_t = 0 \Longrightarrow \beta \lambda_{t+1} = \lambda_t
$$

that are precisely conditions [\(17\)](#page-44-0) and [\(18\)](#page-44-2). Optimality also requires satisfying the transition equation ([20](#page-44-3)) and the terminal condition (19). (19) (19) . OPT – p.48/102

OCT - discrete time - infinite horizon

- If a problem does not have a terminal date \rightarrow model as an
 ∞ -horizon problem [∞]-horizon problem.
- Problem is \bullet

$$
\max_{a_t \in A_t} \sum_{t=0}^{\infty} \beta^t f_t(a_t, s_t) \text{ s.t.}
$$

$$
s_{t+1} = g_t(a_t, s_t), \ t = 0, 1, 2, \dots
$$

$$
s_0 \text{ given}
$$

- To ensure that the total discounted value of the objective function is finite, suppose
	- f_t is bounded $\forall t$

$$
\bullet\ \ \beta<1
$$

OCT - discrete time - infinite horizon - Illustration

- Consider an individual's life-time consumption problem \bullet
	- c_t : consumption in period t ;
	- $u(c_t)$: concave utility function;
	- $\beta\in(0,1)$: discount rate;
	- $U(\{c_t\}_0^\infty)$ $_{0}^{\infty})$: life-time utility function;
	- A_0 : initial wealth (no other income source)
	- $r\!\!$: interest rate
- **•** Life-time utility function:

$$
U(\lbrace c_t \rbrace_0^{\infty}) = \sum_{t=0}^{\infty} \beta^t u(c_t)
$$

• Budget constraint:
$$
A_0 = \sum_{t=0}^{\infty} \frac{c_t}{(1+r)^t}
$$

Illustration (2)

Problem to solve:

$$
\max_{\{c_t\}_{0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \text{ s.t. } A_0 = \sum_{t=0}^{\infty} \frac{c_t}{(1+r)^t}
$$

$$
L(c, \lambda) = \sum_{t=0}^{\infty} \beta^t u(c_t) + \lambda \left(A_0 - \sum_{t=0}^{\infty} \frac{c_t}{(1+r)^t} \right)
$$

- BUT $L(c,\lambda)$ has infinite FOCs.
- **•** How to cope with it?

Illustration (3)

Compute FOCs for two consecutive arbitrary periods t and \bullet $t + 1$:

$$
\frac{\partial L}{\partial c_t} = \beta^t \frac{\partial u}{\partial c_t} - \lambda \frac{1}{(1+r)^t} = 0,\tag{26}
$$

$$
\frac{\partial L}{\partial c_{t+1}} = \beta^{t+1} \frac{\partial u}{\partial c_{t+1}} - \lambda \frac{1}{(1+r)^{t+1}} = 0 \tag{27}
$$

Divide (26) by (27) to obtain: \bullet

$$
\frac{u'(c_t)}{u'(c_{t+1})} = \beta(1+r)
$$
\n(28)

This is the equilibrium condition describing the optimal consumption path.

Illustration (4)

- Equilibrium condition [\(28\)](#page-51-2) says that the MRS of two \bullet consecutive periods = marginal value in t of income in $t+1,$ i.e.
- **•** The individual is willing to delay (a unit of) consumption for one period until the point where the value in t of the increased income (not spent in t) compensates.
- \bullet To give a feeling of the content of [\(28\)](#page-51-2), suppose

$$
u(c_t) = \ln(c_t)
$$

Then, [\(28\)](#page-51-2) becomes $\frac{c_{t+1}}{c_t} = \beta(1 + r)$, or

$$
c_{t+1} = \beta (1+r)c_t
$$
 (29)

this is ^a linear difference equation.

Illustration (5)

the solution of [\(29\)](#page-52-0) is

$$
c_t = c_0[(1+r)\beta]^t \tag{30}
$$

to pin down the value of c_0 , substitute [\(30\)](#page-53-0) in the budget constraint:

$$
A_0 = \sum_{t=0}^{\infty} \frac{c_t}{(1+r)^t} = \sum_{t=0}^{\infty} \frac{c_0[(1+r)\beta]^t}{(1+r)^t} = \sum_{t=0}^{\infty} c_0 \beta^t = \frac{c_0}{1-\beta}
$$

• That is
$$
c_0 = A_0(1 - \beta)
$$

and the optimal consumption path is

$$
c_t = A_0 (1 - \beta) [(1 + r)\beta]^t
$$

On the meaning of the discount rate

Discrete time

- Discount rate β: present value of 1€ invested at (annual)
interest rate interest rate $r.$
- In other words, to obtain 1 \in when the interest rate is r the
smalled to be invasted is amount to be invested is

$$
\beta(1+r) = 1
$$
, or $\beta = \frac{1}{1+r}$

If the interest is accumulated n times during the year (daily, monthly, quarterly), the investment to obtain 1 \in is

$$
\beta \left(1 + \frac{r}{n}\right)^n = 1, \quad \text{or} \quad \beta = \frac{1}{\left(1 + \frac{r}{n}\right)^n}
$$

Continuous time

To compute the discount rate β in continuous time, note that

$$
\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = e^r
$$

Then, the present value of 1€ with continuous compounding
even are regiod is \bullet over one period is

$$
\beta = e^{-r}
$$

and the present value of 1€ with continuous compounding
avex tracriade is \bullet over t periods is

$$
\beta = e^{-rt}
$$

OCT - continuous time - finite horizon

The general dynamic optimization problem in continuous time \bullet is

$$
\max_{a(t)} \int_0^T e^{-rt} f(a(t), s(t), t) dt + e^{-rT} v(s(T)) \text{ s.t. } \dot{s} = g(a(t), s(t), t)
$$

with
$$
s(0) = s_0
$$
 given.

- Comparing with discrete time
	- replace \sum by \int
	- replace difference equation describing the equation of motion by ^a differential equation describing the transitionequation.
	- replace multipliers $(\lambda_1, \ldots, \lambda_T)$ $_T$) by a functional $\lambda(t)$ on $[0, T]$.
	- To define the Lagrangean, first multiply constraint by e $-rt$ _.

OCT - continuous time - finite horizon (2)

$$
L = \int_0^T e^{-rt} f(a(t), s(t), t) dt + e^{-rT} v(s(T))
$$

$$
- \int_0^T e^{-rt} \lambda(t) (\dot{s} - g(a(t), s(t), t)) dt =
$$

$$
= \int_0^T e^{-rt} \Big(f(a(t), s(t), t) + \lambda(t) g(a(t), s(t), t) \Big) dt
$$

$$
- \int_0^T e^{-rt} \lambda(t) \dot{s} dt + e^{-rT} v(s(T)) =
$$

$$
= \int_0^T e^{-rt} H(a(t), s(t), \lambda(t), t) dt - \int_0^T e^{-rt} \lambda(t) \dot{s} dt + e^{-rT} v(s(T))
$$

where $H(a(t), s(t), \lambda(t), t) = f(a(t), s(t), t) + \lambda(t) g(a(t), s(t), t)$ is the

Hamiltonian.MOVE⁹

OCT - continuous time - finite horizon (3)

- Suppose $\lambda(t)$ is differentiable.
- Integrate \int_0^T \bullet $^{-rt}\lambda(t)\dot{s}dt$ by parts to obtain $_{0}$ e

$$
\int_0^T e^{-rt} \lambda(t) \dot{s} dt = e^{-rT} \lambda(T) s(T) - \lambda(0) s(0) -
$$

$$
- \int_0^T e^{-rt} s(t) \dot{\lambda} dt + r \int_0^T T e^{-rt} s(t) \lambda(t) dt
$$

Substituting in the Lagrangean \bullet

$$
L = \int_0^T e^{-rt} \Big(H(a(t), s(t), \lambda(t), t) + s(t) \dot{\lambda} - rs(t) \lambda(t) \Big) dt +
$$

+
$$
e^{-rT} v(s(T)) - e^{rT} \lambda(T) s(T) + \lambda(0) s(0)
$$

OCT - continuous time - finite horizon (4)

• FOCs - Maximum Principle

$$
\frac{\partial L}{\partial a(t)} = e^{-rt} \frac{\partial H(a(t), s(t), \lambda(t), t)}{\partial a(t)} = 0
$$

$$
\frac{\partial L}{\partial s(t)} = e^{-rt} \left(\frac{\partial H(a(t), s(t), \lambda(t), t)}{\partial s(t)} + \lambda - r\lambda(t) \right) = 0
$$

$$
\frac{\partial L}{\partial s(T)} = e^{-rt} \left(v'(s(T)) - \lambda(T) \right) = 0
$$

• together with
$$
\dot{s} = \frac{\partial H(a(t), s(t), \lambda(t), t)}{\partial \lambda(t)} = g(a(t), s(t), t)
$$

- and where e $^{-rt}>0$
- Maximum principle requires the Hamiltonian being maximized \bullet along the optimal path.

OCT - continuous time - finite horizon - Illustration

- Back with the girl and the cake. \bullet
- Initial size of the cake: $k(0)$ \bullet
- Cake to be consumed over a continuous interval $[0, T]$
- Comsumption of cake generate utility $u[c(t)]$
- Size of cake evolves according to \dot{k} $=-c(t)$
- Terminal condition is $k(T) = k > 0$
- value of consumtion:

$$
\int_0^T u[c(t)]dt
$$

Assume away discounting.

Illustration (2)

- **Solving the problem**
- Construct the Hamiltonian

$$
H = u[c(t)] - \lambda(t)c(t)
$$

S FOCs

$$
\frac{\partial H}{\partial c(t)} = u'[c(t)] - \lambda(t) = 0
$$

$$
\frac{\partial H}{\partial k(t)} = -\lambda(t) = 0
$$

$$
\frac{\partial H}{\partial \lambda(t)} = -c(t) = \dot{k}(t)
$$

and the transversality condition $\lambda(T)[k(t)-k]=0.$

OCT - continuous time - infinite horizon

• The problem is now

$$
\max_{a(t)} \int_0^\infty e^{-rt} f(a(t), s(t), t) dt
$$
 s.t. $\dot{s} = g(a(t), s(t), t)$

- with $s(0) = s_0$ $_0$ given.
- The solution is characterized by the FOCs

$$
\frac{\partial H(a(t), s(t), \lambda(t), t)}{\partial a(t)} = 0
$$

$$
\dot{\lambda} = r\lambda(t) - \frac{\partial H(a(t), s(t), \lambda(t), t)}{\partial s(t)}
$$

$$
\dot{s} = \frac{\partial H(a(t), s(t), \lambda(t), t)}{\partial \lambda(t)} = g(a(t), s(t), t)
$$

OCT - continuous time - infinite horizon - Illustration

- **•** Let's recover the illustration used in the discrete time case.
- Now with continuous time, the life-time utility functions i s \bullet

$$
U(\{c_t\}_0^\infty) = \int_{t=0}^\infty e^{-\beta t} u(c(t))
$$

Budget constraint: \bullet

$$
\dot{A}(t) = rA(t) - c(t)
$$

and $A(0) = A_0$

Illustration (2)

• The problem:

$$
\max_{\{c_t\}_{0}^{\infty}} U(\{c_t\}_{0}^{\infty})
$$
 s.t. $\dot{A}(t) = rA(t) - c(t), A(0) = A_0$

• to solve the problem, use the Hamiltonian. Two alternatives

- Current value Hamiltonian: $H^c=u(c_t)+\lambda(t)\dot{A}$
- **Present value Hamiltonian:** $H^p =$ $= e^{-\beta t}H^c = e^{-\beta t}u(c_t) + \mu(t)A$

FOCs

$$
\begin{array}{|c|c|} \hline & H^c & H^p \\ \hline \frac{\partial H^c}{\partial c} = 0 & \frac{\partial H^p}{\partial c} = 0 \\ \frac{\partial H^c}{\partial \lambda} = \dot{A} & \frac{\partial H^p}{\partial \mu} = \dot{A} \\ \frac{\partial H^c}{\partial A} = \beta \lambda - \dot{\lambda} & \frac{\partial H^p}{\partial A} = -\dot{\mu} \end{array}
$$

Illustration (3)

\n- Let
$$
u(c_t) = \ln(c_t)
$$
\n- Then
\n

$$
H^c = \ln(c_t) + \lambda_t (rA - c)
$$

S FOCs

$$
\frac{\partial H}{\partial c} = \frac{1}{c_t} - \lambda_t = 0 \tag{31}
$$

$$
\frac{\partial H}{\partial \lambda} = rA - c_t = \dot{A} \tag{32}
$$

$$
\frac{\partial H}{\partial A} = \lambda_t r = \beta \lambda_t - \dot{\lambda}
$$
 (33)

Illustration (4)

- From [\(48\)](#page-82-0) we obtain $\frac{1}{c_t} = \lambda_t$
- taking logs $ln(\frac{1}{c_t}) = ln(\lambda_t)$ or $-ln(c_t) = ln(\lambda_t)$ \bullet
- differentiating wrt t

$$
\frac{\partial \ln(c_t)}{\partial t} = -\frac{\partial \ln(\lambda_t)}{\partial t}
$$

$$
\frac{\partial \ln(c_t)}{\partial c_t} \frac{\partial c_t}{\partial t} = -\frac{\partial \ln(\lambda_t)}{\partial \lambda_t} \frac{\partial \lambda_t}{\partial t}
$$

$$
\frac{\dot{c}}{c} = -\frac{\dot{\lambda}}{\lambda}
$$
(34)

From [\(50\)](#page-84-0) we obtain

$$
\beta - r = \frac{\dot{\lambda}}{\lambda} \tag{35}
$$

Illustration (5)

From [\(52\)](#page-86-0) and [\(53\)](#page-86-1) we obtain the differential equation

$$
\frac{\dot{c}}{c_t}=r-\beta
$$

 \bullet that has as solution

$$
c_t = c_0 e^{(r-\beta)t}
$$

To find the initial condition for c_0 we use the budget constraint. In particular, the present discounted value of consumptionmust equal the initial assets, i.e.

$$
A_0 = \int_0^\infty e^{-rt} c(t) dt = \int_0^\infty e^{-rt} c_0 e^{(r-\beta)t} dt = c_0 \int_0^\infty e^{(-\beta)t} dt = c_0 \frac{1}{\beta}
$$

so that $c_0 = \beta A_0$

Therefore, the general solution is

$$
c_t = \beta A_0 e^{(r-\beta)t}
$$
 OPT - p.68/102

OCT - optimal economic growth model

- Let $U(c(t))$ denote the instantaneous utility function dependent on aggregate consumption per capita $c(t).$
- $U(c(t))$ is assumed differentiable, $U^\prime > 0, U^{\prime \prime} < 0$
- $U(c(t))$ is thus a measure of the social utility at a point in time
- Thus a social welfare index obtains from integrating $U(\cdot)$ over the time horizon.
- $Y=F(k(t))$ represent total output obtained through a production function F expressed in terms of capital per capita.
- Total output is allocated between aggregate consumption C and investment $I=\dot{K}.$
- Thus $F(k(t)) = c(t) + \dot{k}$ \bullet
- The value of the capital per capita k is given to the economy at the initial date, namely $k(0) = k_0$.

Optimal growth (2)

The problem: find a per capita consumption function $c(t)$ that \bullet solves the infinite horizon optimal control problem

$$
\max_{c(t)} \int_0^\infty e^{-rt} U(c(t))dt \quad \text{s.t.} \quad \dot{k} = F(k(t)) - c(t)
$$

with k_{0} given.

C Langrangean function

$$
L = \int_0^\infty e^{-rt} U(c(t)) dt - \int_0^\infty e^{-rt} \lambda(t) \Big(\dot{k} - [F(k(t)) - c(t)] \Big) dt =
$$

=
$$
\int_0^\infty e^{-rt} \Big[U(c(t)) + \lambda(t) [F(k(t)) - c(t)] \Big) dt - \int_0^\infty e^{-rt} \lambda(t) \dot{k} dt =
$$

=
$$
\int_0^\infty e^{-rt} H\Big(c(t), k(t), \lambda(t)\Big) - \int_0^\infty e^{-rt} \lambda(t) \dot{k} dt
$$

Optimal growth (3)

- where $H(\cdot)$ denotes the Hamiltonian.
- **P** integrating by parts

$$
\int_0^\infty e^{-rt} \lambda(t) \dot{k} = -\int_0^\infty e^{-rt} k(t) \dot{\lambda} dt + r \int_0^\infty e^{-rt} k(t) \lambda(t) dt
$$

S FOCs

$$
\frac{\partial L}{\partial c} = e^{-rt} \left(\frac{\partial H}{\partial c} \right) = 0
$$

$$
\frac{\partial L}{\partial k} = e^{-rt} \left(\frac{\partial H}{\partial k} + \dot{\lambda} - r\lambda(t) \right) = 0
$$

$$
\dot{k} = F(k(t)) - c(t)
$$

Optimal growth (4)

FOCs (cont'd)

$$
\frac{\partial H}{\partial c} = 0 \tag{36}
$$

$$
\frac{\partial H}{\partial k} + \dot{\lambda} - r\lambda(t) = 0 \tag{37}
$$

$$
\dot{k} = F(k(t)) - c(t) \tag{38}
$$

$$
\frac{\partial H}{\partial c} = U'(c(t)) - \lambda(t)
$$
(39)

$$
\frac{\partial H}{\partial k} = \lambda(t) F'(k(t))
$$
(40)

Optimal growth (5)

 \bullet Substituting ([39\)](#page-71-0) and [\(40\)](#page-71-1) into [\(36\)](#page-71-2)-([38\)](#page-71-3) yields

$$
U'(c(t)) - \lambda(t) = 0 \tag{41}
$$

$$
\lambda(t)F'(k(t)) + \dot{\lambda} - r\lambda(t) = 0
$$
\n(42)

$$
\dot{k} = F(k(t)) - c(t) \tag{43}
$$

$$
\bullet \quad \mathsf{From} \ (41)
$$

$$
U'(c(t)) = \lambda(t) \tag{44}
$$

Differentiating [\(44\)](#page-72-1) with respect to t we obtain \bullet

$$
\dot{\lambda} = U''(c(t))\dot{c} \tag{45}
$$

Optimal growth (6)

Substituting ([44\)](#page-72-1) and [\(45\)](#page-72-2) into [\(42\)](#page-72-3) we obtain \bullet

$$
U''(c(t))\dot{c} = -U'(c(t))\Big(F'(k(t)) - r\Big)
$$

or

$$
\dot{c} = -\frac{U'(c(t))}{U''(c(t))} \Big(F'(k(t)) - r \Big)
$$
\n(46)

This is the Euler equation.

- Observe that sign $\dot{c} =$ sign $(F' r)$. \bullet
- The dynamics of the model are described by [\(43\)](#page-72-4) and [\(46\)](#page-73-0):

$$
\dot{k} = F(k(t)) - c(t)
$$

$$
\dot{c} = -\frac{U'(c(t))}{U''(c(t))} \Big(F'(k(t)) - r \Big)
$$

Optimal growth - phase diagrams

- Solution of system [\(43\)](#page-72-4) and [\(46\)](#page-73-0) is a pair of functions $c(t), k(t)$ \bullet
- Represent them in the space $(k, c) \rightarrow$ phase diagram
- A steady state, $(c^{\ast},k^{\ast}% ,k^{\ast})$ *), requires both $\dot{c}=0$ and $\dot{k} = 0$.
- Each condition partitions the space (k, c) in regions where \bullet $\dot{c} > 0$ and $\dot{c} < 0$; $\dot{k} > 0$ and $\dot{k} < 0$ m $\dot{k} >0$ and $\dot{k} < 0$ respectively
- Suppose $\dot c$ and $\dot k$ together partition the space $(c.k)$ into four regions as shown in the figure
- Suppose under (above) $k=0$ the flow of k is increasing ˙(decreasing)
- Suppose to the left (right) of $\dot{c}=0$ the flow of k is increasing (decreasing)
- Then a unique path passes through every point in (c, k)

Phase diagrams (2)

Phase diagrams (3)

- From the direction of the flows in each region, only if the initial \bullet condition k_0 lies either in the bottom-left or top-right region, \ldots the path will converge towards the stationary equilibrium.
- We conclude that for each initial condition k_0 in either bottom-left or top-right region ,there is ^a unique optimal trajectory towards the steady state.
- Any other alternative initial condition will give rise to a path leading away from the steady state.

Dynamic programming - Introduction

- Alternative approach to dynamic optimization \bullet
- Suitable to incorporate uncertainty \bullet
- Main instrument: Bellman's principle of optimality
- Fundamental idea: the optimal path for the control variable will be the same whether we solve the problem over the entire time horizon orfor future periods as ^a function of the initial conditions givenby past optimal solutions

Dynamic programming

The problem \bullet

$$
\max_{a_t \in A_t} \sum_{t=0}^{T-1} \beta^t f_t(a_t, s_t) + \beta^T v_T(s_T) \text{ s.t. } (47)
$$

$$
\beta^{t+1}(s_{t+1} - g_t(a_t, s_t)) = 0, \ t = 0, 1, ..., T - 1
$$

T, *s*₀, *s*_T given

- Main feature of this approach: allows for solving the problem \bullet by backward induction.
- Particularly convenient in computational terms. \bullet
- Main elements of dynamic programming approach: \bullet value function and Bellman's equation.

The stagecoach problem

- Planning a trip from city A to city H minimizing distance. \bullet
- Figure shows the road network and distances (in km ^x 100)

- **•** Three stage planning trip
	- Stage 1: travel from A to either B,C or D \bullet
	- Stage 2: travel from B,C or D to E,F or G \bullet
	- Stage 3: travel from E,F or G to H

An intuitive approach to Bellman's equation (2)

Let $M(X)$ denote min distance from city X to city H

• **Stage 3**:
$$
M(E) = 3, M(F) = 6, M(G) = 2
$$
 (no decision).

- Stage 2: traveler may be in either B,C or D \bullet
	- If in $B,M(B) = \min\{4 + M(E), 6 + M(F), 7 + M(G)\}$ $min\{7,12,4\} = 4$ =
	- If in $C, M(C) = \min\{4 + M(E), 5 + M(F), 7 + M(G)\}$ $\min\{7,11,9\} = 7$ =
	- If in $D, M(D) = \min\{8 + M(E), 4 + M(F), 5 + M(G)\}$ $\min\{11, 10, 7\} = 7$ =
- Stage 1: traveler may go to either B,C or $D.$ Then,
	- $M(A) = \min\{7 + M(B), 8 + M(C), 5 + M(D)\}$ $\min\{11, 15, 12\} = 11$ =
- Hence, distance from A to H is minimized going through B and $G.$ Distance is 11.

An intuitive approach to Bellman's equation (3)

- The backward induction reasoning is captured by Bellman's \bullet Principle of Optimality.
- It asserts that "from any point on an optimal path, the remaining trajectory is optimal for the corresponding probleminitiated at that point".
- Remark: A myopic individual optimizing stage-by-stage, would have chosen to go from A to D . This is not in the estimal trainatenu from A to H optimal trajectory from A to H .

The value function

At time $t = 0$ the (maximum) value function for [\(47\)](#page-78-0) is

$$
v_0(s_0) = \max_{a_t} \left\{ \sum_{t=0}^{T-1} \beta^t f_t(a_t, s_t) + \beta^T v_T(s_T) \right\}
$$

$$
s_{t+1} = g_t(a_t, s_t), t = 0, 1, \dots, T-1 \right\}
$$

Similarly, the value function at time t is

$$
v_t(s_t) = \max_{a_{\tau}} \left\{ \sum_{\tau=t}^{T-1} \beta^{\tau-t} f_{\tau}(a_{\tau}, s_{\tau}) + \beta^T v_T(s_T) \right\}
$$

$$
s_{\tau+1} = g_{\tau}(a_{\tau}, s_{\tau}), \tau = t, \dots, T-1 \right\}
$$
(48)
Solution
(48)

Bellman's equation

- **•** the value function measures the best that can be obtained given the current state and the remaining time.
- Clearly, we can relate v_t and v_{t+1} as

$$
v_t(s_t) = \max_{a_t} \{ f_t(a_t, s_t) + \beta v_{t+1}(s_{t+1}) | s_{t+1} = g_t(a_t, s_t) \}
$$

=
$$
\max_{a_t} \{ f_t(a_t, s_t) + \beta v_{t+1}(g_t(a_t, s_t)) \}
$$
(49)

- **•** This is Bellman's equation. It shows a recursive relation between today's value f_t and all future values $\beta v_{t+1}(\cdot)$
- • The solution of Bellman's equation determines the optimal policy: *"An optimal policy has the property that, whatever theinitial state and decision are, the remaining decisions must constitute an optimal policy with regard to the state resultingfrom the first decision."* (Bellman, 1957)

The principle of optimality

- This property is known as the Principle of Optimality and guarantees the intertemporal consistency of the optimal policy.
- **•** Formally, we are looking at the FOC of Bellman's equation.
	- **•** The FOC maximizing Bellman's equation is

$$
\frac{\partial f_t}{\partial a_t} + \beta v'_{t+1}(s_{t+1}) \frac{\partial g_t}{\partial a_t} = 0, \ t = 0, \dots, T-1
$$

Let $\lambda_{t+1}=v'_{t+1}(s_{t+1}).$ Then, we can rewrite the FOC as

$$
\frac{\partial f_t}{\partial a_t} + \beta \lambda_{t+1} \frac{\partial g_t}{\partial a_t} = 0, \ t = 0, \dots, T - 1 \tag{50}
$$

Note that [\(50\)](#page-84-0) is precisely the Euler equation [\(2\)](#page-25-0) in the **Lagrangean approach**

Dynamic programming (5)

Equivalence with the Lagrangean approach

To see why $\lambda_t=v'$ function. Then, we can rewrite [\(49\)](#page-83-0) as (s_t) suppose $a_t=h_t(s_t)$ defines the policy

$$
v_t(s_t) = f_t(h_t(s_t), s_t) + \beta v_{t+1}(g_t(h_t(s_t), s_t)))
$$

Next, compute v_t^{\prime} :

$$
v'_{t}(s_{t}) = \frac{\partial f_{t}}{\partial s_{t}} + \frac{\partial f_{t}}{\partial a_{t}} \frac{\partial h_{t}}{\partial s_{t}} + \beta v'_{t+1} \left(\frac{\partial g_{t}}{\partial s_{t}} + \frac{\partial g_{t}}{\partial a_{t}} \frac{\partial h_{t}}{\partial s_{t}} \right)
$$

$$
= \frac{\partial f_{t}}{\partial s_{t}} + \frac{\partial f_{t}}{\partial a_{t}} \frac{\partial h_{t}}{\partial s_{t}} + \beta v'_{t+1} \frac{\partial g_{t}}{\partial s_{t}} + \beta v'_{t+1} \frac{\partial g_{t}}{\partial a_{t}} \frac{\partial h_{t}}{\partial s_{t}}
$$

$$
= \frac{\partial f_{t}}{\partial s_{t}} + \beta v'_{t+1} \frac{\partial g_{t}}{\partial s_{t}} + \frac{\partial h_{t}}{\partial s_{t}} \left(\frac{\partial f_{t}}{\partial a_{t}} + \beta v'_{t+1} \frac{\partial g_{t}}{\partial x s_{t}} \right) \qquad (51)
$$

Dynamic programming (6)

Equivalence with the Lagrangean approach (cont'd)

Using $\lambda_{t+1}=v'_{t+1}(s_{t+1})$, [\(50\)](#page-84-0) can be written as

$$
\lambda_t = \frac{\partial f_t}{\partial s_t} + \beta \lambda_{t+1} \frac{\partial g_t}{\partial s_t} + \frac{\partial h_t}{\partial s_t} \left(\frac{\partial f_t}{\partial a_t} + \beta \lambda_{t+1} \frac{\partial g_t}{\partial x s_t} \right) \tag{52}
$$

Substituting ([50\)](#page-84-0) in [\(52](#page-86-0)), it simplifies to

$$
\lambda_t = \frac{\partial f_t}{\partial s_t} + \beta \lambda_{t+1} \frac{\partial g_t}{\partial s_t}, \ t = 1, 2, \dots, T - 1 \tag{53}
$$

which is precisely FOC [\(3\)](#page-25-1).

Finally, ([50\)](#page-84-0), [\(53\)](#page-86-1) plus the transition equation and terminal \bullet condition constitute the equivalent system of FOCs as in theLagrangean approach characterizing the optimal policy.

An example to "construct" the Bellman equation

Consider the discrete-time finite horizon optimization problem:

$$
\max_{\{a_t\}} \sum_{t=0}^{T} f_t(a_t, s_t) \text{ s.t.}
$$

$$
s_{t+1} = g_t(a_t, s_t)
$$

$$
s_0 \text{ given}
$$

The backwards induction argument

Assume we are at $t=T$ and compute the optimal path in the last period:

$$
v_T(s_T) = \max_{a_T} f_T(a_T, s_T)
$$

This ^a static optimization problem. Assume it has ^a solution. Denote it by $a_{\mathcal{\mathcal{I}}}^{*}$ $_{T}^{\ast }(s_{T}).$ Then,

$$
v_T(s_T) = f_T(a_T^*(s_T), s_T). \tag{54}
$$

The backwards induction argument (cont'd)

- Assume we are at $t=T-1$ and compute the optimal path in the last two periods:
- s_{T-1} future payoff though the equation of motion $_1$ affects the (instantaneous) payoff through f_{T-1} $_1$ and the $s_T=g_{T-1}(a_{T-1})$ $_{1},s_{T-1})$
- Then,

$$
v_{T-1}(s_{T-1}) = \max_{a_{T-1}} \Big[f_{T-1}(a_{T-1}, s_{T-1}) + \beta v_T(s_T) \Big]
$$

=
$$
\max_{a_{T-1}} \Big[f_{T-1}(a_{T-1}, s_{T-1}) + \beta v_T(g_{T-1}(a_{T-1}, s_{T-1})) \Big]
$$

Suppose the solution is
$$
a_{T-1}^*(s_{T-1})
$$
. Then,

$$
\underbrace{v_{T-1}(s_{T-1})=f_{T-1}(a^*_{T-1})}_{\text{CSE} \text{ B}} = \underbrace{f_{T-1}(a^*_{T-1}(s_{T-1}),s_{T-1})}_{\text{CSE} \text{ B}} + \beta v_T(g_{T-1}(a^*_{T-1}(s_{T-1}),s_{T-1}))}_{\text{OPT}-\text{p.90/102}}
$$

The backwards induction argument (cont'd)

- Assume we are at $t=T-2$ and compute the optimal path in the last three periods:
- s_{T-2} future payoff though the equation of motion $_2$ affects the (instantaneous) payoff through f_{T-2} $_{\rm 2}$ and the $s_{T-1}=g_{T-2}(a_{T-1}% ,a_{T-2})\equiv\sum_{i=1}^{L}(a_{T-1}-a_{T-2})\equiv\sum_{i=1}^{L}(a_{T-1}-a_{T-2})\equiv\sum_{i=1}^{L}(a_{T-1}-a_{T-2})$ $_2,s_{T-2})$
- Then,

$$
v_{T-2}(s_{T-2}) = \max_{a_{T-2}} \Big[f_{T-2}(a_{T-2}, s_{T-2}) + \beta^2 v_{T-1}(s_{T-1}) \Big]
$$

=
$$
\max_{a_{T-2}} \Big[f_{T-2}(a_{T-2}, s_{T-2}) + \beta^2 v_{T-1}(g_{T-2}(a_{T-2}, s_{T-2})) \Big]
$$

Suppose the solution is a_7^* $f_{T-2}(a^*_{T-2}(s_{T-2}),s_{T-2})+\beta^2 v_{T-1}(g_{T-2}(a^*_{T-2}(s_{T-2}),s_{T-2}))$ $^*_{T=2}(s_{T=2}).$ Then, $v_{T=2}(s_{T=1})$ $_{2}) =$ $_{T-2}^{\ast}(s_{T-2}),s_{T-}% ^{\ast}(s_{T-2})\equiv\frac{\pi}{2}+\frac{\pi}{2}$ $_{2}) + \beta^{2}$ $^{2}v_{T-1}(g_{T-2}(a_{7}^{\ast}% ,a_{7}^{\ast}))=\sigma_{T-2}(a_{7}^{\ast}\circ a_{7}^{\ast})(a_{7}^{\ast}\circ a_{7}^{\ast})$ $_{T-2}^{\ast}(s_{T-2}),s_{T-2}))$

The Bellman equation - Illustration (5)

The backwards induction argument (cont'd)

- We repeat the argument until reaching $t = 0^\circ$
- To determine a^\ast we solve the FOC of the Bellman's equation \bullet in each period:

\n- \n At
$$
t = T, a_T^*(s_T)
$$
 is the solution of\n
$$
\frac{\partial v_T(s_T)}{\partial a_T} = \frac{\partial f_T}{\partial a_T} = 0
$$
\n
\n- \n At $t = T - 1, a_{T-1}^*(s_{T-1})$ is the solution of\n
$$
\frac{\partial v_{T-1}(s_{T-1})}{\partial a_{T-1}} = \frac{\partial f_{T-1}}{\partial a_{T-1}} + \beta \frac{\partial v_T}{\partial s_T} \frac{\partial s_T}{\partial g_{T-1}} \frac{\partial g_{T-1}}{\partial a_{T-1}} = 0
$$
\n
\n- \n At $t = T - 2, a_{T-2}^*(s_{T-2})$ is the solution of\n
$$
\frac{\partial v_{T-2}(s_{T-2})}{\partial a_{T-2}} = \frac{\partial f_{T-2}}{\partial a_{T-2}} + \beta^2 \frac{\partial v_{T-1}}{\partial s_{T-1}} \frac{\partial s_{T-1}}{\partial g_{T-2}} \frac{\partial g_{T-2}}{\partial a_{T-2}} = 0
$$
\n
\n- \n and so on and so forth\n
\n

An example

Setting of the problem

- Consider an investment a in a capital stock s that adds to the stock generating a return of 10 \in per unit.
- The stock of capital in period $t+1$ is given by $s_{t+1} = s_t + a_t$ \bullet
- Investment is costly according to $0.1a^2,$ \bullet
- Time interval is $t=0,1,2,3$. Assume away discounting. \bullet
- The initial stock of capital is zero. \bullet
- The problem is to find the optimal path of investment and \bullet capital stock.

Solution

• Formally, we want to solve

 $\max_{\{a_t\}} \sum_{t=0}^3 (10 s_t - (0.1) a_t^2)$ subject to $s_{t+1} = s_t + a_t, s_0 = 0, a_t \ge 0.$

An example (2)

Solution (cont'd)

- We start computing the optimal path at $t=3\overset{..}{.}$
	- $v_3(s_3) = \max_{a_3} (10s_3 (0.1)a_3^2)$
	- This is ^a static optimization problem. \bullet
	- Note that $10s_3 (0.1)a_3^2$ is decreasing in a_3 . \bullet
	- Therefore, $a_3^* = 0$ and $v_3^* \equiv v_3(s_3)|_{a_3^*} = 10 s_3$ \bullet

An example (3)

Solution (cont'd)

Next, compute the optimal path at $t=2\mathpunct{:}$

 $v_2(s_2) = \max_{a_2}(10s_2 - (0.1)a_2^2 + v_3(a_3^*))$ s.t. $v_3(a_3^*) = 10s_3$, $s_3 = s_2 + a_2$

\bullet It can be rewritten as

$$
v_2(s_2) = \max_{a_2} (10s_2 - (0.1)a_2^2 + 10s_3) =
$$

$$
\max_{a_2} (10s_2 - (0.1)a_2^2 + 10(s_2 + a_2))
$$

- Note that $(10s_2 (0.1)a_2^2 + 10(s_2 + a_2))$ is strictly concave \bullet in a_2 .
- Solving for the FOC, it follows $a_2^*=50$
- ... yielding $v_2^* \equiv v_2(s_2)|_{a_2^*} = 20s_2 + 250$

An example (4)

Solution (cont'd)

Next, compute the optimal path at $t=1\overset{..}{.}$

 $v_1(s_1) = \max_{a_1} (10s_1 - (0.1)a_1^2 + v_2(s_2^*))$ s.t. $v_2(s_2^*) = 20s_2 + 250$, $s_2 = s_1 + a_1$

\bullet It can be rewritten as

- $v_1(s_1) = \max_{a_1} (10s_1 (0.1)a_1^2 + 20s_2 + 250) =$ $\max_{a_1} (10s_1 - (0.1)a_1^2 + 20(s_1 + a_1) + 250)$
- Note that $(10s_1 (0.1)a_1^2 + 20(s_1 + a_1) + 250)$ is strictly concave in $a_2.$
- Solving for the FOC, it follows $a_1^*=100$
- ... yielding $v_1^* \equiv v_1(s_1)|_{a_1^*} = 30s_1 + 1250$

An example (5)

Solution (cont'd)

Finally, compute the optimal path at $t=0\overset{..}{.}$

- $v_0(s_0) = \max_{a_0} (10 s_0 (0.1) a_0^2 + v_1(s_1^*))$ s.t. $v_1(s_1^*) = 30s_1 + 1250$, $s_1 = s_0 + a_0$, $s_0 = 0$
- Combining the constraints, we obtain $s_1 = a_0$ and $v_1(s_1) = 30a_0 + 1250$
- Substituting them in $v_0(s_0)$ we obtain $v_0(s_0) = \max_{a_0} (-(0.1)a_0^2 + 30a_0 + 1250)$
- Solving for the FOC, it follows $a_0^*=150$

• ... yielding
$$
v_0^* \equiv v_0(s_0)|_{a_0^*} = 3500
$$

a_t optimal path

An example (7)

The Principle of Optimality

- **•** The additive separability of the objective function, the simple structure of the law of motion, and the fact that the total returnis the sum of the period return functions, imply that the total payoff associated over the whole planning horizon is simply the sum of the payoffs associated with different portions of thesequence over the corresponding subperiods.
- **•** More formally, any portion of an optimal trajectory is an optimal trajectory for an suitable subproblem in which the endpoint values of the state vector are constrained to be equal to the corresponding terms of the optimal sequence forthe whole problem.

Recall:*"An optimal policy has the property that, whatever theinitial state and decision are, the remaining decisions must constitute an optimal policy with regard to the state rwsultingfrom the first decision."* (Bellman, 1957)

The Principle of Optimality (2)

- This property is known as The Principle of Optimality \bullet (proof see e.g. De la Fuente (2002, ch.12))
- It guarantees the time-consistency of the optimal policy. \bullet
- This means that if at some point in time we recalculate the optimal solution from the current time and state, the solutionto this new problem will be the remainder of the original optimal plan.
- The following figure illustrates (with the liberty of representing continuous time):

 $s(t)$ represents the trajectory over the time interval $\left[t_0,T\right]$ induced by the optimal path a_t^* new problem of finding the optimal path in the time interval t_t^* . At $t=\tau$ we can envisage a $[\tau, T]$ with inital state variable $s(\tau).$ The Principal of Optimality says that such path (in red) is the same as the original one.

The Principle of Optimality (3)

