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Introduction

® Given a function y, = f(¢) its IS defined as the
difference in value of the function evaluated at ¢t + h and

t, Ay, = f(t+h)— (D).
Usually we take h = 1 so that Ay, = f(t+ 1) — f(¢).
The same logic taking as reference any time period:

Aye =f(t+1) — (1
Ayirr =f(t+2) = f(t +1)

| I

Ayprr =ft+7+1)— f(t+7)
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Introduction (2)

® Given Ay, the of y; is defined as the
difference in value of the first difference:

A2yt = Ay11 — Ay = (yt+2 — yt+1) — (yt+1 — yt) —
Yt+2 — 2Yp41 + Yt

® Similarly, A%y 11 = Ayrro — Ayer1 = Yer3 — 2Ysr2 + Yoy
etc, etc.

® Same logic for of y.
® Remark: Solution of a difference equation is independent of
the time period considered:
# solution of ay; 11 + by; = 0 is the same as the
# solution of ay;12 + by 1 = 0 and the same as the
o solution of ay; + by;—1 =0
o

because solution is a function satisfying the equation V<.
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Introduction (3)

® Focusin

CnYtin + Cn—1Yttn—1 + Cn—2Ytin—2 + - + c1y—1 + coyr = g(t)
where c; are given constants, ¢, # 0,¢co # 0, and g(¢) is a

known function.

® Strategy of analysis:

» Find the general solution of the homogeneous equation,
f(t, Ay, ..., Ap)

# Fins a particular solution of the non-homogeneous
equation, y(t)

# Solution of the difference equation is
y(t) = f(t, A1,..., An) +3(1)

» Additional conditions allow for solving for (A;,..., A,)
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Two theorems

® Theorem 1

If 4y1(¢) is solution of the homogeneous equation, so is
Ayq (t), A e R.

® Theorem 2

If y1(t) and y»(¢) are solutions of the homogeneous equation,
SO is Ay (t) + Agyg(t), (Al, AQ) c R.

® Proofs trivial. See Gandolfo (2010, ch 1)
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First-order difference equations

General form: ciy: — coye—1 = g(t) with ¢; #£ 0,¢9 # 0
Homogeneous equation:

cryr — coyp—1 = 0, or,with b = ¢g/cy

Yyt — byi—1 =0 |heql]

°

Suppose y(0) = yo. Then,
y1 — byo = 0 — y1 = byo
Yo — by = y2 — b(byo) = 0 — y2 = —b?yg

°

Therefore, v} = byy. In general,

Solution candidate: y!* = b' A, A to be determined [heq?2]
must satisfy [heql|Vt: vt A — b(b*=1)A = bt A — b* A =0, V¢

e o o @

MOVE'; U"B Barcelona S
IR,  Unved nons SEE: OPT - p.6/58



First-order difference equations (2)

Homogeneous equation y; — by;_1 =0
Behavior of solution /" = ' A

® Depends on the sign and (absolute) value of b:

b>0 monotone

b<0 oscillating

b] < 1 convergent

b > 1 divergent

b=1 constant at value A

b= —1 oscillating, constant amplitude {—A, A}
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First-order difference equations (3)

Behavior of solution y/* = b* A (cont'd)
® Six possible trajectories:

--------- e S Attt oottt
1 | 1
oscillating ! oscillating | monotone ! monotone
divergent | convergent ! convergent i divergent
| |
I ] ] » b
—1 0 1
oscillating constant
ye = A

ye = {—A, A}

® more graphically
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First-order difference equations (4)
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First-order difference equations (5)

Particular solution of general equation - Case 1: ¢g(t) = a
® Recall: c1y: + coyr—1 = g(t) [heq3]

Solution has same structure as g(t)

Lety, = pu, Vit

Substitute it into [heq3] to obtain ¢y + cop = a

a
c1+cCo

or u =

© o o o b

so that a particular solution of |heq3] is

a
c1 + Co

Y =

yp = —D'A+ 4

C1+Co
® Remark: If ¢; + g = 0 use 7, = tu, Vi to obtain g, = =4t
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First-order difference equations (6)

Determining A
#® Additional condition. Let y(0) = yq

® Then,
a
— A+
/0 c1 + Co
or
a
A=y —
H0 c1 + ¢co

and solution of the difference equation is

yr = —0b' [?Jo —

f g Barcelona
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First-order difference equations (7)

Particular solution of general equation - Case 2: ¢(t) = Bd'
® Recall: ciy + coyr—1 = g(?) [heq3]

#® Solution has same structure as g(t)
9 Let yt — ,udt, \V/t
® Substitute it into [heg3] to obtain c;ud! + coud'~! = Bd!
® ord~Yeipud+ cop — Bd) = 0 so that p = CldBfCO
#® so that a particular solution of |heg3] is
- — _ Bd dt
yt C1d-|—Co
o

Yt = _btA + CldB—lc—lCO dt

® Remark: If ¢;d + ¢y = 0 use 7, = tudt, vt to obtain 7, = =24¢d"

Co
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First-order difference equations (8)

Particular solution of general equation - Case 3: ¢g(t) = ag + a1t

® Remark: Argument generalizes to a general polynomial of

degree m.
® Recall: c1y: + coyr—1 = g(t) [heq3]
#® Solution has same structure as ¢g(t)
® lety, = po+ pit, vt
#® Substitute it into [heg3] to obtain

c1(po + pat) + colpo + p1(t — 1)) = ap + ast
® ort(ui(co+c1)—ar)+ (polcog+c1) — prcg —ag) =0
® that will be satisfied Vi if

ui(co +c1) —ap =0
fo(co + 1) — pico — ag 20}
M(VE’ URB FEEs
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First-order difference equations (9)

Particular solution of general equation - Case 3 (cont’d)
® solving the system for g and u1, we obtain

_ ai
M1 = co + c1
a1co + ao(Co + Cl)
1o = (co+ 1)

® so that a particular solution of |heq3] is

_aico+ ap(co +c1) ai
yt — 9 t
(co + 1) co + 1
g = —btA 4 220 T a0l il ) @y
(C() -+ (31) co + C1

f g Barcelona
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First-order difference equations (10)

Particular solution of general equation - Case 3 (cont’d)
o |f (Co + Cl) =0, use y, = t(MO + ,ult).

® Substituting it in [heg3] we obtain
—2t(u1co — a1) + (pu1co — poco — ag) =0

® that is verified Vit for

ai
M1 = —
Co
aip — ao
Ho —
Co

#® so that a particular solution of |heq3] is
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An application: Stability of the Walrasian equilibrium

Preliminary - Static stability

® Static stability & Law of supply and demand:

» define individual excess demand of good £ as
eik(p) = ik (p) — wi

» define aggregate excess demand of good £ as
zk(p) = Zie] eik(Pp)

» define a walrasian price p* as a price vector satisfying
zi(p*) = 0,VEk

o rewrite zx(p) = Dr(p) — Sk(p)

® p* satisfies law of supply and demand iff dfi‘;ip) < 0, VEk.

® cequivalently, dD’“( ) < dfl’;( ) ,VEk

® Remark: always sat|sf|ed if D, <0andS; > 0,Vk

M(VES unB a8
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An application: Stability of the Walrasian equilibrium (2)

F7%
D
0 ; >
Pk
2k(p)
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Dynamic Stability of the Walrasian equilibrium

® (General competitive model is static.

® |Introduce a fictitious time schedule and a price formation
mechanism.

® Attt =1 arandom consumer makes an initial offer to all other
consumers. Verify if z;.(p) = 0.

® Attt = 2 another random consumer makes an offer. Prices
adjust. Verify if zx(p) = 0.

® Protocol goes on and on until the prices do not change from
one period to the next (i.e. zx(p) = 0).

® Formally, the price formation mechanism (in each market k) is
described by:

Pt — DPt—1 = Tz(pt—l) [Dynl]

where r > 0 and the subindex k is avoided to simplify notation.
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Dynamic Stability of the Walrasian equilibrium - Example

® For a representative market £, let

Dy(pi) = apy + b
Si(pt) = Aps + B

® For future reference, the equilibrium price at any period ¢ is

*

® Excess demand functionint¢ — 1 is:
2(pt—1) = (a—A)pt—1 + (b—B)  [Dyn2]
® Substituting [Dyn2] in [Dynl] we obtain

pt =p—1[l +r(a— A)] +r(b— B)
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Dynamic Stability of the Walrasian equilibrium - Example (2)

® This is a first-order difference equation.

® Assume price att = 0is pg. The solution of this difference
equation is

b— B

Pt = [po—A—_a}(l%—r(a—A))t%-b_B

A—a

, or
pt = (po —p )L +r(a—A)" +p°

® The constant term is precisely p*.

® Theterm (pg — p*) captures the shock driving the market
away from equilibrium.

® Theterm (1 +r(a — A))! captures the adjustment process
from pg to p*

® Finally r captures the degree of the adjustment.
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Dynamic Stability - Graphical analysis

® Recall p; =pi—1 +r2(pi—1) = f(Pe—1)
#® The function f(p;—1) may be increasing or decreasing
® The following figure shows its graphical derivation (r = 1):

Pt A Pt A
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Dynamic Stability - Graphical analysis (2)

® Assume f(p;_1) is increasing and |f’| < 1.
® The following figure describes the stability of p*

pi A Pt A
qo
f(De-1)

s *
P2rag-== P2 — P
P1f ! : 1

L
(|
/ | .
por | ! g Po .
Po P1p2 40 py_q 1 2 3t
(a) (b)
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Dynamic Stability - Graphical analysis (3)

Consider pg placing us at point K.
Next period, p1 = f(po), placing us at point M
Next period, po = f(p1), and so on and so forth.

© o o b

The process converges to p* located at the intersection of the
function f(p:—1) with the 45-degree line.

°

A parallel argument develops if the initial price is qo.

°

The figure on the right hand side shows the “temporal”
trajectory of the price.

® Note that f increasing and slope < 1 generate a monotonic
convergent trajectory.
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Dynamic Stability - Graphical analysis (3)

® Consider f decreasing and |f’| < 1
® the trajectory cyclically converges towards p*

pt‘ pi‘

P1 > 1

/
P3 -——A / P3

P2b-r------ >< \\ P2
/ J(pe-1)
Pol-

Po

(a) (b)
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Dynamic Instability - Graphical analysis

® Consider f increasing and |f/| > 1
® the trajectory monotonically diverges from p*

DA

200

Pif

P2

P2 P1 Po (o

(a)

Pt—1

Pt A
qq
| P
Po |
P1
P2 —
>
1 2 3 ¢t

Markets, Oganizatons
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Dynamic Instability - Graphical analysis (2)

® Consider f decreasing and |f/| > 1
® the trajectory cyclically diverges from p*

Pt A pt‘

N
ol 4 »

PolL - Po

P2l-—- \ P2
f(pt—l)

p2 Po P1 D1 1 2 3

(a) (b)
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Dynamic Instability - Graphical analysis (3)

® Consider f decreasing and |f'| =1
® the trajectory describes a constant cycle around p*

Di A Di A
P2t+1 E—\ P2t+1 —
p P
Pat | ——-— Pat
|~ (pe-1)
|
: > >
Dot D2t+1 D1 1 2 3 ¢
(a) (b)
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Compound interest & Present Discounted Value

® An individual opens a bank account
» Initial wealth wq In period ¢t =0
# In each t individual deposits income y;
# In each ¢t individual withdraws ¢; for consumption
» Interest rate r constant along time

Wy = (1 + r)wt_l + (yt — Ct),\v/t
Definea=(1+7r),b; =y — ¢
SO Wy = AW¢_1 + bt [PDVl]

® o o b

Remark
Generalization of Case 1. Constant varies every period

elona 5
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Compound interest & Present Discounted Value (2)

#® Solution of [PDV1]. Algebraic argument
= 1,w1 = awy + bl
t = 2ws = awy + by = a*wp + aby + by

t = 3,w3 = awsy + by = a®wy + a®by + aby + bs

¢
w, = alwy + E at_kb/rC
k=1
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Compound interest & Present Discounted Value (3)

® Remark: If b = b, Vt

t t
E atFb, = b E al™F =
k=1 k=1

t—1 t—9 1—a
ba”™ " +a "+ F+a+1)=0b
1—a
® Then,
wy = a’wy + b —a(wo— )—|—
1 —a 1 —a 1l —a

and we are back to Case 1.

M VE: UMB PRl

BT, Unensatbons SEE: OPT - p.30/58



Compound interest & Present Discounted Value (4)

® Solution: w; = alwg + Y5 _, a' b, or
= (1+7r)fwo + D51 (1 + )" *(yx — )
& Multiply by (1 +7)~* to obtain
(1 +r) " wp = wo + Yy (14 7) " (yk — )
® Interpretation:

# Individual attime ¢t =0
o (1+r)"tw, is the PDV of the assets at time ¢

» PDV equals the sum of
¢ initial wealth wy

s PDV of future deposits St _ (1 +7)~*y,
s PDV of future withdrawals Y% _ (1 +r)~*

nnnnnn
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Compound interest & Present Discounted Value (5)

® Solution:
wy = (1+7) wo + Yy (1+7)""F(yr — 1)

® |Interpretation - cont:

# Individual at period ¢

o assets wy, reflect
& Interest earned on initial deposit wy

s interest earned on all later deposits >, _, (1 + )t Fy
s interest foregone from withdrawals 37, _, (1 4 7) ¢,

MOVE'; U"B Barcelona i P
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Second-order difference equations

The difference equation

® The general formulation is
Coyt + C1Yi—1 + coYi—2 = g(t)
® solution follows same strategy as 1st-order difference
equations and 2nd-order differential equations.
» Find the general solution of the homogeneous equation,
f(t, Ay, ..., Ap)
» Fins a particular solution of the non-homogeneous
equation, 7(t)
# Solution of the difference equation is
y(t) = f(t, Ary. .o, An) +3()
» Additional conditions allow for solving for (A4,..., A,)
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Second-order difference equations (2)

The homogeneous equation

9

9

°

the associated homogeneous equation is:
CoYt + C1Yi—1 + coYp—2 = 0

Rewrite it as y; + b1yi—1 + boyy—o = 0 2heql],
where by = 61/02 and by = CQ/CQ

To solve it, follow a similar argument as in the 1st-order
difference equations

Solution candidate: vy = m!, m #0  [2heq2)]
solution must satisfy [2heql]Vt :

mt + blmt_l -+ bgmt_Z =0 or
mt(l + blm_l -+ bgm_Q) =0 or
mt+2(m2 + mby + bz) =0

M(JVE® UMB
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Second-order difference equations (3)

The homogeneous equation (cont'd)
® Implying
m? +mby + by =0
[ ]

® Roots of this polynomial are

—by £ /b? — 4by
2

(m1,m2) =

® Let A =0b? — 4by. Three cases A = 0
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Second-order difference equations (4)

Solving the homogeneous equation. Case 1: A > 0

® |n this case we have two real roots. Thus, both m; and m»
satisfy y: + biyi—1 + bayy—2 =0

® Applying theorem 2, the general solution of the homogeneous
equation is
y(t) = Aym! + Aom®, where Ay, A, are arbitrary constants.

#® The evolution of y(t) as t — oo is monotonic. The stability of
the solution depends on the sign of the roots.

® TJo assess the sign of the roots we appeal to

Let P(x) be a polynomial with real coefficients and terms in descending powers of x.
(a) The number of positive real zeros of P(x) is smaller than or equal to the number
of variations in sign occurring in the coefficients of P(x). (b) The number of negative
real zeros of P(x) is smaller than or equal to the number of continuations in sign
occurring in the coefficients of P(x).

MOVE'; unB Barcelona S
IR,  Unved nons SEE: OPT - p.36/58



Second-order difference equations (5)

Solving the homogeneous equation. Case 1: A > 0 (cont'd)

#® Recall the quadratic equation we are studying is
m? +bym+ by =0
o |f , there are two variations of sign.

Therefore, the two roots m; > 0 and my > 0. Accordingly,
m} > 0,Vt and m} > 0,Vt and y; will show a monotone

trajectory.
® |n any other circumstance, cyclical trajectory.

f g Barcelona
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Second-order difference equations (6)

Solving the homogeneous equation. Case 1: A > 0 (cont'd)

® Namely,
o |f , there are two continuations of sign.
Therefore, the two roots m; < 0 and ms < 0.
o |f or , there Is one

continuation and one variation of sign. Therefore, one
root will be positive and the other negative.

o If , then, m; = —me.
o |f , then, m; = O,mj — —byq.

® Since the sign of each root may be positive or negative, great
variety of trajectories. However,

> 0 if t even
< 0 if t odd

()

® |[f m; < 0then sgn mt{

® Any trajectory will converge iff |m1| < 1 and |m2| < 1.

elona 5
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Second-order difference equations (7)

Solving the homogeneous equation. Case 2: A =0

9

© o b

°

In this case m; = my = m = —3b;
y(t) = m' is a general solution of the homogeneous equation.

Another general solution of the homogeneous equation is tm’.
To verify, substitute it in the homogeneous equation to obtain

AN

mt +b1(t — )mt L+ bae(t —2)m! ™2 =0
Rewrite it as

mt=2 (m% + by (t— 1)+ bo(t — 2)) =0

mt=?t (T/T\LQ + bym + bg) —bim — 2by =0

uuuuuuuuuuuuuuuuu
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Second-order difference equations (8)

Solving the homogeneous equation. Case 2: A = 0 (cont'd)

® Note that the expression in brackets is the characteristic
equation. Also recall m # 0. Hence, the previous reduces to

—bym — 2by =0

® Substituting m by its value, we obtain

1
b1 (=5b1) =262 =0

1
Z(b% _ 4b2) — 0

® Thisis, A =0 as we are assuming.

°

Therefore, y; = tm! is also a general solution of the
homogeneous equation.
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Second-order difference equations (9)

Solving the homogeneous equation. Case 2: A = 0 (cont'd)

® Applying theorem 2, the general solution of the homogeneous
equation is:
y; = Aymt + Aotm! = (A1 + Aot)m® where A; and A, are
arbitrary constants.

® When |m| < 1, the trajectory of y; will converge because

» the converging effect of m' dominates
» the divergent effect of ¢.

elona 5
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Second-order difference equations (10)

Solving the homogeneous equation. Case 3: A < 0
® We skip this case.
® See 2nd-order differential equations for an intuition.
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Second-order difference equations (11)

Particular solution of the non-homogeneous equation
® coy + c1yi—1 + coyr—2 = g(t) 2heq3]
#® Solution depends on the structure of ¢(t)
Case 1: g(t) constant
® letg(t) =k, keR
® Tryassolutiony, =s, s€ R

® Theny, =y1 = y—o = s. Substituting in [2heq3] we obtain
S(Co + C1 + C2) =k

® sothaty, = —~_— is a particular solution.

® lfcog+c+co=0,thentry gt = st. In this case, substituting in

2heq3], we obtain j, = +2C as a particular solution.

® Ifc; +2¢co =0, try 3, = st?, to obtain 7, = E as a particular

ifion
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Second-order difference equations (12)

Case 2: g(t) exponential
® letg(t)=k' keR
® Try as solution 7, = skt, s € R
® Substituting in [2heq3] we obtain

coskl + c1skt ™1 + coskt ™2 = Kt
Skt_2((30 +c1k + CokQ) = k' so that

k2
= and
> co + c1k + cok?

kt—|—2

Yy =

co + c1k + cok?

2

® 7, is well-defined if k # S5yt

elona 5
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Second-order difference equations (13)

Case 3: g(t) polynomial
® Similar approach
Stability (convergence) of the solution path
® Let
ye = Aimy + Aamy + 7,

be the the solution of

Y + b1ys—1 + boyr—o = g(t)

® Then,

» Any trajectory will converge iff |m1| <1 and |ms| < 1, or
equivalently

» Any trajectory will converge iff |b1| < (1 +b2) and by < 1

4 ) Barcelona
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Second-order difference equations (14)

Determining A; and A,
® Two additional conditions needed.
® Usually, value of y; at two moments in time.
® Oftenatt=0—yandt=1— 1
lllustration (Gandolfo, ch 4)
® letyy=0, y1=-2, b1 =18, by =0.8

® The equation to solve becomes: y; + 1.8y;_1 + 0.8y;_o =0

® Characteristic equation: m? +1.8m + 0.8 = 0

® Roots: m; = —1, mg = —0.8

o :m; < 0,|ms| < 1but|mi| =1= cyclical
non-convergent trajectory.

#® General solution of difference equation:

Yt = Al(—l)t + AQ(—OS)t

elona 5
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Second-order difference equations (15)

lllustration (Gandolfo, ch 4) (cont'd)
® Substitute values of yy and y; to obtain

0=A;+ A>

Ay = 10. Ay = —10
—2:—A1—O.8A2}:> 1= 140, A

® Finally, y; = 10(—1)* — 10(0.8)"
® Cyclical with increasing amplitude until reaching a limit cycle
given by (—10, 10):
o limy oo (—10(0.8)") =0
s 10(—1)! = {-10,10}
» see figure and table of values

uuuuuuuuuuuuuuuuuuuuuuu SEE OPT - p.47/58



Second-order difference equations (16)
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Second-order difference equations (16bis)

t | 0 1 2 3 4 5 6 7 8 9
vy | 0 -2 36 -488 590 -6.72 7.38 -7.90 8.32 -8.
t [ 10 11 12 13 14 15 16 17 18  1¢
y(t) | 893 -9.14 931 -945 956 -9.65 9.72 -9.77 9.81 -9.
t | 20 21 22 23 24 25 26 27 28  2¢
y() | 9.88 -9.91 9.93 -994 995 -9.96 9.97 -9.97 998 -9

f g Barcelona
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Second-order difference equations (17)

Determining A; and A, lllustration 2
® letyy=0,y1=-2,b61=1,by=1/4
The equation to solve becomes: y; + y:—1 + iyt—g =0
Characteristic equation: m? +m + 1 =0
Roots: m1 = mo =m = _71

:m < 0and |m| < 1 = cyclical convergent trajectory.

© o o o ©

: A second solution is tm.

MOVE'; U"B Barcelona S
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Second-order difference equations (18)

lllustration 2 (cont'd)
#® General solution of homogeneous difference equation:

t
e = (A1 + tA) (—71)
® Substitute values of yo and y; to obtain

0=A4; )

1

et an(3),

» = A1 =0, Ay =14

® Finally, y, = 4t(5)!

uuuuuuuuuuuuuuuuuuuuuu SEE: OPT - p.51/58



Second-order difference equations (19)
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Second-order difference equations (20)

Determining A; and A, lllustration 3

9

© o o ©

Letyo =0, y1 = —2, by = —2, by = 3/4

The equation to solve becomes: y; — 2y 1 + %yt—z =0
Characteristic equation: m? — 2m + 3 = 0

Roots: m1 =3/2, mg =1/2

. m; > 0, therefore, monotonic trajectory. Also
my > 1 = monotonic divergent trajectory.

MVE® U

uuuuuuuuuuuuuuuuu

de!

" B Barcelona s
..................... e SEE:
b S

nnnnnn

OPT - p.53/58



Second-order difference equations (21)

lllustration 2 (cont'd)
#® General solution of homogeneous difference equation:

t t
ye = A1 (%) + Ao (%)
® Substitute values of yo and y; to obtain

0=A4; + A5

9 —A,(3/2) + A2(1/2)} — A =2 A =2

® Finally, y; = (—2) (g)t N 2(%)'5

elona 5
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Second-order difference equations (22)
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Second-order difference equations (23)

Determining A; and A, lllustration 4

9

© o o ©

Let yo =0, y1 = —2, by = —3/2, by = 35/64

The equation to solve becomes: y; — %yt_1 + 2—Zyt—2 =0
Characteristic equation: m? — 3m + 22 = 0

Roots: my =7/8, mg =5/8

. m; > 0, therefore, monotonic trajectory. Also
m; < 1 = monotonic convergent trajectory.

MVE® U
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Second-order difference equations (24)

lllustration 4 (cont'd)
#® General solution of homogeneous difference equation:

t t
ye = A1 (%) + Ao (%)
® Substitute values of yo and y; to obtain

0=A4; + A5

—2=A,(7/8) + A2(5/8)} = A1=-8 A =8

® Finally, y; = (—8) (g)t N 8(%)'5

elona 5
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Second-order difference equations (25)
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