Optimization. A first course of mathematics foreconomists

Xavier Martinez-Giralt

Universitat Autònoma de Barcelona

xavier.martinez.giralt@uab.eu

III.2 Economic Dynamics - Difference equations

Introduction

- Given a function $y_t = f(t)$ its first difference is defined as the difference is defined as the \bullet difference in value of the function evaluated at $t + h$ and $t, \ \Delta y_t = f(t + h) - f(t).$
- Usually we take $h=1$ so that $\Delta y_t = f(t+1)-f(t)$. \bullet
- The same logic taking as reference any time period:

$$
\Delta y_t = f(t+1) - f(t)
$$

\n
$$
\Delta y_{t+1} = f(t+2) - f(t+1)
$$

\n
$$
\vdots
$$

\n
$$
\Delta y_{t+\tau} = f(t+\tau+1) - f(t+\tau)
$$

Introduction (2)

- Given Δy_t the second difference of y_t is defined as the difference in value of the first difference: $\Delta^2 y_t = \Delta y_{t+1} - \Delta y_t = (y_{t+2} - y_{t+1}) - (y_{t+1} - y_t) =$ $y_{t+2} - 2y_{t+1} + y_t$
- Similarly, $\Delta^2 y_{t+1} = \Delta y_{t+2} \Delta y_{t+1} = y_{t+3} 2y_{t+2} + y_{t+1}$ etc, etc.
- Same logic for third, fourth, ... n-th difference of $y_t.$ \bullet
- Remark: Solution of ^a difference equation is independent of the time period considered:
	- solution of $ay_{t+1} + by_t = 0$ is the same as the
	- solution of $ay_{t+2}+by_{t+1}=0$ and the same as the \bullet
	- solution of $ay_t + by_{t-1} = 0$ \bullet
	- because solution is a function satisfying the equation $\forall t.$

Introduction (3)

Focus in Linear Difference Equations with constant coefficients:

 $c_n y_{t+n} + c_{n-1} y_{t+n-1} + c_{n-2} y_{t+n-2} + \cdots + c_1 y_{t-1} + c_0 y_t = g(t)$ where c_j are given constants, $c_n\neq 0, c_0\neq 0$, and $g(t)$ is a known function.

- **Strategy of analysis:**
	- Find the general solution of the homogeneous equation, $f(t, A_1, \ldots, A_n)$
	- Fins ^a particular solution of the non-homogeneousequation, $\overline{y}(t)$
	- Solution of the difference equation is $y(t) = f(t, A_1, \ldots, A_n) + \overline{y}(t)$
	- Additional conditions allow for solving for (A_1,\ldots,A_n)

Two theorems

P Theorem 1

If $y_1(t)$ is solution of the homogeneous equation, so is $Ay_1(t), A \in \mathbf{R}$.

P Theorem 2

If $y_1(t)$ and $y_2(t)$ are solutions of the homogeneous equation, so is $A_1y_1(t) + A_2y_2(t), (A_1, A_2) \in \mathbb{R}$.

Proofs trivial. See Gandolfo (2010, ch 1)

First-order difference equations

General form: $c_1y_t - c_0y_{t-1} = g(t)$ with $c_1 \neq 0, c_0 \neq 0$ Homogeneous equation:

$$
c_1y_t - c_0y_{t-1} = 0
$$
, or, with $b \equiv c_0/c_1$
 $y_t - by_{t-1} = 0$ [*heq1*]

General solution of homogeneous equation

Suppose $y(0) = y_0$. Then,

$$
y_1 - by_0 = 0 \rightarrow y_1 = by_0
$$

$$
y_2 - by_1 = y_2 - b(by_0) = 0 \rightarrow y_2 = -b^2y_0
$$

- ...
- Therefore, y \boldsymbol{h} $t^h_t=b^t y_0.$ In general,
- Solution candidate: y_{t}^h $t^h_t=b^tA, A$ to be determined $[heq2]$ \bullet
- must satisfy $[heq1]\forall t\colon b^t A-b(b^{t-1})$ $^{1})A=b^{t}A-b^{t}A=0, \forall t$

First-order difference equations (2)

Homogeneous equation $y_t-\,$ Behavior of solution $y^h_t = 0$ $-\ by$ $t-1=0$ \boldsymbol{h} $\frac{h}{t}=b^tA$

Depends on the sign and (absolute) value of b :

First-order difference equations (3)

Behavior of solution y \boldsymbol{h} $\frac{h}{t}=b^tA$ (cont'd)

Six possible trajectories:

more graphically

First-order difference equations (4)

OPT – p.9/58

Particular solution of general equation - Case 1: $g(t)=a$

• Recall:
$$
c_1y_t + c_0y_{t-1} = g(t)
$$
 [*heq3*]

Solution has same structure as $g(t)$

Let
$$
\overline{y}_t = \mu, \forall t
$$

- Substitute it into $[heq3]$ to obtain $c_1\mu+c_0\mu=a$
- or $\mu=\frac{a}{c_{1}+}$ c_1+c_0
- so that a particular solution of $[heq3]$ is

$$
\overline{y}_t = \frac{a}{c_1 + c_0}
$$

Solution of the 1st-order difference equation:
$$
y_t = -b^t A + \frac{a}{c_1 + c_0}
$$

Remark: If $c_1 + c_0 = 0$ use $\overline{y}_t = t\mu, \forall t$ to obtain $\overline{y}_t = \frac{-at}{c_0}$

Determining A

Additional condition. Let $y(0) = y_0$

Then, \bullet

$$
y_0 = A + \frac{a}{c_1 + c_0}
$$

or

$$
A = y_0 - \frac{a}{c_1 + c_0}
$$

and solution of the difference equation is

$$
y_t = -b^t \left[y_0 - \frac{a}{c_1 + c_0} \right] + \frac{a}{c_1 + c_0}
$$

Particular solution of general equation - Case 2: $g(t) = B d^t$

- Recall: $c_1y_t+c_0y_{t-1}=g(t)$ [heq3]
- Solution has same structure as $g(t)$
- Let $\overline{y}_t = \mu d^t, \forall t$
- Substitute it into $[heq3]$ to obtain $c_1\mu d^t+c_0\mu d^t$ −1 $1 = B d^t$
- or d^t 1 $^{1}(c_{1}\mu d+c_{0}\mu-\$ $B - B$ = 0 so that $\mu = \frac{Bd}{c_1 d + c_2}$ $c_1d{+}c_0$
- so that a particular solution of $[heq3]$ is $\overline{y}_t=\frac{B d}{c_1 d \pm}$ $c_1d{+}c_0$ d^t
- **Solution of the 1st-order difference equation:** $y_t = -b^t A + \frac{Bd}{c_1d+c_0}$ d^t
- Remark: If $c_1d+c_0=0$ use $\overline{y}_t=t\mu d^t, \forall t$ to obtain $\overline{y}_t=\frac{-Bd}{c_0}$ c_{0} td^t

Particular solution of general equation - Case 3: $g(t)=a_0+a_1t$

- Remark: Argument generalizes to ^a general polynomial of \bullet degree m_{\cdot}
- Recall: $c_1y_t + c_0y_{t-1} = g(t)$ [heq3]
- Solution has same structure as $g(t)$

• Let
$$
\overline{y}_t = \mu_0 + \mu_1 t, \forall t
$$

- Substitute it into $[heq3]$ to obtain \bullet $c_1(\mu_0+\mu_1t)+c_0(\mu_0+\mu_1(t (-1)) = a_0 + a_1t$
- or $t(\mu_1(c_0+c_1)$ $(a_1) + (\mu_0(c_0 + c_1))$ $- \mu_1 c_0 - a_0) = 0$
- that will be satisfied $\forall t$ if

$$
\mu_1(c_0 + c_1) - a_1 = 0
$$

$$
\mu_0(c_0 + c_1) - \mu_1c_0 - a_0 = 0
$$

Particular solution of general equation - Case 3 (cont'd)

solving the system for μ_0 $_0$ and μ_1 , we obtain

$$
\mu_1 = \frac{a_1}{c_0 + c_1}
$$

$$
\mu_0 = \frac{a_1 c_0 + a_0 (c_0 + c_1)}{(c_0 + c_1)^2}
$$

so that a particular solution of $[heq3]$ is

$$
\overline{y}_t = \frac{a_1c_0 + a_0(c_0 + c_1)}{(c_0 + c_1)^2} + \frac{a_1}{c_0 + c_1}t
$$

Solution of the 1st-order difference equation:

$$
y_t = -b^t A + \frac{a_1 c_0 + a_0 (c_0 + c_1)}{(c_0 + c_1)^2} + \frac{a_1}{c_0 + c_1} t
$$

First-order difference equations (10)

Particular solution of general equation - Case 3 (cont'd)

• if
$$
(c_0 + c_1) = 0
$$
, use $\overline{y}_t = t(\mu_0 + \mu_1 t)$.

- Substituting it in $\left[heq3\right]$ we obtain $-2t(\mu_1c_0-a_1)+(\mu_1c_0-\mu_0c_0-a_0)=0$
- that is verified $\forall t$ for

$$
\mu_1 = \frac{a_1}{c_0}
$$

$$
\mu_0 = \frac{a_1 - a_0}{c_0}
$$

so that a particular solution of $[heq3]$ is

$$
\overline{y}_t = t \left(\frac{a_1 - a_0}{c_0} + \frac{a_1}{c_0} t \right)
$$

An application: Stability of the Walrasian equilibrium

Preliminary - Static stability

- Static stability⇔ Law of supply and demand:
	- define individual excess demand of good k as $e_{ik}(p) = x_{ik}(p)$ w_{ik}
	- define aggregate excess demand of good k as $z_k(p) = \sum_{i \in I}e_{ik}(p)$
	- define a walrasian price p^* as a price vector satisfying $z_k(p^*)=0, \forall k$

• rewrite
$$
z_k(p) = D_k(p) - S_k(p)
$$

 p^* satisfies law of supply and demand iff $\frac{dz_k(p)}{dp_k}$ $< 0, \forall k$.

$$
\bullet \quad \text{equivalently, } \tfrac{dD_k(p)}{dp_k} < \tfrac{dS_k(p)}{dp_k}, \forall k
$$

Remark: always satisfied if $D'_k < 0$ and $S'_k > 0, \forall k$

An application: Stability of the Walrasian equilibrium (2)

Dynamic Stability of the Walrasian equilibrium

- General competitive model is static. \bullet
- Introduce ^a fictitious time schedule and ^a price formation \bullet mechanism.
- At $t=1$ a random consumer makes an initial offer to all other consumers. Verify if $z_k(p)=0$.
- At $t = 2$ another random consumer makes an offer. Prices adjust. Verify if $z_k(p)=0$.
- Protocol goes on and on until the prices do not change from \bullet one period to the next (i.e. $z_k(p)=0$).
- Formally, the price formation mechanism (in each market k) is described by:

$$
p_t - p_{t-1} = rz(p_{t-1}) \qquad [Dyn1]
$$

where $r >0$ and the subindex k is avoided to simplify notation.

Dynamic Stability of the Walrasian equilibrium - Example

For a representative market k , let

$$
D_t(p_t) = ap_t + b
$$

$$
S_t(p_t) = Ap_t + B
$$

For future reference, the equilibrium price at any period t is

$$
p_t = \frac{b - B}{A - a} = p^*
$$

Excess demand function in $t-1$ is:

$$
z(p_{t-1}) = (a - A)p_{t-1} + (b - B) \qquad [Dyn2]
$$

Substituting
$$
[Dyn2]
$$
 in $[Dyn1]$ we obtain

$$
p_t = p_{t-1}[1 + r(a - A)] + r(b - B)
$$

Dynamic Stability of the Walrasian equilibrium - Example (2)

- This is ^a first-order difference equation. D
- Assume price at $t=0$ is $p_0.$ The solution of this difference equation is

$$
p_t = \left[p_0 - \frac{b - B}{A - a}\right] (1 + r(a - A))^t + \frac{b - B}{A - a},
$$
 or

$$
p_t = (p_0 - p^*)(1 + r(a - A))^t + p^*
$$

- The constant term is precisely p^{\ast} \bullet .
- The term $(p_0-p^{\ast}%)^{2n}$ away from equilibrium. $^{\ast})$ captures the shock driving the market
- The term $(1+r(a-\)$ $(A))^t$ captures the adjustment process from p_0 to p^\ast
- Finally r captures the degree of the adjustment.

Dynamic Stability - Graphical analysis

• Recall
$$
p_t = p_{t-1} + rz(p_{t-1}) \equiv f(p_{t-1})
$$

- The function $f(p_{t-1})$ may be increasing or decreasing
- The following figure shows its graphical derivation $(r=1)$:

Dynamic Stability - Graphical analysis (2)

- Assume $f(p_{t-1})$ is increasing and $|f^{\prime}|$ |
|
| \blacktriangleright $|<1$.
- The following figure describes the stability of p^{\ast}

Dynamic Stability - Graphical analysis (3)

- Consider p_0 $_{\rm 0}$ placing us at point $K.$ ᠊
- Next period, $p_1=f(p_0)$, placing us at point M \bullet
- Next period, $p_2=f(p_1)$, and so on and so forth.
- The process converges to p^* located at the intersection of the function $f(p_{t-1})$ with the 45-degree line.
- A parallel argument develops if the initial price is $q_0.$ D
- The figure on the right hand side shows the "temporal" \Box trajectory of the price.
- Note that f increasing and slope < 1 generate a monotonic convergent trajectory.

Dynamic Stability - Graphical analysis (3)

- \bullet Consider f decreasing and $|f^{\prime}% (f)|\leq|f|$ | $|<1$
- the trajectory cyclically converges towards p^{\ast} \bullet

Dynamic Instability - Graphical analysis

- Consider f increasing and $|f^{\prime}% (f)|\leq|f|$ |
|
| $|>1$
- the trajectory monotonically diverges from p^{\ast} \bullet

Dynamic Instability - Graphical analysis (2)

- Consider f decreasing and $|f^{\prime}% (f)|\leq|f|$ | \bullet $|>1$
- the trajectory cyclically diverges from p^{\ast} \bullet

Dynamic Instability - Graphical analysis (3)

- Consider f decreasing and $|f^{\prime}% (f)|\leq|f|$ | \bullet $|= 1$
- the trajectory describes a constant cycle around p^{\ast} \bullet

Compound interest & Present Discounted Value

- An individual opens ^a bank account \bullet
	- Initial wealth w_0 $_0$ in period $t=0$ \bullet
	- In each t individual deposits income y_t \bullet
	- In each t individual withdraws c_t for consumption
	- Interest rate r constant along time \bullet

$$
w_t = (1+r)w_{t-1} + (y_t - c_t), \forall t
$$

• Define
$$
a = (1 + r), b_t = y_t - c_t
$$

$$
\bullet \quad \text{so } w_t = aw_{t-1} + b_t \qquad [PDV1]
$$

• Remark Generalization of Case 1. Constant varies every period

Compound interest & Present Discounted Value (2)

Solution of $[PDV1]$. Algebraic argument

$$
t = 1, w_1 = aw_0 + b_1
$$

\n
$$
t = 2, w_2 = aw_1 + b_2 = a^2w_0 + ab_1 + b_2
$$

\n
$$
t = 3, w_3 = aw_2 + b_3 = a^3w_0 + a^2b_1 + ab_2 + b_3
$$

\n:
\n:
\n
$$
w_t = a^tw_0 + \sum_{k=1}^{t} a^{t-k}b_k
$$

 $k=1$

Compound interest & Present Discounted Value (3)

Remark: If $b_t = b, \forall t$

$$
\sum_{k=1}^{t} a^{t-k} b_k = b \sum_{k=1}^{t} a^{t-k} =
$$

$$
b(a^{t-1} + a^{t-2} + \dots + a + 1) = b \frac{1 - a^t}{1 - a}
$$

$$
\bullet \quad \text{Then,}
$$

$$
w_t = a^y w_0 + b \frac{1 - a^t}{1 - a} = a^t \left(w_0 - \frac{b}{1 - a} \right) + \frac{b}{1 - a}
$$

and we are back to Case 1.

Compound interest & Present Discounted Value (4)

Solution:
$$
w_t = a^t w_0 + \sum_{k=1}^t a^{t-k} b_k
$$
 or
\n $w_t = (1+r)^t w_0 + \sum_{k=1}^t (1+r)^{t-k} (y_k - c_k)$

Multiply by
$$
(1 + r)^{-t}
$$
 to obtain
\n $(1 + r)^{-t}w_t = w_0 + \sum_{k=1}^{t} (1 + r)^{-k} (y_k - c_k)$

- Interpretation:
	- Individual at time $t = 0$
	- $(1+r)^{-t}w_t$ is the PDV of the assets at time t
	- PDV equals the sum of
		- initial wealth w_0
		- PDV of future deposits \sum_k^t $k=1$ $(1 + r)^{-k}$ $"y_k$
		- PDV of future withdrawals $\sum_{k=1}^t (1+r)^{\frac{1}{2}}$ $k=1$ $(1 + r)^{-k}$ $^{\prime\prime}c_{k}$

Compound interest & Present Discounted Value (5)

- Solution: \bullet $w_t = (1+r)^t w_0 + \sum_{k=1}^{t} w_k$ $-k$ $_{k=1}^{t}(1+r)^{t}$ $^k(y_k-c_k)$
- **O** Interpretation cont:
	- Individual at period t
	- assets w_t reflect
		- interest earned on initial deposit w_0
		- interest earned on all later deposits \sum_k^t $_{k=1}^{t}(1+r)^{t}$ $-k \$ $"y_k$
		- interest foregone from withdrawals $\sum_{k=1}^{t}(1+r)^{t-k}c_{k}$ $_{k=1}^{t}(1+r)^{t}$ $\,$ $^{nc}c_{k}$

The difference equation

- **•** The general formulation is $c_2y_t+c_1y_{t-1}+c_0y_{t-2}=g(t)$
- solution follows same strategy as 1st-order differenceequations and 2nd-order differential equations.
	- Find the general solution of the homogeneous equation, $f(t, A_1, \ldots, A_n)$
	- Fins ^a particular solution of the non-homogeneousequation, $\overline{y}(t)$
	- **Solution of the difference equation is** $y(t) = f(t, A_1, \ldots, A_n) + \overline{y}(t)$
	- Additional conditions allow for solving for (A_1, \ldots, A_n)

The homogeneous equation

- **•** the associated homogeneous equation is: $c_2y_t+c_1y_{t-1}+c_0y_{t-2}=0$
- Rewrite it as $y_t+b_1y_{t-1}+b_2y_{t-2}$ where $b_1=c_1/c_2$ and $b_2=c_0/c_1$ $_{2} = 0$ [2 $heq1$], $_2$ and $b_2=c_0/c_2$
- To solve it, follow a similar argument as in the 1st-order difference equations
- Solution candidate: $y_t=m$ t $, m \neq 0$ [2heq2]

solution must satisfy $[2heq1]\forall t$:

$$
mt + b1mt-1 + b2mt-2 = 0
$$
 or

$$
mt(1 + b1m-1 + b2m-2) = 0
$$
 or

$$
mt+2(m2 + mb1 + b2) = 0
$$

Second-order difference equations (3)

The homogeneous equation (cont'd)

S implying

$$
m^2 + mb_1 + b_2 = 0
$$

[characteristic equation].

• Roots of this polynomial are

$$
(m_1, m_2) = \frac{-b_1 \pm \sqrt{b_1^2 - 4b_2}}{2}
$$

Let $\Delta\equiv b_1^2$ $\frac{2}{1}-4b_2.$ Three cases $\Delta\gtrless0$

Solving the homogeneous equation. Case 1: $\Delta>0$

- In this case we have two real roots. Thus, both m_1 $_1$ and m_2 satisfy $y_t+b_1y_{t-1}+b_2y_{t-2}=0$
- Applying theorem 2, the general solution of the homogeneous equation is $y(t) = A_1m$ $_{1}^{t}+A_{2}m$ t 2 $_2^t$ where A_1, A_2 $_{\rm 2}$ are arbitrary constants.
- The evolution of $y(t)$ as $t \to \infty$ is monotonic. The stability of the solution denends on the sign of the roots the solution depends on the sign of the roots.
- To assess the sign of the roots we appeal to Descartes' rule of signs:

Let $P(x)$ be a polynomial with real coefficients and terms in descending powers of x. (a) The number of positive real zeros of $P(x)$ is smaller than or equal to the number of variations in sign occurring in the coefficients of $P(x)$. (b) The number of negative real zeros of $P(\mathcal{x})$ is smaller than or equal to the number of continuations in sign occurring in the coefficients of $P(x).$

Solving the homogeneous equation. Case 1: $\Delta>0$ (cont'd)

- Recall the quadratic equation we are studying is $m \$ 2 $b_1m+b_2=0$
- If $b_1 < 0$ and $b_2 > 0$, there are two variations of sign. Therefore, the two roots $m_1>0$ and $m_2>0$. Accordingly, $m_1^t > 0$, $\forall t$ and $m_2^t > 0$, $\forall t$ and u_t will sho trajectory. $\frac{t}{1}>0, \forall t$ and m $t_{2}^{t}>0,\forall t$ and y_{t} will show a monotone
- **In any other circumstance, cyclical trajectory.**

Second-order difference equations (6)

Solving the homogeneous equation. Case 1: $\Delta>0$ (cont'd)

O Namely,

- If $b_1>0$ and $b_2>0$, there are two continuations of sign. Therefore, the two roots $m_1 < 0$ and $m_2 < 0.$
- If $b_1 < 0$ and $b_2 < 0$ or $b_1 > 0$ and $b_2 < 0$, there is one continuation and one variation of sign. Therefore, oneroot will be positive and the other negative.
- If b_1 $n_1 = 0$ and $b_2 < 0$, then, $m_1 = -m_2$.
- If $b_1\neq 0$ and $b_2=0$, then, $m_i=0$, $_{2} = 0$, then, $m_{i} = 0, m_{j} = -b_{1}.$
- **Since the sign of each root may be positive or negative, great** variety of trajectories. However,

\n- If
$$
m_i < 0
$$
 then sgn $m_i^t \begin{cases} > 0 \text{ if } t \text{ even} \\ < 0 \text{ if } t \text{ odd} \end{cases}$
\n

Any trajectory will converge iff $\left|m_{1}\right|< 1$ *and* $\left|m_{2}\right|< 1.$

Second-order difference equations (7)

Solving the homogeneous equation. Case 2: $\Delta = 0$

• In this case
$$
m_1 = m_2 = \widehat{m} = -\frac{1}{2}b_1
$$

- $y(t) = \widehat{m}^t$ is a general solution of the homogeneous equation.
- Another general solution of the homogeneous equation is $t\widehat{m}^t.$ \bullet
- To verify, substitute it in the homogeneous equation to obtain $\widehat{m}t +b_1(t (-1)\widehat{m}^t$ −1 $t + b_2(t (-2)\widehat{m}^t$ $^{-2} = 0$
- Rewrite it as

$$
\hat{m}^{t-2} (\hat{m}^2 t + b_1(t-1)\hat{m} + b_2(t-2)) = 0
$$

$$
\hat{m}^{t-2} t (\hat{m}^2 + b_1 \hat{m} + b_2) - b_1 \hat{m} - 2b_2 = 0
$$

Solving the homogeneous equation. Case 2: $\Delta = 0$ (cont'd)

• Note that the expression in brackets is the characteristic equation. Also recall $m\neq0.$ Hence, the previous reduces to

$$
-b_1\hat{m} - 2b_2 = 0
$$

Substituting \widehat{m} by its value, we obtain

$$
-b_1\left(-\frac{1}{2}b_1\right) - 2b_2 = 0
$$

$$
\frac{1}{4}\left(b_1^2 - 4b_2\right) = 0
$$

This is, $\Delta = 0$ as we are assuming.

Therefore, $y_t=t\widehat{m}^t$ is also a general solution of the homogeneous equation.

Solving the homogeneous equation. Case 2: $\Delta = 0$ (cont'd)

Applying theorem 2, the general solution of the homogeneous equation is:

 $y_t=A_1\widehat{m}^t+A_2t\widehat{m}^t=$ arbitrary constants. $(A_1+A_2t)\widehat{m}^t$ where A_1 $_1$ and A_2 are

- When $|\widehat{m}| < 1,$ the trajectory of y_t will converge because
	- t dominates the converging effect of m \bullet
	- the divergent effect of $t.$

Second-order difference equations (10)

Solving the homogeneous equation. Case 3: $\Delta < 0$

- **O** We skip this case.
- See 2nd-order differential equations for an intuition.

Particular solution of the non-homogeneous equation

- $c_2y_t + c_1y_{t-1} + c_0y_{t-2} = g(t)$ [2heq3]
- Solution depends on the structure of $g(t)$
- Case 1: $g(t)$ constant
	- Let $g(t) = k, k \in \mathbf{R}$
	- Try as solution $\overline{y}_t = s, \; s \in \mathbf{R}$
	- Then $y_t=y_{t-1}=y_{t-2}=$ $s(c_0+c_1+c_2) = k$ s . Substituting in $[2heq3]$ we obtain
	- so that $\overline{y}_t=\frac{k}{c_0+c_1}$ $\frac{\kappa}{c_0+c_1+c_2}$ is a particular solution.
	- If $c_0+c_1+c_2$ $[2heq3]$, we obtain $\overline{y}_{t}=\frac{-k}{c_{1}+2c}$ $_2=0,$ then try $\overline{y}_t=$ $sare s.t.$ In this case, substituting in $\,$ $\frac{-\kappa}{c_1+2c_0}$ as a particular solution.

If
$$
c_1 + 2c_0 = 0
$$
, try $\overline{y}_t = st^2$, to obtain $\overline{y}_t = \frac{k}{2c_0}$ as a particular solution.

Case 2: $g(t)$ exponential

- Let $g(t) = k^t, k \in \mathbb{R}$
- Try as solution $\overline{y}_t = s k^t$ $, s \in \mathsf{R}$

Substituting in $[2heq3]$ we obtain

$$
c_2sk^t + c_1sk^{t-1} + c_0sk^{t-2} = k^t
$$

\n
$$
sk^{t-2}(c_0 + c_1k + c_0k^2) = k^t
$$
 so that
\n
$$
s = \frac{k^2}{c_0 + c_1k + c_0k^2}
$$
 and
\n
$$
\overline{y}_t = \frac{k^{t+2}}{c_0 + c_1k + c_0k^2}
$$

•
$$
\overline{y}_t
$$
 is well-defined if $k \neq \frac{-c_1 \pm \sqrt{c_1^2 - 4c_0}}{2c_0}$

Case 3: $g(t)$ polynomial

Similar approach

Stability (convergence) of the solution path

Let

$$
y_t = A_1 m_1^t + A_2 m_2^t + \overline{y}_t
$$

be the the solution of

$$
y_t + b_1 y_{t-1} + b_2 y_{t-2} = g(t)
$$

Then,

- Any trajectory will converge iff $\left|m_{1}\right|< 1$ *and* $\left|m_{2}\right|< 1$ *,* or \bullet equivalently
- Any trajectory will converge iff $\left|b_{1}\right| < (1+b_{2})$ *and* $b_{2} < 1$ \bullet

Determining A_1 $_1$ and A_2

- **•** Two additional conditions needed.
- Usually, value of y_t at two moments in time. \bullet
- Often at $t=0\to y_0$ y_0 and $t=1\rightarrow y_1$

Illustration (Gandolfo, ch 4)

Let
$$
y_0 = 0
$$
, $y_1 = -2$, $b_1 = 1.8$, $b_2 = 0.8$

- The equation to solve becomes: $y_t + 1.8y_{t-1} + 0.8y_{t-2} = 0$
- Characteristic equation: $m^2+1.8m+0.8=$ $2 + 1.8m + 0.8 = 0$ \bullet
- Roots: $m_1=-1,\;m_2= 1, m_2=-0.8$ \bullet
- ${\sf Remark}\: m_i < 0, |m_2| < 1$ but $|m_1| = 1 \Rightarrow$ cyclical
non-convergent trajectory non-convergent trajectory.
- **General solution of difference equation:** $y_t = A_1(-1)^t + A_2($ − $0.8)^t$

Illustration (Gandolfo, ch 4) (cont'd)

Substitute values of y_0 $_0$ and y_1 $_1$ to obtain

$$
0 = A_1 + A_2
$$

-2 = -A₁ - 0.8A₂ $\bigg}$ \Rightarrow A₁ = 10, A₂ = -10

• Finally,
$$
y_t = 10(-1)^t - 10(0.8)^t
$$

- Cyclical with increasing amplitude until reaching ^a limit cyclegiven by $(-10, 10)$:
	- $\lim_{t\to\infty}(-10(0.8)^t) = 0$
	- $10(-1)^t =$ $=\{-10, 10\}$
	- see figure and table of values

Second-order difference equations (16)

Second-order difference equations (16bis)

Second-order difference equations (17)

Determining A_1 $_1$ and A_2 $_2$ Illustration 2

Let
$$
y_0 = 0
$$
, $y_1 = -2$, $b_1 = 1$, $b_2 = 1/4$

The equation to solve becomes: $y_t + y_{t-1} + \frac{1}{4}$ $\frac{1}{4}y_{t-2}=0$ \bullet

• Characteristic equation:
$$
m^2 + m + \frac{1}{4} = 0
$$

• Roots:
$$
m_1 = m_2 = \hat{m} = \frac{-1}{2}
$$

- ${\sf Remark1}\colon \widehat{m} < 0$ and $|\widehat{m}| < 1 \Rightarrow$ cyclical convergent trajectory. \bullet
- Remark2: A second solution is $t\widehat{m}$ $\overline{}$

Illustration 2 (cont'd)

General solution of homogeneous difference equation: \mathcal{Y} $t = (A_1$ $+ tA$ 2 $_{2})\Big($ 1 $\left(\frac{-1}{2}\right)^t$

Substitute values of y_0 $_0$ and y_1 $_1$ to obtain

$$
0 = A_1
$$

-2 = (A₁ + A₂) $\left(\frac{-1}{2}\right)$ \Rightarrow A₁ = 0, A₂ = 4

Finally, $y_t=4t(\frac{-1}{2})$ $(\frac{-1}{2})^t$

Second-order difference equations (19)

Second-order difference equations (20)

Determining A_1 $_1$ and A_2 $_2$ Illustration 3

Let
$$
y_0 = 0
$$
, $y_1 = -2$, $b_1 = -2$, $b_2 = 3/4$

- The equation to solve becomes: $y_t-2y_{t-1}+\frac{3}{4}$ $\frac{3}{4}y_{t-2}=0$
- $^{2}-2m+\frac{3}{4}$ 2Characteristic equation: m \bullet $\frac{3}{4} = 0$ 4

• Roots:
$$
m_1 = 3/2
$$
, $m_2 = 1/2$

Remark: $m_i>0,$ therefore, monotonic trajectory. Also $m_1>1 \Rightarrow$ monotonic divergent trajectory.

Illustration 2 (cont'd)

General solution of homogeneous difference equation:

$$
y_t = A_1 \left(\frac{3}{2}\right)^t + A_2 \left(\frac{1}{2}\right)^t
$$

Substitute values of y_0 $_0$ and y_1 $_1$ to obtain \bullet

$$
0 = A_1 + A_2
$$

-2 = A₁(3/2) + A₂(1/2) \rightarrow A₁ = -2, A₂ = 2

• Finally,
$$
y_t = (-2)\left(\frac{3}{2}\right)^t + 2\left(\frac{1}{2}\right)^t
$$

٠

Second-order difference equations (22)

Second-order difference equations (23)

Determining A_1 $_1$ and A_2 2 Illustration 4

Let
$$
y_0 = 0
$$
, $y_1 = -2$, $b_1 = -3/2$, $b_2 = 35/64$

- The equation to solve becomes: $y_t-\frac{3}{2}$ $\frac{3}{2}y_{t-1}+\frac{35}{64}$ $y_{t-2} = 0$ \bullet
- $\frac{2}{\sqrt{2}}$ $\frac{3}{2}$ 2 $\frac{3}{2}m+\frac{35}{64}=0$ Characteristic equation: m \bullet

• Roots:
$$
m_1 = 7/8
$$
, $m_2 = 5/8$

Remark: $m_i>0,$ therefore, monotonic trajectory. Also $m_i < 1 \Rightarrow$ monotonic convergent trajectory.

Illustration 4 (cont'd)

General solution of homogeneous difference equation:

$$
y_t = A_1 \left(\frac{7}{8}\right)^t + A_2 \left(\frac{5}{8}\right)^t
$$

Substitute values of y_0 $_0$ and y_1 $_1$ to obtain \bullet

$$
0 = A_1 + A_2
$$

-2 = A₁(7/8) + A₂(5/8) \Rightarrow A₁ = -8, A₂ = 8

• Finally,
$$
y_t = (-8)\left(\frac{3}{2}\right)^t + 8\left(\frac{1}{2}\right)^t
$$

Second-order difference equations (25)

