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Introduction

Given a function yt = f(t) its first difference is defined as the

difference in value of the function evaluated at t+ h and
t, ∆yt = f(t+ h)− f(t).

Usually we take h = 1 so that ∆yt = f(t+ 1)− f(t).

The same logic taking as reference any time period:

∆yt =f(t+ 1)− f(t)

∆yt+1 =f(t+ 2)− f(t+ 1)

...

∆yt+τ =f(t+ τ + 1)− f(t+ τ)
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Introduction (2)

Given ∆yt the second difference of yt is defined as the
difference in value of the first difference:
∆2yt = ∆yt+1 −∆yt = (yt+2 − yt+1)− (yt+1 − yt) =
yt+2 − 2yt+1 + yt

Similarly, ∆2yt+1 = ∆yt+2 −∆yt+1 = yt+3 − 2yt+2 + yt+1

etc, etc.

Same logic for third, fourth, ... n-th difference of yt.

Remark: Solution of a difference equation is independent of
the time period considered:

solution of ayt+1 + byt = 0 is the same as the

solution of ayt+2 + byt+1 = 0 and the same as the

solution of ayt + byt−1 = 0

because solution is a function satisfying the equation ∀t.
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Introduction (3)

Focus in Linear Difference Equations with constant
coefficients:
cnyt+n + cn−1yt+n−1 + cn−2yt+n−2 + · · ·+ c1yt−1 + c0yt = g(t)
where cj are given constants, cn 6= 0, c0 6= 0, and g(t) is a

known function.

Strategy of analysis:

Find the general solution of the homogeneous equation,
f(t, A1, . . . , An)

Fins a particular solution of the non-homogeneous
equation, y(t)

Solution of the difference equation is
y(t) = f(t, A1, . . . , An) + y(t)

Additional conditions allow for solving for (A1, . . . , An)
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Two theorems

Theorem 1
If y1(t) is solution of the homogeneous equation, so is

Ay1(t), A ∈ IR.

Theorem 2
If y1(t) and y2(t) are solutions of the homogeneous equation,

so is A1y1(t) + A2y2(t), (A1, A2) ∈ IR.

Proofs trivial. See Gandolfo (2010, ch 1)

OPT – p.5/58



First-order difference equations

General form: c1yt − c0yt−1 = g(t) with c1 6= 0, c0 6= 0
Homogeneous equation:

c1yt − c0yt−1 = 0, or, with b ≡ c0/c1

yt − byt−1 = 0 [heq1]

General solution of homogeneous equation

Suppose y(0) = y0. Then,

y1 − by0 = 0 → y1 = by0

y2 − by1 = y2 − b(by0) = 0 → y2 = −b2y0
...

Therefore, yht = bty0. In general,

Solution candidate: yht = btA,A to be determined [heq2]

must satisfy [heq1]∀t: btA− b(bt−1)A = btA− btA = 0, ∀t
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First-order difference equations (2)

Homogeneous equation yt − byt−1 = 0

Behavior of solution yht = btA

Depends on the sign and (absolute) value of b:

b > 0 monotone

b < 0 oscillating

|b| < 1 convergent

|b| > 1 divergent

b = 1 constant at value A

b = −1 oscillating, constant amplitude {−A,A}
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First-order difference equations (3)

Behavior of solution yht = btA (cont’d)

Six possible trajectories:

0 1−1

monotone

convergent
monotone

divergent

constant

yt = A
yt = {−A,A}

oscillating

oscillating

convergent

oscillating

divergent

b

more graphically
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First-order difference equations (4)
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b ∈ (0, 1) b > 1 b = 1

b ∈ (−1, 0) b < −1 b = −1

- - -

- - -
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First-order difference equations (5)

Particular solution of general equation - Case 1: g(t) = a

Recall: c1yt + c0yt−1 = g(t) [heq3]

Solution has same structure as g(t)

Let yt = µ,∀t
Substitute it into [heq3] to obtain c1µ+ c0µ = a

or µ = a
c1+c0

so that a particular solution of [heq3] is

yt =
a

c1 + c0

Solution of the 1st-order difference equation:

yt = −btA+ a
c1+c0

Remark: If c1 + c0 = 0 use yt = tµ,∀t to obtain yt =
−at
c0
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First-order difference equations (6)

Determining A

Additional condition. Let y(0) = y0

Then,

y0 = A+
a

c1 + c0

or

A = y0 −
a

c1 + c0

and solution of the difference equation is

yt = −bt
[
y0 −

a

c1 + c0

]
+

a

c1 + c0
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First-order difference equations (7)

Particular solution of general equation - Case 2: g(t) = Bdt

Recall: c1yt + c0yt−1 = g(t) [heq3]

Solution has same structure as g(t)

Let yt = µdt,∀t
Substitute it into [heq3] to obtain c1µd

t + c0µd
t−1 = Bdt

or dt−1(c1µd+ c0µ−Bd) = 0 so that µ = Bd
c1d+c0

so that a particular solution of [heq3] is

yt =
Bd

c1d+c0
dt

Solution of the 1st-order difference equation:

yt = −btA+ Bd
c1d+c0

dt

Remark: If c1d+ c0 = 0 use yt = tµdt,∀t to obtain yt =
−Bd
c0

tdt
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First-order difference equations (8)

Particular solution of general equation - Case 3: g(t) = a0 + a1t

Remark: Argument generalizes to a general polynomial of
degree m.

Recall: c1yt + c0yt−1 = g(t) [heq3]

Solution has same structure as g(t)

Let yt = µ0 + µ1t,∀t
Substitute it into [heq3] to obtain

c1(µ0 + µ1t) + c0(µ0 + µ1(t− 1)) = a0 + a1t

or t(µ1(c0 + c1)− a1) + (µ0(c0 + c1)− µ1c0 − a0) = 0

that will be satisfied ∀t if

µ1(c0 + c1)− a1 =0

µ0(c0 + c1)− µ1c0 − a0 =0

}
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First-order difference equations (9)

Particular solution of general equation - Case 3 (cont’d)

solving the system for µ0 and µ1, we obtain

µ1 =
a1

c0 + c1

µ0 =
a1c0 + a0(c0 + c1)

(c0 + c1)2

so that a particular solution of [heq3] is

yt =
a1c0 + a0(c0 + c1)

(c0 + c1)2
+

a1
c0 + c1

t

Solution of the 1st-order difference equation:

yt = −btA+
a1c0 + a0(c0 + c1)

(c0 + c1)2
+

a1
c0 + c1

t
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First-order difference equations (10)

Particular solution of general equation - Case 3 (cont’d)

if (c0 + c1) = 0, use yt = t(µ0 + µ1t).

Substituting it in [heq3] we obtain

−2t(µ1c0 − a1) + (µ1c0 − µ0c0 − a0) = 0

that is verified ∀t for

µ1 =
a1
c0

µ0 =
a1 − a0

c0

so that a particular solution of [heq3] is

yt = t
(a1 − a0

c0
+

a1
c0

t
)
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An application: Stability of the Walrasian equilibrium

Preliminary - Static stability

Static stability ⇔ Law of supply and demand:

define individual excess demand of good k as
eik(p) = xik(p)− wik

define aggregate excess demand of good k as
zk(p) =

∑
i∈I eik(p)

define a walrasian price p∗ as a price vector satisfying
zk(p

∗) = 0,∀k
rewrite zk(p) = Dk(p)− Sk(p)

p∗ satisfies law of supply and demand iff
dzk(p)
dpk

< 0,∀k.

equivalently,
dDk(p)
dpk

< dSk(p)
dpk

,∀k

Remark: always satisfied if D′
k < 0 and S′

k > 0,∀k
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An application: Stability of the Walrasian equilibrium (2)
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Dynamic Stability of the Walrasian equilibrium

General competitive model is static.

Introduce a fictitious time schedule and a price formation
mechanism.

At t = 1 a random consumer makes an initial offer to all other
consumers. Verify if zk(p) = 0.

At t = 2 another random consumer makes an offer. Prices
adjust. Verify if zk(p) = 0.

Protocol goes on and on until the prices do not change from
one period to the next (i.e. zk(p) = 0).

Formally, the price formation mechanism (in each market k) is
described by:

pt − pt−1 = rz(pt−1) [Dyn1]

where r > 0 and the subindex k is avoided to simplify notation.
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Dynamic Stability of the Walrasian equilibrium - Example

For a representative market k, let

Dt(pt) = apt + b

St(pt) = Apt +B

For future reference, the equilibrium price at any period t is

pt =
b−B

A− a
= p∗

Excess demand function in t− 1 is:

z(pt−1) = (a−A)pt−1 + (b−B) [Dyn2]

Substituting [Dyn2] in [Dyn1] we obtain

pt = pt−1[1 + r(a− A)] + r(b−B)
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Dynamic Stability of the Walrasian equilibrium - Example (2)

This is a first-order difference equation.

Assume price at t = 0 is p0. The solution of this difference
equation is

pt =
[
p0 −

b−B

A− a

]
(1 + r(a−A))t +

b−B

A− a
, or

pt = (p0 − p∗)(1 + r(a− A))t + p∗

The constant term is precisely p∗.

The term (p0 − p∗) captures the shock driving the market

away from equilibrium.

The term (1 + r(a− A))t captures the adjustment process

from p0 to p∗

Finally r captures the degree of the adjustment.
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Dynamic Stability - Graphical analysis

Recall pt = pt−1 + rz(pt−1) ≡ f(pt−1)

The function f(pt−1) may be increasing or decreasing

The following figure shows its graphical derivation (r = 1):

(a) (b)

pt−1pt−1

f(pt−1)

f(pt−1)

p̃

p̂

p
∗

p̃p̂ p
∗
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p
∗

pt pt

p
∗

zk(pt−1) zk(pt−1)

z(p̃)
z(p̂)
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Dynamic Stability - Graphical analysis (2)

Assume f(pt−1) is increasing and |f ′| < 1.

The following figure describes the stability of p∗

(a)

1          2          3

(b)

ptpt

pt−1
t
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p
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Dynamic Stability - Graphical analysis (3)

Consider p0 placing us at point K.

Next period, p1 = f(p0), placing us at point M

Next period, p2 = f(p1), and so on and so forth.

The process converges to p∗ located at the intersection of the
function f(pt−1) with the 45-degree line.

A parallel argument develops if the initial price is q0.

The figure on the right hand side shows the “temporal”
trajectory of the price.

Note that f increasing and slope < 1 generate a monotonic
convergent trajectory.
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Dynamic Stability - Graphical analysis (3)

Consider f decreasing and |f ′| < 1

the trajectory cyclically converges towards p∗

pt
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p0

p2

p3

pt−1

f(pt−1)

pt
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p0
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t

p
∗
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Dynamic Instability - Graphical analysis

Consider f increasing and |f ′| > 1

the trajectory monotonically diverges from p∗

(a) (b)

321 t
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pt
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Dynamic Instability - Graphical analysis (2)

Consider f decreasing and |f ′| > 1

the trajectory cyclically diverges from p∗

(a) (b)
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pt pt
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Dynamic Instability - Graphical analysis (3)

Consider f decreasing and |f ′| = 1

the trajectory describes a constant cycle around p∗

(a)

1          2          3

(b)
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Compound interest & Present Discounted Value

An individual opens a bank account

Initial wealth w0 in period t = 0

In each t individual deposits income yt
In each t individual withdraws ct for consumption

Interest rate r constant along time

wt = (1 + r)wt−1 + (yt − ct),∀t
Define a = (1 + r), bt = yt − ct

so wt = awt−1 + bt [PDV 1]

Remark
Generalization of Case 1. Constant varies every period

OPT – p.28/58



Compound interest & Present Discounted Value (2)

Solution of [PDV 1]. Algebraic argument

t = 1,w1 = aw0 + b1

t = 2,w2 = aw1 + b2 = a2w0 + ab1 + b2

t = 3,w3 = aw2 + b3 = a3w0 + a2b1 + ab2 + b3

...

wt = atw0 +

t∑

k=1

at−kbk
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Compound interest & Present Discounted Value (3)

Remark: If bt = b,∀t

t∑

k=1

at−kbk = b

t∑

k=1

at−k =

b(at−1 + at−2 + · · ·+ a+ 1) = b
1− at

1− a

Then,

wt = ayw0 + b
1− at

1− a
= at

(
w0 −

b

1− a

)
+

b

1− a

and we are back to Case 1.
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Compound interest & Present Discounted Value (4)

Solution: wt = atw0 +
∑t

k=1 a
t−kbk or

wt = (1 + r)tw0 +
∑t

k=1(1 + r)t−k(yk − ck)

Multiply by (1 + r)−t to obtain

(1 + r)−twt = w0 +
∑t

k=1(1 + r)−k(yk − ck)

Interpretation:

Individual at time t = 0

(1 + r)−twt is the PDV of the assets at time t

PDV equals the sum of
initial wealth w0

PDV of future deposits
∑t

k=1(1 + r)−kyk

PDV of future withdrawals
∑t

k=1(1 + r)−kck
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Compound interest & Present Discounted Value (5)

Solution:
wt = (1 + r)tw0 +

∑t
k=1(1 + r)t−k(yk − ck)

Interpretation - cont:

Individual at period t

assets wt reflect
interest earned on initial deposit w0

interest earned on all later deposits
∑t

k=1(1 + r)t−kyk

interest foregone from withdrawals
∑t

k=1(1 + r)t−kck

OPT – p.32/58



Second-order difference equations

The difference equation

The general formulation is
c2yt + c1yt−1 + c0yt−2 = g(t)

solution follows same strategy as 1st-order difference
equations and 2nd-order differential equations.

Find the general solution of the homogeneous equation,
f(t, A1, . . . , An)

Fins a particular solution of the non-homogeneous
equation, y(t)

Solution of the difference equation is
y(t) = f(t, A1, . . . , An) + y(t)

Additional conditions allow for solving for (A1, . . . , An)
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Second-order difference equations (2)

The homogeneous equation

the associated homogeneous equation is:
c2yt + c1yt−1 + c0yt−2 = 0

Rewrite it as yt + b1yt−1 + b2yt−2 = 0 [2heq1],
where b1 = c1/c2 and b2 = c0/c2

To solve it, follow a similar argument as in the 1st-order
difference equations

Solution candidate: yt = mt, m 6= 0 [2heq2]

solution must satisfy [2heq1]∀t :

mt + b1m
t−1 + b2m

t−2 = 0 or

mt(1 + b1m
−1 + b2m

−2) = 0 or

mt+2(m2 +mb1 + b2) = 0
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Second-order difference equations (3)

The homogeneous equation (cont’d)

implying

m2 +mb1 + b2 = 0

[characteristic equation].

Roots of this polynomial are

(m1,m2) =
−b1 ±

√
b21 − 4b2
2

Let ∆ ≡ b21 − 4b2. Three cases ∆ R 0
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Second-order difference equations (4)

Solving the homogeneous equation. Case 1: ∆ > 0

In this case we have two real roots. Thus, both m1 and m2

satisfy yt + b1yt−1 + b2yt−2 = 0

Applying theorem 2, the general solution of the homogeneous
equation is

y(t) = A1m
t
1 +A2m

t
2 where A1, A2 are arbitrary constants.

The evolution of y(t) as t → ∞ is monotonic. The stability of

the solution depends on the sign of the roots.

To assess the sign of the roots we appeal to Descartes’ rule
of signs:
Let P (x) be a polynomial with real coefficients and terms in descending powers of x.

(a) The number of positive real zeros of P (x) is smaller than or equal to the number

of variations in sign occurring in the coefficients of P (x). (b) The number of negative

real zeros of P (x) is smaller than or equal to the number of continuations in sign

occurring in the coefficients of P (x).
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Second-order difference equations (5)

Solving the homogeneous equation. Case 1: ∆ > 0 (cont’d)

Recall the quadratic equation we are studying is

m2 + b1m+ b2 = 0

If b1 < 0 and b2 > 0, there are two variations of sign.
Therefore, the two roots m1 > 0 and m2 > 0. Accordingly,

mt
1 > 0,∀t and mt

2 > 0,∀t and yt will show a monotone
trajectory.

In any other circumstance, cyclical trajectory.
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Second-order difference equations (6)

Solving the homogeneous equation. Case 1: ∆ > 0 (cont’d)

Namely,

If b1 > 0 and b2 > 0, there are two continuations of sign.
Therefore, the two roots m1 < 0 and m2 < 0.

If b1 < 0 and b2 < 0 or b1 > 0 and b2 < 0, there is one
continuation and one variation of sign. Therefore, one
root will be positive and the other negative.

If b1 = 0 and b2 < 0, then, m1 = −m2.

If b1 6= 0 and b2 = 0, then, mi = 0,mj = −b1.

Since the sign of each root may be positive or negative, great
variety of trajectories. However,

If mi < 0 then sgn mt
i

{
> 0 if t even

< 0 if t odd

Any trajectory will converge iff |m1| < 1 and |m2| < 1.
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Second-order difference equations (7)

Solving the homogeneous equation. Case 2: ∆ = 0

In this case m1 = m2 = m̂ = −1
2b1

y(t) = m̂t is a general solution of the homogeneous equation.

Another general solution of the homogeneous equation is tm̂t.

To verify, substitute it in the homogeneous equation to obtain

m̂t+ b1(t− 1)m̂t−1 + b2(t− 2)m̂t−2 = 0

Rewrite it as

m̂t−2
(
m̂2t+ b1(t− 1)m̂+ b2(t− 2)

)
= 0

m̂t−2t
(
m̂2 + b1m̂+ b2

)
− b1m̂− 2b2 = 0
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Second-order difference equations (8)

Solving the homogeneous equation. Case 2: ∆ = 0 (cont’d)

Note that the expression in brackets is the characteristic
equation. Also recall m 6= 0. Hence, the previous reduces to

−b1m̂− 2b2 = 0

Substituting m̂ by its value, we obtain

−b1

(
−1

2
b1

)
− 2b2 = 0

1

4

(
b21 − 4b2

)
= 0

This is, ∆ = 0 as we are assuming.

Therefore, yt = tm̂t is also a general solution of the
homogeneous equation.
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Second-order difference equations (9)

Solving the homogeneous equation. Case 2: ∆ = 0 (cont’d)

Applying theorem 2, the general solution of the homogeneous
equation is:

yt = A1m̂
t + A2tm̂

t = (A1 + A2t)m̂
t where A1 and A2 are

arbitrary constants.

When |m̂| < 1, the trajectory of yt will converge because

the converging effect of mt dominates

the divergent effect of t.
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Second-order difference equations (10)

Solving the homogeneous equation. Case 3: ∆ < 0

We skip this case.

See 2nd-order differential equations for an intuition.
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Second-order difference equations (11)

Particular solution of the non-homogeneous equation

c2yt + c1yt−1 + c0yt−2 = g(t) [2heq3]

Solution depends on the structure of g(t)

Case 1: g(t) constant

Let g(t) = k, k ∈ IR

Try as solution yt = s, s ∈ IR

Then yt = yt−1 = yt−2 = s. Substituting in [2heq3] we obtain

s(c0 + c1 + c2) = k

so that yt =
k

c0+c1+c2
is a particular solution.

If c0 + c1 + c2 = 0, then try yt = st. In this case, substituting in

[2heq3], we obtain yt =
−k

c1+2c0
as a particular solution.

If c1 + 2c0 = 0, try yt = st2, to obtain yt =
k
2c0

as a particular

solution.
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Second-order difference equations (12)

Case 2: g(t) exponential

Let g(t) = kt, k ∈ IR

Try as solution yt = skt, s ∈ IR

Substituting in [2heq3] we obtain

c2sk
t + c1sk

t−1 + c0sk
t−2 = kt

skt−2(c0 + c1k + c0k
2) = kt so that

s =
k2

c0 + c1k + c0k2
and

yt =
kt+2

c0 + c1k + c0k2

yt is well-defined if k 6= −c1±
√

c2
1
−4c0

2c0
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Second-order difference equations (13)

Case 3: g(t) polynomial

Similar approach

Stability (convergence) of the solution path

Let

yt = A1m
t
1 +A2m

t
2 + yt

be the the solution of

yt + b1yt−1 + b2yt−2 = g(t)

Then,

Any trajectory will converge iff |m1| < 1 and |m2| < 1, or
equivalently

Any trajectory will converge iff |b1| < (1 + b2) and b2 < 1
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Second-order difference equations (14)

Determining A1 and A2

Two additional conditions needed.

Usually, value of yt at two moments in time.

Often at t = 0 → y0 and t = 1 → y1

Illustration (Gandolfo, ch 4)

Let y0 = 0, y1 = −2, b1 = 1.8, b2 = 0.8

The equation to solve becomes: yt + 1.8yt−1 + 0.8yt−2 = 0

Characteristic equation: m2 + 1.8m+ 0.8 = 0

Roots: m1 = −1, m2 = −0.8

Remark: mi < 0, |m2| < 1 but |m1| = 1 ⇒ cyclical
non-convergent trajectory.

General solution of difference equation:

yt = A1(−1)t + A2(−0.8)t
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Second-order difference equations (15)

Illustration (Gandolfo, ch 4) (cont’d)

Substitute values of y0 and y1 to obtain

0 =A1 + A2

−2 =− A1 − 0.8A2

}
⇒ A1 = 10, A2 = −10

Finally, yt = 10(−1)t − 10(0.8)t

Cyclical with increasing amplitude until reaching a limit cycle
given by (−10, 10):

limt→∞(−10(0.8)t) = 0

10(−1)t = {−10, 10}
see figure and table of values
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Second-order difference equations (16)

5 10 15 20 25 30

!10

!5

5

10
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Second-order difference equations (16bis)

t 0 1 2 3 4 5 6 7 8 9

y(t) 0 -2 3.6 -4.88 5.90 -6.72 7.38 -7.90 8.32 -8.66

t 10 11 12 13 14 15 16 17 18 19

y(t) 8.93 -9.14 9.31 -9.45 9.56 -9.65 9.72 -9.77 9.81 -9.85

t 20 21 22 23 24 25 26 27 28 29

y(t) 9.88 -9.91 9.93 -9.94 9.95 -9.96 9.97 -9.97 9.98 -9.98
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Second-order difference equations (17)

Determining A1 and A2 Illustration 2

Let y0 = 0, y1 = −2, b1 = 1, b2 = 1/4

The equation to solve becomes: yt + yt−1 +
1
4yt−2 = 0

Characteristic equation: m2 +m+ 1
4 = 0

Roots: m1 = m2 = m̂ = −1
2

Remark1: m̂ < 0 and |m̂| < 1 ⇒ cyclical convergent trajectory.

Remark2: A second solution is tm̂.
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Second-order difference equations (18)

Illustration 2 (cont’d)

General solution of homogeneous difference equation:

yt = (A1 + tA2)
(
−1
2

)t

Substitute values of y0 and y1 to obtain

0 =A1

−2 =(A1 +A2)
(−1

2

)


 ⇒ A1 = 0, A2 = 4

Finally, yt = 4t(−1
2 )t
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Second-order difference equations (19)

2 4 6 8 10 12 14

!2

!1

1

2
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Second-order difference equations (20)

Determining A1 and A2 Illustration 3

Let y0 = 0, y1 = −2, b1 = −2, b2 = 3/4

The equation to solve becomes: yt − 2yt−1 +
3
4yt−2 = 0

Characteristic equation: m2 − 2m+ 3
4 = 0

Roots: m1 = 3/2, m2 = 1/2

Remark: mi > 0, therefore, monotonic trajectory. Also
m1 > 1 ⇒ monotonic divergent trajectory.
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Second-order difference equations (21)

Illustration 2 (cont’d)

General solution of homogeneous difference equation:

yt = A1

(
3
2

)t

+A2

(
1
2

)t

Substitute values of y0 and y1 to obtain

0 =A1 + A2

−2 =A1(3/2) + A2(1/2)

}
⇒ A1 = −2, A2 = 2

Finally, yt = (−2)
(
3
2

)t

+ 2
(
1
2

)t
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Second-order difference equations (22)

2 4 6 8 10 12 14

!800

!600

!400

!200

OPT – p.55/58



Second-order difference equations (23)

Determining A1 and A2 Illustration 4

Let y0 = 0, y1 = −2, b1 = −3/2, b2 = 35/64

The equation to solve becomes: yt − 3
2yt−1 +

35
64yt−2 = 0

Characteristic equation: m2 − 3
2m+ 35

64 = 0

Roots: m1 = 7/8, m2 = 5/8

Remark: mi > 0, therefore, monotonic trajectory. Also
mi < 1 ⇒ monotonic convergent trajectory.
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Second-order difference equations (24)

Illustration 4 (cont’d)

General solution of homogeneous difference equation:

yt = A1

(
7
8

)t

+A2

(
5
8

)t

Substitute values of y0 and y1 to obtain

0 =A1 + A2

−2 =A1(7/8) + A2(5/8)

}
⇒ A1 = −8, A2 = 8

Finally, yt = (−8)
(
3
2

)t

+ 8
(
1
2

)t
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Second-order difference equations (25)
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