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Linear programming - Definition

Linear inequality restrictions

gi(x) =
∑m

i=1
aijxj ≤ bi, i = 1, . . . ,m; j = 1, . . . , n

gi(x) continuous, continuously differentiable; bi ∈ IR

A =




a11 . . . a1n
...

. . .
...

am1 . . . amn




Non-negativity restrictions: xj ≥ 0, j = 1, . . . , n

Linear objective function

f(x) =
∑n

j=1
cjxj = cx, j = 1, . . . , n

c = (c1, . . . , cn), cj ∈ IR

Problem: maxx cx s.t. Ax ≤ b, x ≥ 0
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Linear programming - Description

Particular case of non-linear programming.

Linear restrictions gi, → closed half-space.

∩igi, → convex polyhedral set ; if bounded, convex
polyhedron.

Opportunity set: closed convex polyhedral set in non-negative
orthant of IRn.

faces of polyhedral → bounding faces → hyperplanes.

vertices: points of intersection of n (or more) bounding
faces.

edge: intersection of 2 bounding faces (hyperplanes).

vertices connected by edges.

Figure (Intriligator, 2002), [n = 3,m = 4]: 7 bounding faces;
14 edges; 9 vertices (8 as intersection of 3 faces; 1 as
intersection of 4 faces).
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Linear programming - Description (2)

x1

x2

x3
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Linear programming - Description (3)

Linear objective function

Contours → hyperplanes

Contour map → parallel hyperplanes

preference direction → gradient vector of f orthogonal to

contours: ∇f ≡ ∂f
∂x

= c

Solution

Find a (set of) point(s) on the highest contour of f in the
opportunity set

If solution exists, must lie on the boundary of opportunity set

Solution at point(s) where contour hyperplane is supporting
hyperplane of the convex polyhedral opportunity set.

In IR3 solution at vertex, or on edge, or on bounding face
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Linear programming - Description (4)

x1
x
∗

1

x
∗

2

x2

X

δf/δx

(a) Solution at a vertex

x1

x
∗

1

x2

X

δf/δx

(b) Continuum of solutions
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Linear programming - Description (5)

Solution (cont’d)

At a solution (unique or multiple), value of f is unique.

Convex opprotunity set + linear objective function →
local-global theorem: a local solution is global.

Objective function continuous + opportunity set closed →
Weierstrasse theorem: solution exists if opportunity set is also
bounded.

In general 3 possible solutions:

unique at a vertex;

continuum on edge, boundary face, ...

no solution if opportunity set is unbounded or empty.
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Economic interpretation

The linearity of the objective function f and of the restrictions
gi imply that prices of inputs and outputs are taken as given.
Equivalently, the firm faces perfectly competitive markets for
inputs and outputs.

Also, the linearity of the technology imply constant returns to
scale.

Therefore, in formulating an economic problem as a
linear-programming model, we are assuming that the linearity
assumptions are valid over the full range of values of the
decision variables being considered in the problem.

... otherwise, the solution of the linear-programming model
will not be an optimal solution to the economic problem.
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An illustrative example

The set-up

A firm producing chairs (good 1) and tables (good 2) in a
given time period.

Production require two inputs: wood and machine time.

Technology:

Production 1 unit of good 1 requires
20 units of wood
5 hours of machine time

Production 1 unit of good 2 requires
40 units of wood
2 hours of machine time

During the time period considered there are,

400 units available of wood

40 hours available of time machine
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An illustrative example (2)

The set-up (cont’d)

The capacity of production during the time period is

6 units of good 1

9 units of good 2

The contribution to profit (price-cost) of the goods is

100 e per unit of good 1

60 e per unit of good 2

The problem

Find the quantities of good 1, x1, and of good 2, x2, that
maximize the profit of the firm
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The linear programming formulation

max
x1,x2

Π =100x1 + 60x2 s.t.

20x1 + 40x2 ≤ 400 [1]

5x1 + 2x2 ≤ 40 [2]

x1 ≤ 6, x1 ≥ 0 [3]

x2 ≤ 9, x2 ≥ 0 [4]

Solution: x∗
1
= 5; x∗

2
= 7.5; Π∗ = 950.

Note that [1] and [2] are binding; [3] and [4] are not binding.
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Solution

Kuhn-Tucker conditions

Simplex methods → software applications

In 2-dimensional problems: graphical analysis

x2 = 9

x1 = 6

20x1 + 40x2 = 400

5x1 + 2x2 = 40

x1

x2

0 6 8

9

10

π = 950

(5, 7.5)

∇f

[α]

[β]

[γ]
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Solution - Kuhn-Tucker

L = 100x1 + 60x2 + λ1(400− 20x1 − 40x2) + λ2(40− 5x1 − 2x2)

∂L

∂x1
= 100− 20λ1 − 5λ2 ≤ 0 (1)

x1
∂L

∂x1
= x1(100− 20λ1 − 5λ2) = 0 (2)

∂L

∂x2
= 60− 40λ1 − 2λ2 ≤ 0 (3)

x2
∂L

∂x2
= x2(60− 40λ1 − 2λ2) = 0 (4)

∂L

∂λ1

= 400− 20x1 − 40x2 ≥ 0 (5)

λ1

∂L

∂λ1

= λ1(400− 20x1 − 40x2) = 0 (6)

∂L

∂λ2

= 40− 5x1 − 2x2 ≥ 0 (7)

λ2

∂L

∂λ2

= λ2(40− 5x1 − 2x2) = 0 (8)OPT – p.13/47



Solution - Kuhn-Tucker (2)

x1 ≥ 0, x2 ≥ 0, λ1 ≥ 0, λ2 ≥ 0 (9)

Just consider an interior solution (for simplicity), so that
x∗
1
> 0, x∗

2
> 0, λ∗

1
> 0, λ∗

2
> 0

Take (5) and divide both sides by −10 to obtain

−40 + 2x1 + 4x2 = 0 (10)

Sum (7) and (10) to obtain

x1 =
2

3
x2 (11)

Substitute (11) into e.g. (8) to obtain x∗
2
= 15/2, which in turn

gives x∗
1
= 5
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Solution - graphic analysis

First we need to identify the feasible set and verify its
convexity.

Identify the vertices of the feasible set

(x1, x2) = (6, 0); (x1, x2) = (0, 9); (x1, x2) = (0, 0)

g1 ∩ (x2 = 9) → (x1, x2) = (2, 9) [α]

g2 ∩ (x2 = 9) → (x1, x2) = (22/5, 9)
Hence, (x1, x2) = (2, 9) is a vertex of the feasible set.

g1 ∩ (x1 = 6) → (x1, x2) = (6, 7)

g2 ∩ (x1 = 6) → (x1, x2) = (6, 5) [β]
Hence, (x1, x2) = (6, 5) is a vertex of the feasible set.

g1 ∩ g2 → (x1, x2) = (5, 15
2
) [γ]

Therefore the feasible set has six vertices:
(0, 0), (0, 9), (2, 9), (5, 15

2
), (6, 5), (6, 0)

and the feasible set is convex.
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Solution - graphic analysis (2)

Note that ∇Π = (100, 60), so f increases north-eastwards.

Next, identify if the solution(s) is (are) at a vertex or along an
edge.

Slope of g1 : 400 = 20x1 + 40x2 →
dx2

dx1

= −1

2

Slope of g2 : 40 = 5x1 + 2x2 →
dx2

dx1

= −5

2

Slope of Π : Π = 100x1 + 60x2 →
dx2

dx1

= −5

3

Thus, dx2

dx1

|g1 >
dx2

dx1

|
Π
> dx2

dx1

|g2 so that the solution is located at

a vertex.

Evaluating Π(x1, x2) at each vertex yields that the maximum

value of Π is reached at (x∗
1
, x∗

2
) = (5, 15/2) and Π∗ = 950
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Another illustrative example

The problem. Let f(x1, x2) = 3x1 + 2x2. Solve,

max
x1,x2

3x1 + 2x2 s.t.

2x1 + x2 ≤ 6

x1 + 2x2 ≤ 8

x1 ≥ 0, x2 ≥ 0

or in matrix form

max
x1,x2

(
3 2

)(x1
x2

)
s.t.

(
2 1

1 2

)(
x1

x2

)
≤

(
6

8

)
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Another illustrative example (2)

Remarks

slope restriction 1 = -2

slope restriction 2 = -1/2

slope level sets of f =-3/2

solution (if it exists) at a vertex

∇f = (3, 2), increases north-eastwards

Vertices of feasible set: {(0, 0), (0, 4), (1
3
, 10

3
), (3, 0)}

(x1 ≥ 0) ∩ (x2 ≥ 0) = (0, 0), g1 ∩ g2 = (4/3, 10/3)

min{g1(0, x2) = (0, 6),g2(0, x2) = (0, 4)} = (0, 4)

min{g1(x1, 0) = (3, 0),g2(x1, 0) = (8, 0)} = (3, 0)

Solution: evaluate f(x1, x2) at each vertex and choose max

(x∗
1
, x∗

2
) = (4/3, 10/3) and f(x∗

1
, x∗

2
) = 32/3.
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Another illustrative example (3)

x1

x2

0 8

4

x1 + 2x2 = 8

6

3

∇f

f∗

=
32

3

2x1 + x2 = 6

(x∗

1
, x

∗

2
) = (

4

3
,
10

3
)
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Sensitivity analysis

Suppose

2x1 + x2 ≤ 6 + ε1

x1 + 2x2 ≤ 8 + ε2

where εi ∈ IR are small enough variations so that the set of
binding constraints under (x∗

1
, x∗

2
) does not change.

What is the impact on the solution?

Let us write the problem as

max
x1,x2

cTx s.t. Ax ≤ b

with c =

(
3

2

)
,x =

(
x1

x2

)
, A =

(
2 1

1 2

)
,b =

(
6

8

)
.
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Sensitivity analysis (2)

We already know that at x∗ both constraints are binding.

Also we can write x∗ = A−1b where

A−1 =
1

3

(
2 −1

−1 2

)

Finally, f∗ ≡ f(x∗) = cTA−1b.

Define ∆ =

(
ε1

ε2

)

Following the same logic,

x(∆) = A−1(b+∆) =
1

3

(
2 −1

−1 2

)(
6 + ε1

8 + ε2

)
=

(
4

3
+ 2ε1−ε2

3

10

3
+ 2ε2−ε1

3

)
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Sensitivity analysis (3)

and

f(∆) = cTx(∆) =
(
3 2

)( 4

3
+ 2ε1−ε2

3

10

3
+ 2ε2−ε1

3

)
=

32

3
+

1

3
(4ε1 + ε2)

so that the overall variation in the value of the objective

function is f(∆)− f∗ = 1

3
(4ε1 + ε2)

How is it distributed between x1 and x2?

The contribution of x1(x2) to f is 3x1(2x2). Given that the

variation of xi is xi(∆)− x∗i =
2εi−εj

3
, it follows

(f(∆)− f∗)x1
= 3

2ε1 − ε2
3

= 2ε1 − ε2

(f(∆)− f∗)x2
= 2

2ε2 − ε1
3

=
2

3
(2ε2 − ε1)
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Sensitivity analysis (4)

x1

x2

0 8

4

6

3

(x∗

1
, x

∗

2
) = (

4

3
,
10

3
)

f(∆)

ε2

(x∗

1
(∆), x∗

1
(∆))

2x1 + x2 = 6 + ε1

x1 + 2x2 = 8 + ε2

ε1

2

OPT – p.23/47



Sensitivity analysis (5)

From a different perspective, sensitivity analysis refers to the
impact of a softening (tightenning) of the restrictions on the
value of the objective function.

We have obtained f(∆)− f∗ = 1

3
(4ε1 + ε2) [α]

Rewrite it as

f(∆)− f∗ = yT∆ =
(
y1 y2

)(ε1
ε2

)
=
(
4

3

1

3

)(ε1
ε2

)

yi measures the sensitivity of f to the softening (tightenning)
of the restriction gi.

y1 =
4

3
means that for each additional e available in resource

1, the value of f varies in 4/3e.

y2 =
1

3
means that for each additional e available in resource

2, the value of f varies in 1/3e.
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Shadow prices

Recall yT =
(
4

3

1

3

)

The sensitivities of f to changes in the restrictions are called
shadow prices.

Shadow prices represent

max price at which to buy an additional unit of the
corresponding resource

min price at which to sell units of that input

Therefore, shadow price of an input represent the unit value of
that input.

As a consequence, the stock of inputs of a company valued at
their respective shadow prices gives the maximum value of f

In our example, (6)(4
3
) + (8)(1

3
) = 32

3
= f∗

or f∗ = yTb
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Shadow prices (2)

Why?

Recall f(∆) = f∗ + yT∆ [α]

Let ∆̂ =

(
−6

−8

)
= −b

At ∆̂ inputs are zero, f = 0, and the restrictions are still
binding [so that we are not changing the nature of the problem]

From [α]

f(∆̂) = f∗ + yT ∆̂ =
32

3
+
(
4

3

1

3

)(−6

−8

)
=

32

3
−

32

3

f(∆̂) = 0 = f∗ + yT ∆̂ ⇒ f∗ = −yT ∆̂

f∗ = yT (−∆̂) = yTb
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Duality - Introduction and motivation

Shadow prices allow to solve another, related, linear program
- the dual-.

Suppose a buyer proposes to acquire all the assets (inputs) of
the company

buyer aims at min the cost of acquisition

seller only sells if at least obtains as much as what can
get by producing:

one unit of x1 contributes 3x1 to f . Producing that unit
requires 2 units of input 1 (of the available 6) and 1 unit
of input 2 (of the available 8).
one unit of x2 contributes 2x2 to f . Producing that unit
requires 1 units of input 1 (of the available 6) and 2
units of input 2 (of the available 8).

thus seller requires unit prices (y1, y2) such that

2y1 + y3 ≥ 3 and y1 + 2y2 ≥ 2

OPT – p.27/47



Duality - Introduction and motivation (2)

the company has 6 units of input 1 and 8 units of input 2.

the buyer wants to set prices (y1, y2) that minimize the amount

of money to pay for the production capacity of the company,
namely miny1,y2

6y1 + 8y2 subject to the conditions of the

seller. Formally,

min
y1,y2

6y1 + 8y2 s.t.

2y1 + y3 ≥ 3

y1 + 2y2 ≥ 2

in matrix form, recall b =

(
6

8

)
, c =

(
3

2

)
, A =

(
2 1

1 2

)

min
y

bTy s.t. ATy ≥ c, y ≥ 0
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Duality - Introduction and motivation (3)

The solution to this program (see problem [6.2]) is

y∗ =

(
y∗
1

y∗
2

)
=

(
4

3

1

3

)

and F (y∗
1
, y∗

2
) = 32

3

Remark 1: y∗ corresponds to the shadow prices of the primal
problem.

Remark 2: F (y∗
1
, y∗

2
) = f(x∗

1
, x∗

2
)

Remark 3: constraints of F ∗ guarantee that seller receives as
much money from selling than from producing ⇒ prices y∗

used by buyer to value inputs correspond to (min) prices at
which seller is willing to sell. These are the shadow prices!
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Duality

To every linear programming problem (primal problem) there
corresponds a dual problem.

Example1:

Let the primal problem be a profit maximizations subject
to resource constraints.

The dual problem is a minimization of the total cost of the
resources subject to constraints that the value of the
resources used in producing one unit of each output be at
least as great as the profit received from the sale of that
output.

Variables of the dual problem are Lagrange multipliers for the
primal problem. → interpretation as sensitivity of optimal
value of objective function of primal problem wrt changes in
frontier of constraints.

i.e. dual variables are (shadow) prices.
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Duality (2)

Example [n = 3,m = 2].

Let the primal problem be
maxx f(x) = cx s.t. Ax ≤ b, x ≥ 0

where

x =



x1

x2

x3


 ; c = (c1, c2, c3), b =

(
b1

b2

)
and

A =

(
a11 a12 a13

a21 a22 a23

)

or equivalently, for i = 1, 2; j = 1, 2, 3

max{x1,x2,x3}

∑
3

j=1
cjxj s.t.

∑
3

j=1
aijxj ≤ bi, xj ≥ 0.
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Duality (3)

Example [n = 3,m = 2] (cont’d)

The corresponding dual problem is
miny g(y) = yb s.t. yA ≥ c, y ≥ 0

where
y = (y1, y2), yi ≥ 0

or equivalently, for i = 1, 2; j = 1, 2, 3

min{y1,y2}

∑
2

i=1
biyi s.t.

∑
2

i=1
aijyi ≥ cj , yi ≥ 0.

Remarks

both problems look for an extremum of a linear function
s.t. linear inequality constraints

both problems use the same parameters A,b, c

the dual to the dual problem recovers the original one.
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Duality - theorem

The maximum value of the primal problem equals the
minimum value of the dual problem

The constraints of the primal problem appear in the objective
function of the dual problem
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The dual linear programming problem

The primal problem has 4 constraints → the dual problem has
4 variables. Denote them as w1, w2, w3, w4.

The primal problem has two variables → the dual problem has
2 constraints.

Finally, the non-negativity of the variables of the dual problem
is also required.

min
w1,w2,w3,w4

Z =400w1 + 40w2 + 6w3 + 9w4 s.t.

20w1 + 5w2 + w3 ≥ 100

40w1 + 2w2 + w4 ≥ 60

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0, w4 ≥ 0
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The dual linear programming problem (2)

Solution of the dual problem

w∗
1
= 0.625 e, w∗

2
= 17.5 e, w∗

3
= 0 e, w∗

4
= 0 e, Z∗ = 950 e.

Economic interpretation of the dual variables

Rate of change in total profits (marginal profit) if an additional
unit of a given input is made available.

w∗
1
= 0.625 e means that profits could be increased by as

much as 0.625 e if an extra unit of wood would be available in
the production process.

A dual variable =0 means that profits would not increase if
additional resources were available. The restriction is not
binding in the optimal solution.

In this sense, the dual variables measure the shadow prices
of each of the resources. They are associated to the lagrange
multipliers λi.
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Equivalence of primal and dual problems

Primal problem:
maxx f(x) = cx s.t. Ax ≤ b, x ≥ 0

Lagrangean function:
L(x, λ) = cx+ λ(b−Ax)

K-T conditions:

∂L

∂x
= c− λA ≤ 0

∂L

∂x
x = (c− λA)x ≤ 0

∂L

∂λ
= b−Ax ≥ 0

λ
∂L

∂λ
= λ(b−Ax) ≥ 0

x ≥ 0, λ ≥ 0
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Equivalence of primal and dual problems (2)

Dual problem:
miny g(y) = yb s.t. yA ≥ c, y ≥ 0

Lagrangean function:
L(y, µ) = yb+ (c− yA)µ

K-T conditions:

∂L

∂y
= b−Aµ ≥ 0

y
∂L

∂y
= y(b−Aµ) = 0

∂L

∂µ
= c− yA ≥ 0

∂L

∂µ
µ = (c− yA)µ = 0

y ≥ 0, µ ≥ 0
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Equivalence of primal and dual problems (3)

Remarks

If x = µ and y = λ, both sets of conditions are identical

The decision variables of one problem are the lagrange
multipliers of the dual problem.

Duality theorem

A necessary and sufficient condition for a feasible vector x∗ to
represent a solution to a linear programming problem is that
there exists a feasible vector y∗ for the dual problem for which
the values of the objective functions of both problems are
equal.

Formally,

f(x∗) ≥ f(x),∀x ∈ X ⇐⇒ ∃y∗ ∈ Y s.t.

{
g(y∗) ≥ g(y),∀y ∈ Y

f(x∗) = g(y∗)
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Appendix. Illustrating the simplex algorithm

The problem

max
x1,x2

f(x1, x2) = 3x1 + 2x2 s.t.

2x1 + x2 ≤ 6

x1 + 2x2 ≤ 8

x1 ≥ 0, x2 ≥ 0

Step 1: add slack variables in the constraints

2x1 + x2 + s1 = 6

x1 + 2x2 + s2 = 8

x1 ≥ 0, x2 ≥ 0, s1 ≥ 0, s2 ≥ 0
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Appendix. Illustrating the simplex algorithm (2)

Step 2: Select a vertex of the feasible set and evaluate (s1, s2, f). If

feasible, select (x, y) = (0, 0)

At (x, y) = (0, 0), it follows (s1, s2) = (6, 8) and f(0, 0) = 0

Step 3: solve for the constraints and the objective function in terms
of the variables equal to zero in the solution (non-basic variables).
[Variables different from zero are called basic variables]

s1 = 6− 2x1 − x2 (12)

s2 = 8− x1 − 2x2 (13)

f = 3x1 + 2x2 (14)
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Appendix. Illustrating the simplex algorithm (3)

Step 4: Move to a neighboring vertex

For each non-basic variable, determine the maximum
increased within the feasible set:

Consider x1. According to (12), its maximum possible
increase is 3.

Consider x1. According to (13), its maximum possible
increase is 8.

Thus, maximum feasible increase of x1 is 3.

Consider x2. According to (12), its maximum possible
increase is 6.

Consider x2. According to (13), its maximum possible
increase is 4.

Thus, maximum feasible increase of x2 is 4.
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Appendix. Illustrating the simplex algorithm (4)

Step 4: Move to a neighboring vertex (cont’d)

Compute the increase in f associated to the increase in x1
and x2 respectively

For ∆x1 = 3 it follows ∆f = 9

For ∆x2 = 4 it follows ∆f = 8

move along the direction of maximum increase of f , namely
x1 = 3.

For (x1, x2) = (3, 0) substituting in (12) and (13) we obtain

(s1, s2) = (0, 5).

In this way we generate a new basic solution
(x1, x2, s1, s2, f) = (3, 0, 0, 5, 9) with non-basic variables x2, s1.

Remark: The movement from one basic solution to another is
called pivot transformation. It is the central feature of the
simplex algorithm.
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Appendix. Illustrating the simplex algorithm (5)

Step 5: repeat step 3 using the new basic solution

solve for the constraints and the objective function in terms of
the non-basic variables:

From (12),

x1 = 3−
1

2
x2 −

1

2
s1 (15)

Substituting (15) into (13),

s2 = 5−
3

2
x2 +

1

2
s1 (16)

Substituting (15) into (14),

f = 9 +
1

2
x2 −

3

2
s1 (17)
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Appendix. Illustrating the simplex algorithm (6)

Step 6: repeat step 4.

Move to a neighboring vertex. For each non-basic variable,
determine the maximum increased within the feasible set:

Note that f can only increase in the direction x2.

Consider x2. According to (15), its maximum possible
increase is 6.

Consider x2. According to (16), its maximum possible
increase is 10/3.

Thus, maximum feasible increase of x2 is 10/3.
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Appendix. Illustrating the simplex algorithm (7)

Step 6: (cont’d)

Compute the increase in f associated to the increase in x2
(using (17))

For ∆x2 = 10/3 it follows ∆f = 5/3

Move along this direction of maximum increase of f , namely
x2 = 10/3.

For (s1, x2) = (0, 10/3) substituting in (15) and (16) we obtain

(x1, s2) = (4/3, 0).

In this way we generate a new basic solution
(x1, x2, s1, s2, f) = (4/3, 10/3, 0, 0, 32/3) with non-basic
variables s1 and s2.
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Appendix. Illustrating the simplex algorithm (8)

Step 7: repeat step 3 using the new basic solution

solve for the constraints and the objective function in terms of
the non-basic variables:

x1 =
4

3
−

2

3
s1 +

1

3
s2 (18)

s2 =
10

3
+

1

3
s1 −

2

3
s2 (19)

f =
32

3
−

4

3
s1 −

1

3
s2 (20)

Note ∂f
∂s1

< 0 and ∂f
∂s2

< 0. Hence, there is no direction in

which f can increase.

Conclusion: The solution generated by the simplex algorithm is

x∗
1
= 4

3
, x∗

2
= 10

3
, f(x∗

1
, x∗

2
) = 32

3
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Appendix. Illustrating the simplex algorithm (9)

x1

x2

30
8

4

6

(x∗

1
, x

∗

2
) = (

4

3
,
10

3
) ∇f

initial basic 

feasible solution

(0,0)

second basic 

feasible solution

(3,0)

third (and final) 

basic 

feasible solution
2x1 + x2 = 6

x1 + 2x2 = 8
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