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I1.3 Static optimization - Non-Linear programming
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Nonlinear programming - Definition

Inequality restrictions
® g(x)<b,i=1,....,m
® g;(x) continuous, continuously differentiable
® b cR
Non-negativity restrictions
® r;>0,7=1,....,n
Problem:

g(x) <b
x >0

® maxy f(x) S.t. {

® { continuously differentiable.
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Nonlinear programming - Remarks

(1) No restriction on m and n

(i) The direction of the inequality in the restrictions < is a
convention.
€.g. r1 — 209 > 7T —x1 + 2090 < —7

(i) An equality restriction can be rewritten as two inequality
restrictions.
€.0. r1 — 22 =7 x1 — 229 < 7and —x1 + 220 < 7

(iv) A free instrument x; can be rewritten as the difference of two
non-negative instruments

125 . / 124
eg.x; = 37; — with x>0 and z; > 0.

(v) Consequence: Classical programming is a particular case of
non-linear programming without non-negativity restrictions
and the inequality restrictions written as equality restrictions.
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Nonlinear programming - Geometry

® Each non-negativity restriction z; > 0 defines a semi-space of
non-negative values.

® The intersection of all non-negativity restrictions defines the
non-negative orthant, a subset of the Euclidean
n-dimensional space.

—

reR, >0

. V

reR: >0
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Nonlinear programming - Geometry (2)

® Each inequality restriction g;(x) < 0 defines a set of points in
R".

® The intersection of all inequality restrictions defines a subset
of the Euclidean n-dimensional space.

® The intersection of the non-negativity and inequality
restrictions defines the feasible set, X ¢ R".

> T
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Nonlinear programming - Geometry (3)

9

9

Solution is a vector x € X allowing to achieve the highest
value of f.

Given that X is compact, assuming f continuous allows to
apply Weierstrass theorem so that a (set of) solution exists.

Such solution(s) may be located either in the interior or on the
frontier of X.

Convexity assumptions are very important in non-linear
programming problems

o If fis concave and all restrictions g; are convex, the
local-global theorem tells us that a local maximum is also
global and the set of solutions is a convex set.

o Often this case is referred to as concave programming.
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A simple case

°

Assume m = 0, so that only non-negativity restrictions.
Problem reduces to maxy f(x) s.t. x > 0

One way to solve the problem is using Taylor's expansion
around a solution x*, assuming such a solution exists.

Consider a neighborhood of x* + Ax.

Since x* is a solution, f(x*) < f(x* + hAx), with h € R
arbitrarily small.

Let f be twice continuously differentiable. Then,
f(x* 4+ hAx) =

f(x*) + hg—){(x*)AX + %h2(AX)’8a;f2 (x* + 0hAx)Ax,
with 8 € (0,1).

Substitution yields the fundamental inequality:
hIL(x*)Ax + Lh2(Ax) 2L (x* + OhAx)Ax < 0

O0x22

nnnnnnnnnnnnnnnn

nnnnnn

OPT - p.7/45



A simple case (2)

This is a necessary condition for a local maximum of f at x*.

If x* is an interior solution x* > 0, the fundamental inequality
has to be verified in every direction Ax. This is equivalent to

the same FOC of classical programming, 8f.( ) =0, Vj.

Assume now dj s.t. z; = 0.

» The fundamental inequality means that the only feasible
direction is Az; > 0.

» Then, dividing by h and taking the lim;_., we obtain,

5L (x*) Az < 0.

s Summarizing, we have that (i) if 2% > 0 then L (x*) = 0,

8563'
and (ii) if 25 = 0 then £L(x*) <0.

s Combining both conditions, it follows that - (x*)a} = 0.
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A simple case (3)

°

Consider now the n-dimensions of the problem.

o0 %\ <, % o0 %\ %
W (xt)xt = Y0y oL (x*)ak =0

This condition says that the sum of the products cancels, but

also that each element of the sum cancels given that x > 0
and that the first partial derivatives are non-positive.

Summarizing the FOCs are characterized by the following

2n + 1 conditions:

or equivalently V5 =1,2,...,n
SL(x*) =0, if 27>0
0,

0 *
agi(x)é
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Taxonomy of solutions

d d
f(x) 4 é(:@-*):o f(z) 4 %(m*):()
i f
| X b /
0_|——> e ——————————————————————
x* >0 X =0 T
o h
f
f
X
L
z" =0 x
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The general case

Preliminaries

® The simple case provides the feeling for characterizing the
solution of the general case.

#® Constraints g; may be binding or not:

To A To A

g1(z) < by binding g1(x) < by binding
g2(x) < by not binding g2(x) < by binding
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The general case (2)

The problem

g(x)<b

® maxy f(x) S.1. {X > 0

Strategy of solution - Solving the saddle-point problem
® Follow the logic of the classical programming problem

® Define avector A = (A, ..., \,,) of Lagrange multipliers, one
for each inequality restriction g;.

® Define the lagrangean function:
L(x,A) = f(x) + A(b — g(x))

® The set of FOC characterizing is known as the Kuhn-Tucker
conditions

f g Barcelona
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Kuhn-Tucker conditions

The K-T conditions
OL 0L

ES o b S b S >
aX(X A") <0, 8)\(X’)\)_O
OL § LOL o
6‘X(X A)x* =0, )\a)\(x ) =0
x* >0, A >0

Remark
® Note the different sign of the partial derivatives wrt x and A —

» x* maximizes L, while A* minimizes L

® Thus (x*,\*) is a saddle point of L, i.e.
L(x,\*) < L(x*,\*) < L(x*,\), Vx> 0,A >0

® C(Conditions content of Kuhn-Tucker theorem
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nnnnnn



The saddle point problem

Lz, \) 4

i /
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Kuhn-Tucker conditions (2)

Algebaric notation. The problem

g1(z1,... ) < b
max f(z1,...,2,) Subjectto { -
L1yeeeyLn gm(aj:[, e o e ,xn) S bm
€T; > O, 1 =1.2 n

The K-T conditions

m

oL (3f Z 8gj
ox; ox; o A ox; — 0, ' b g]( )20

aL Of <=, 0g; OL
Tig _ﬂji(axi —Z)\j({m) =0, %5,7 Aj(b; —g;(-) =0
j=1

r; >0, (i=1,2,...,n) A >0, (1=12,...,m)
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The Kuhn-Tucker theorem

(a) x* solves the non-linear programming problem if (x*, \*) is a
solution of the saddle point problem.

(b) Under some conditions, x* solves the non-linear programming
problem only if 3A* for which (x*, \*) solves the saddle point
problem.

(c) What conditions?
® f(x)is concave,
® Vj, g;(x) are convex.
® constraint qualification condition: 3x° such that x® > 0

and g(xY) < b.
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The Kuhn-Tucker theorem - Proof

Proof of (a) - sufficiency (“if")

® |[f (x*, \*) is a solution of the saddle point problem means
f(>é) +A%(b — g(x)) < f(x7) + A*(b — g(x"))
an
Jx*) + A (b —g(x*)) < f(x) + A(b — g(x7))
® Write the second inequality as
(A=A (b—g(x*)) >0, VA>0
® Then,
o for A such that (A — \*) > 0, it follows that b — g(x*) > 0
o for A such that (A — \*) <0, since b — g(x*) > 0 it follows
that b — g(x*) = 0 and
» in particular for A = 0 it follows that A*(b — g(x*)) =0

® Therefore, substituting in the first inequality,
f(x) + A% (b —g(x)) < f(x*) implying f(x) < f(x%).

f g Barcelona
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The Kuhn-Tucker theorem - Proof (2)

Proof of (b) - necessity (“only if”)

® Assume x* solves the non-linear programming problem, i.e.
x* >0, g(x*) <b, and f(x*) = f(x), Vx > 0, g(x) < b.

® letag e R, bp € R. Letac R b e R™.
® Define the following (m + 1)-dimensional convex sets:

=) = (655
{G)16)-(5)

® letm =n=1Then,

» Ais a set bounded by points with vertical distance f(x)
and horizontal distance b — g(x). Thus convex.

# B s the interior of the quadrant with vertex at the point
(f(fr*)/ ﬂ) Also convex

f g Barcelona
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The sets 4 and B
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The Kuhn-Tucker theorem - Proof (3)

Proof of (b) - necessity (“only if”) - [cont’d]
® Note that A and B are disjoint

® Applying the theorem on the separating hyperplane, there is a
vector (Mg, A), with A\g € R and A € R™ such that

(Ao, ) (?) < (Ao, \) (if) Y (?) c A, (if) c B.

#® Note that from the definition of B, the vector (g, \) is
nonnegative.

® Also, since (f(x*),0)" is on the boundary of A, it follows that
Ao f(x) + A(b —g(x)) < Aof(x*), Vx>0
#® Because of the constraint qualification condition Ay > 0.

s If \g=0— (b —g(x)) <0, vx >0 and the
nonnegativity of A would contradict the existence of an
x® > 0 such that g(x°) < b.
MOYE? UMB 835
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Separating hyperplane - recall

® ()\o, \) separating hyperplane means:

(Ao, A) (0;?) < (lif) and
w5

® Hence,

(Ao, A) (O:)) < (Mo, ) (%)
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The Kuhn-Tucker theorem - Proof (4)

Proof of (b) - necessity (“only if”) - [cont'd (2)]
® |f \y > 0dividing both sides, we obtain
f(x)+ X (b —g(x)) < f(x*), Vx > 0with \* = 1/\g. [KT1]
® |In particular, if x = x* it follows that A*(b — g(x*)) <0
® But we know that (b > g(x*)) and \* > 0. Thus,
(b —g(x*)) =0. [KT?2]
#® Finally, define the Lagrangian as: L(x,\) = f(x) + A(b — g(x)
® From [KT1]|and [KT?2] and from the assumption y > 0, it

follows that (x*, \*) is a saddle point for L(x, \) for
x > 0, A\ > 0 thus proving the necessity part of the theorem.

Summarizing

® Under the above assumptions x* solves the nonlinear
programming problem if ans only if 3\* such that (x*, \*)
solves the saddle point problem.
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The saddle-point problem - Remark

Additional assumption: f(x) and g(x) are differentiable functions.

Part 1: max, L(x, A*) - Conditions

oL

T (X A) =<0,
OL .
aX(X AF)x* =0,
x* > 0.

Part 2: min, L(x*, A) - Gonditions

oL §
(9)\(X A*) >0,

oL "
Aa)\(x A*) =0,

AT > 0.
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Geometry of the Kuhn-Tucker conditions

The problem

(g1(z1,29) < by
maxf(a:l,ajg) SUbjeCt to < gg(ml,xg) < by

L1,XL2

\xlvan Z 0

The K-T conditions

9
9

Let * = («7, z3) be an interior solution to this problem.

K-T theorem says that V f(z*) must lie in the cone formed by
the gradients of the restrictions Vg, (z*) and Vga(x*) ...

... l.e. Vf(x*) is a non-negative linear combination of Vg, (z*)
and Vgg(a:*)

Formally, 3()\1, )\2) >08t.Vf=AVgs + AVgs.
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Geometry of the Kuhn-Tucker conditions (2)

® Case 1

o Case 1a: all restrictions as equalities and active, interior
solution.

o Case 1b: all restriction as equalities, some active, interior
solution
® Case?2
o (Case 2a: some restrictions inactive, interior solution
o (Case 2b: some restrictions inactive, corner solution
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Case 1a: K-T conditions satisfied at +* > 0, g(2*) = b

Remarks:
g1(z*) = b1, g2(x™) = b

VIf=MVg + XVgo, with Ay > 0and Ay > 0

Mf VEq U"B Barcelona
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Case 1b: K-T conditions satisfied at +* > 0, g(2*) =

Ty T1

Remarks:
g1(z*) = b1, 92(x™) = by

Vf — )\1V91, with A >0 and A =10

f g Barcelona
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Geometry of the Kuhn-Tucker conditions (2)

What if V f(zx) is not in the cone?

9

9
9

Consider f slightly perturbed (as in next figure) so that Vf is
no longer in the cone.

(we could have perturbed ¢; and/or g, instead)

Observe that now there is a “lens” between the contours of f
and g1.

This lens contains feasible points allowing to achieve large
values of f than f(z*).

Thus z* is no longer a maximizer of f, as it does not satisfy
K-T conditions.

uuuuuuuuuuuuuuuuu
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Geometry of the Kuhn-Tucker conditions (3)
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Geometry of the Kuhn-Tucker conditions (4)

Remark

® The constraint qualification condition precisely means that V f
lies in the cone...

® ... I.e. that the restriccions are linearly independent
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Case 2a: K-T conditions satisfied at =7 > 0, g;(z*) < b,

® let go(z*) < be. K-T conditions require Ao = 0, and V f lies in
the cone defined by g¢;.

9o gl(az* a bl,gg(az*) < by — Ay = O;Vf = )\1Vg1
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Case 2b: K-T conditions satisfied at 2% = 0, g;(z*) < b;

® Let 9L <32 | N2 K-T conditions require z} = 0.

o Assume ga2(x*) < by so that Ay =0

® Accordingly,
oL _ ﬁ(m*) _ Alg—gi(m*) < 0 and

833‘1 o 8331
0 0 8

® In the next figure it happens that 5= (z*) < A 32 (z*), i.e. Vf
IS not in the cone Vg.

® but it might be possible to have 2L (z*) = A1 §2(2*) in case of
tangency at z*.

MOVE[} unB Barcelona )
mmmmmmmmmmmmmmmmmmmmmmm SEE OPT - p.32/45



Case 2b: K-T conditions satisfied at =% = 0, g;(2") < b; (2)

£CQA
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Case 2b: K-T conditions satisfied at =% = 0, g;(2*) < b; (3)

$2A
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The envelope theorem

Motivation
#® Consider the problem max, f(x) s.t. g(x) < ¢

® (Generalize this problem by allowing f and g to depend on a
parameter 6, i.e. max, f(x,0) s.t. g(z,0) < c

#® The solution of this problem is z*(8), and the optimal value of
fis f(z*(0),0)

® Now define the value function V : R — R as
V(0) = f(z*(0),0) = max, f(x,0) s.t. g(x,0) < ¢

® Question: evaluate how V' changes with 6.

® Example: Utility (U(c1, c2)) maximization. Income and prices
(I,p1,p2) are exogenous. Thus optimal demands are

CT(Iaplap2)7C§(Iaplap2) and )\*(LPLPQ)-
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The envelope theorem (2)

Evaluating V

9
9

9

o o

Suppose in particular that we want to assess V/(0).

From K-T conditions, we know that (z*, \*) must satisfy the
complementary slackness condition: A\*[c — g(z*,68)] = 0

Thus, V(0) = f(z*,0) = f(z*,0) + A\*[c — g(z, 0)]
Differentiate both sides wrt 6 : V'(0) = % — X“%

BUT we know that z*(6) and A\*(8). Then, that derivative may
be wrong when ignoring the dependence of =* and A* on 6.

HOWEVER, the envelope theorem tells us that the expression
of V/(#) is in fact correct, i.e.

The that when computing V/(0) we
can ignore the dependence of z* and A* on 6.
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The envelope theorem - Intuition

Unconstrained problem max, f(x, 0)
® let2*(0) be the solution, and define V(0) = f(x*(0),0).

#® Differentiate both sides wrt 6 : V/(0) = a—éw + 3—5
® but as z*(0) is a critical value of £, it must be that 24 =0
.p

Therefore, V'(0) = 91

f g Barcelona
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The envelope theorem - Intuition (2)

Constrained problem max, f(z,0) s.t. g(z,0) < ¢

9

9

9

From K-T conditions, we know that (z*(6), A*(#)) must satisfy
the complementary slackness condition:

A (0)[c — g(27(0),0)] =0
Thus, V(0) = f(2%(0),0) + A*(0)[c — g(z7(6),0)]

Differentiate both sides wrt 0 :

V'(0) =

5’; do' | Of | 42 “[c—g( <e> 0)] — A*(0)[ 28 dzr 4 Dy
| ok - (032 + 5 + L2 e 9(5'3*(9):9)}—)\*(9)@

BUT (z*(0), \*(0) is a critical point of the lagrangean function
L(x,\) = f(x,) + Ac — g(z,-)]. Therefore,

0 % O *
%:a_f_)\ a_9:() and%:c—g(m,@):O.ThUS,

V’(9) = 95 = \"(0) 35
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The envelope theorem

® let f(x,0)and g(x,0) be contiunuously differentiable

functions.
® For any given 6, x*(0) maximizes f(x,0) s.t. g(z,0) < c.
® Let \*(0) be the value of the associated lagrange multiplier.
® Suppose x*(0) and \*(6) be continuously differentuiable.
#® Suppose that the constraint qualification, g(z*(0), 6) # 0 holds
ve.
® Then, the maximum value function defined by
V(0) = max, f(z,0) s.t. g(z,0) < c
satisfies
V’(@) — 8f(x;ée)79) . )\*((9) 89(x5§9),9)
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The envelope theorem - Proof

® K-T theorem says that for any 6, x*(6) and \*(0) satisfy
8L(:v*(ga);/\*( ) _ Of(= &(U) 0) )\*(9) g(z 83(39%0) — 0, [1] and

Nle—g(27(0),0)] = 0 [2]

Define V' (0) = f(2*(0),0) + A*(0)[c — g(2*(0),0)]

® Differentiate both sides wrt 6 :

°

VI(0) = 2L dzt 4 OF 4 PO e g(a%(9),0)) - X*(0)[ 22 2

® Rewrite as
V/(e) _

2L X022 |45 + 5~ X (0)% + 2c — 9(a7(6),0)]

® The first term is zero from the FOC [1]
#® |f the constraint binds the last term is also zero.

dg
T 50
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The envelope theorem - Proof (cont’d)

® |[f the constraint does not bind, \*(6) = 0

The continuity of g and =* means that if the constraint does
not bind at 6, 9¢* > 0 such that the constraint does not bind for
0 + ¢ with |g| < g*.

FOC [2] implies that A*(0 + ¢) = 0,V|e| < &*.

® From the definition of derivative
A (0) _ i A*(0+€)—A*(0)
do e—0 £

hence the last term is again zero.

°

°

— limé“—)O g — O!
® Therefore, it follows that

of(x*(0), * dg(x*(0),
V'(0) = S 859) 0) _ () g( 859) 0)

[See Ireland, 2010]
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The envelope theorem - Geometry

Unconstrained problem max, f(x, 0)

® Lletz*(0) be the solution, and define V(0) = max, f(z,8).
Let 6, be a particular value of 6 and let z; = 2*(6;).
Think of f(x1,6) a function of 6 holding x; fixed.
Similarly consider 6> > 6; and xo = x*(62)
Think of f(x2,0) a function of ¢ holding x- fixed.

© o o o b

For 6 = 6, because x; maximizes f(x,6,) it follows that
V(61) = f(x1,01) > f(x2,61)

For 6 = 6, because x2 maximizes f(x, 62) it follows that
V(02) = f(x2,02) > f(z1,602)

Graphically, at 61, V(0) = f(x1,0) which lies above f(x2,0).

Graphically, at 62, V(0) = f(x2,0) which lies above f(x1,0).

°

o o
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The envelope theorem - Geometry (2)

A
V(0)
f(x27 0)
: f(xla 0)
0 | | .
01 0 0
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The envelope theorem - Geometry (3)

® Repeat the argument for more values of 9;, + = 1,2,3,...

® V(0)istangentto each f(z;,0) at 4;,i.e. V'(0) = 8f(”3;§9)’9)

® This is the same analytical result obtained.

® Forthe
max, f(x,0) s.t. g(z,0) < ¢, define the lagrangean function
Lz, A\, 0) = f(x,0) + A(c —g(x,0))

® Define V(0) = max, L(x, \,0) and repeat the argument above
wrt L

® Again V'(0) = g_g — 3f(w;é9>,9> _ A*(@)ég(w;ée),@

® The V function is tangent from above to all the L functions

associated to the values 0,

f g Barcelona
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Applications

® Consumer Theory (Utility max)

® Producer Theory
o Profit maximization
o Cost minimization
o Revenue max under profit constraint
o Peak-Load pricing

» Regulatory constraints: rate-of-return, environmental, ...

Welfare economics (Pareto optimal solutions)
Human capital investment
Non-Linear Least-Square estimation

© o o @

... and many, many more

nnnnnnnnnnnnnnnnnn

|||||||

OPT - p.45/45



	Nonlinear programming - Definition
	Nonlinear programming - Remarks
	Nonlinear programming - Geometry
	Nonlinear programming - Geometry (2)
	Nonlinear programming - Geometry (3)
	A simple case
	A simple case (2)
	A simple case (3)
	Taxonomy of solutions
	The general case
	The general case (2)
	Kuhn-Tucker conditions
	The saddle point problem
	Kuhn-Tucker conditions (2)
	The Kuhn-Tucker theorem
	The Kuhn-Tucker theorem - Proof
	The Kuhn-Tucker theorem - Proof (2)
	The sets $A$ and $B$
	The Kuhn-Tucker theorem - Proof (3)
	Separating hyperplane - recall
	The Kuhn-Tucker theorem - Proof (4)
	The saddle-point problem - Remark
	Geometry of the Kuhn-Tucker conditions
	Geometry of the Kuhn-Tucker conditions (2)
	Case 1a: K-T conditions satisfied at $x^{*}>0, g(x^{*})=b$
	Case 1b: K-T conditions satisfied at $x^{*}>0, g(x^{*})=b$
	Geometry of the Kuhn-Tucker conditions (2)
	Geometry of the Kuhn-Tucker conditions (3)
	Geometry of the Kuhn-Tucker conditions (4)
	Case 2a: K-T conditions satisfied at $x_j^{*}>0, g_i(x^{*})<b_i$
	Case 2b: K-T conditions satisfied at $x_j^{*}=0, g_i(x^{*})<b_i$
	Case 2b: K-T conditions satisfied at $x_j^{*}=0, g_i(x^{*})<b_i$
(2)
	Case 2b: K-T conditions satisfied at $x_j^{*}=0, g_i(x^{*})<b_i$
(3)
	The envelope theorem
	The envelope theorem (2)
	The envelope theorem - Intuition
	The envelope theorem - Intuition (2)
	The envelope theorem
	The envelope theorem - Proof
	The envelope theorem - Proof (cont'd)
	The envelope theorem - Geometry
	The envelope theorem - Geometry (2)
	The envelope theorem - Geometry (3)
	Applications

