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Nonlinear programming - Definition

Inequality restrictions

gi(x) ≤ bi, i = 1, . . . ,m

gi(x) continuous, continuously differentiable

bi ∈ IR

Non-negativity restrictions

xj ≥ 0, j = 1, . . . , n

Problem:

maxx f(x) s.t.

{

g(x) ≤ b

x ≥ 0

f continuously differentiable.
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Nonlinear programming - Remarks

(i) No restriction on m and n

(ii) The direction of the inequality in the restrictions ≤ is a
convention.
e.g. x1 − 2x2 ≥ 7 ⇔ −x1 + 2x2 ≤ −7

(iii) An equality restriction can be rewritten as two inequality
restrictions.
e.g. x1 − 2x2 = 7 ⇔ x1 − 2x2 ≤ 7 and −x1 + 2x2 ≤ 7

(iv) A free instrument xj can be rewritten as the difference of two

non-negative instruments

e.g. xj = x′j − x
′′

j with x′j ≥ 0 and x
′′

j ≥ 0.

(v) Consequence: Classical programming is a particular case of
non-linear programming without non-negativity restrictions
and the inequality restrictions written as equality restrictions.
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Nonlinear programming - Geometry

Each non-negativity restriction xj ≥ 0 defines a semi-space of

non-negative values.

The intersection of all non-negativity restrictions defines the
non-negative orthant, a subset of the Euclidean
n-dimensional space.

[
0

x ∈ R, x ≥ 0

x ∈ R2, x ≥ 0
x ∈ R3, x ≥ 0
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Nonlinear programming - Geometry (2)

Each inequality restriction gi(x) ≤ 0 defines a set of points in

IRn.

The intersection of all inequality restrictions defines a subset
of the Euclidean n-dimensional space.

The intersection of the non-negativity and inequality
restrictions defines the feasible set, X ⊂ IRn.

g1(x) ≤ b1

g2(x) ≤ b2

x1

x
cp

1

x2

x
cp

2

X
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Nonlinear programming - Geometry (3)

Solution is a vector x ∈ X allowing to achieve the highest
value of f .

Given that X is compact, assuming f continuous allows to
apply Weierstrass theorem so that a (set of) solution exists.

Such solution(s) may be located either in the interior or on the
frontier of X.

Convexity assumptions are very important in non-linear
programming problems

If f is concave and all restrictions gi are convex, the
local-global theorem tells us that a local maximum is also
global and the set of solutions is a convex set.

Often this case is referred to as concave programming.
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A simple case

Assume m = 0, so that only non-negativity restrictions.

Problem reduces to maxx f(x) s.t. x ≥ 0

One way to solve the problem is using Taylor’s expansion
around a solution x∗, assuming such a solution exists.

Consider a neighborhood of x∗ +∆x.

Since x∗ is a solution, f(x∗) ≤ f(x∗ + h∆x), with h ∈ IR
arbitrarily small.

Let f be twice continuously differentiable. Then,
f(x∗ + h∆x) =

f(x∗) + h∂f
∂x

(x∗)∆x+ 1
2h

2(∆x)′ ∂2f
∂x22 (x∗ + θh∆x)∆x,

with θ ∈ (0, 1).

Substitution yields the fundamental inequality:

h∂f
∂x

(x∗)∆x+ 1
2h

2(∆x)′ ∂2f
∂x22 (x∗ + θh∆x)∆x ≤ 0
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A simple case (2)

This is a necessary condition for a local maximum of f at x∗.

If x∗ is an interior solution x∗ > 0, the fundamental inequality
has to be verified in every direction ∆x. This is equivalent to

the same FOC of classical programming, ∂f
∂xj

(x∗) = 0, ∀j.

Assume now ∃j s.t. x∗j = 0.

The fundamental inequality means that the only feasible
direction is ∆xj ≥ 0.

Then, dividing by h and taking the limh→0 we obtain,
∂f
∂xj

(x∗)∆xj ≤ 0.

Summarizing, we have that (i) if x∗j > 0 then ∂f
∂xj

(x∗) = 0,

and (ii) if x∗j = 0 then ∂f
∂xj

(x∗) ≤ 0.

Combining both conditions, it follows that ∂f
∂xj

(x∗)x∗j = 0.
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A simple case (3)

Consider now the n-dimensions of the problem.

∂f
∂x

(x∗)x∗ =
∑n

j=1
∂f
∂xj

(x∗)x∗j = 0

This condition says that the sum of the products cancels, but
also that each element of the sum cancels given that x ≥ 0
and that the first partial derivatives are non-positive.

Summarizing the FOCs are characterized by the following
2n+ 1 conditions:

∂f
∂x

(x∗) ≤ 0
x ≥ 0

∂f
∂x

(x∗)x∗ = 0

or equivalently ∀j = 1, 2, . . . , n

∂f
∂xj

(x∗) = 0, if x∗j > 0

∂f
∂xj

(x∗) ≤ 0, if x∗j = 0
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Taxonomy of solutions

f(x)

xx
∗

> 0
0

X

df

dx
(x∗) = 0

f

x
∗

= 0

f(x)

x

X

df

dx
(x∗) = 0

f

x
∗

= 0

df

dx
(x∗) < 0

f(x)

x

X

f
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The general case

Preliminaries

The simple case provides the feeling for characterizing the
solution of the general case.

Constraints gi may be binding or not:

g2(x) ≤ b2 not binding

g1(x) ≤ b1 binding

0

g2(x) ≤ b2 binding

g1(x) ≤ b1 binding
x1

x2

0
x1

x2
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The general case (2)

The problem

maxx f(x) s.t.

{

g(x) ≤ b

x ≥ 0

Strategy of solution - Solving the saddle-point problem

Follow the logic of the classical programming problem

Define a vector λ = (λ1, . . . , λm) of Lagrange multipliers, one

for each inequality restriction gi.

Define the lagrangean function:
L(x, λ) = f(x) + λ(b− g(x))

The set of FOC characterizing is known as the Kuhn-Tucker
conditions
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Kuhn-Tucker conditions

The K-T conditions

∂L

∂x
(x∗, λ∗) ≤ 0,

∂L

∂λ
(x∗, λ∗) ≥ 0

∂L

∂x
(x∗, λ∗)x∗ = 0, λ∗

∂L

∂λ
(x∗, λ∗) = 0

x∗ ≥ 0, λ∗ ≥ 0

Remark

Note the different sign of the partial derivatives wrt x and λ →

x∗ maximizes L, while λ∗ minimizes L

Thus (x∗, λ∗) is a saddle point of L, i.e.

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ), ∀x ≥ 0, λ ≥ 0

Conditions content of Kuhn-Tucker theorem
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The saddle point problem

x

λ

λ
∗

L(x,λ)

x
∗
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Kuhn-Tucker conditions (2)

Algebaric notation. The problem

max
x1,...,xn

f(x1, . . . , xn) subject to























g1(x1, . . . , xn) ≤ b1
...

gm(x1, . . . , xn) ≤ bm

xi ≥ 0, i = 1, 2, . . . , n

The K-T conditions

∂L

∂xi
=

∂f

∂xi
−

m
∑

j=1

λj
∂gj
∂xi

≤ 0,
∂L

∂λj
= bj − gj(·) ≥ 0

xi
∂L

∂xi
= xi

( ∂f

∂xi
−

m
∑

j=1

λj
∂gj
∂xi

)

= 0, λj
∂L

∂λj
= λj(bj − gj(·) = 0

xi ≥ 0, (i = 1, 2, . . . , n) λj ≥ 0, (j = 1, 2, . . . ,m)
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The Kuhn-Tucker theorem

(a) x∗ solves the non-linear programming problem if (x∗, λ∗) is a

solution of the saddle point problem.

(b) Under some conditions, x∗ solves the non-linear programming
problem only if ∃λ∗ for which (x∗, λ∗) solves the saddle point
problem.

(c) What conditions?

f(x) is concave,

∀j, gj(x) are convex.

constraint qualification condition: ∃x0 such that x0 ≥ 0

and g(x0) < b.
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The Kuhn-Tucker theorem - Proof

Proof of (a) - sufficiency (“if”)

If (x∗, λ∗) is a solution of the saddle point problem means

f(x) + λ∗(b− g(x)) ≤ f(x∗) + λ∗(b− g(x∗))
and
f(x∗) + λ∗(b− g(x∗)) ≤ f(x∗) + λ(b− g(x∗))

Write the second inequality as
(λ− λ∗)(b− g(x∗)) ≥ 0, ∀λ ≥ 0

Then,

for λ such that (λ− λ∗) > 0, it follows that b− g(x∗) ≥ 0

for λ such that (λ− λ∗) < 0, since b− g(x∗) ≥ 0 it follows

that b− g(x∗) = 0 and

in particular for λ = 0 it follows that λ∗(b− g(x∗)) = 0

Therefore, substituting in the first inequality,
f(x) + λ∗(b− g(x)) ≤ f(x∗) implying f(x) ≤ f(x∗).
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The Kuhn-Tucker theorem - Proof (2)

Proof of (b) - necessity (“only if”)

Assume x∗ solves the non-linear programming problem, i.e.
x∗ ≥ 0, g(x∗) ≤ b, and f(x∗) ≥ f(x), ∀x ≥ 0, g(x) ≤ b.

Let a0 ∈ IR, b0 ∈ IR. Let a ∈ IRm,b ∈ IRm.

Define the following (m+ 1)-dimensional convex sets:

A =

{(

a0

a

)

∣

∣

∣

(

a0

a

)

≤

(

f(x)

b− g(x)

)}

B =

{(

b0

b

)

∣

∣

∣

(

b0

b

)

>

(

f(x∗)

0

)}

Let m = n = 1 Then,

A is a set bounded by points with vertical distance f(x)
and horizontal distance b− g(x). Thus convex.

B is the interior of the quadrant with vertex at the point
(f(x∗), 0). Also convex.
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The sets A and B

f

f(x), g(x)

x

b

g

x
∗

B

0
x1 x2 x3b− g(0)

b
−
g
(x

1
)

b− g(x1)

b− g(x2)

b
−
g
(x

2
)

b− g(x3)

b
−
g
(x

3
)

A
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The Kuhn-Tucker theorem - Proof (3)

Proof of (b) - necessity (“only if”) - [cont’d]

Note that A and B are disjoint

Applying the theorem on the separating hyperplane, there is a
vector (λ0, λ), with λ0 ∈ IR and λ ∈ IRm such that

(λ0, λ)

(

a0

a

)

≤ (λ0, λ)

(

b0

b

)

, ∀

(

a0

a

)

∈ A,

(

b0

b

)

∈ B.

Note that from the definition of B, the vector (λ0, λ) is
nonnegative.

Also, since (f(x∗),0)′ is on the boundary of A, it follows that

λ0f(x) + λ(b− g(x)) ≤ λ0f(x
∗), ∀x ≥ 0

Because of the constraint qualification condition λ0 > 0.

If λ0 = 0 → λ(b− g(x)) ≤ 0, ∀x ≥ 0 and the

nonnegativity of λ would contradict the existence of an

x0 ≥ 0 such that g(x0) < b.
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Separating hyperplane - recall

(λ0, λ) separating hyperplane means:

(λ0, λ)

(

a0

a

)

≤

(

k0

k

)

and

(λ0, λ)

(

b0

b

)

≥

(

k0

k

)

Hence,

(λ0, λ)

(

a0

a

)

≤ (λ0, λ)

(

b0

b

)
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The Kuhn-Tucker theorem - Proof (4)

Proof of (b) - necessity (“only if”) - [cont’d (2)]

If λ0 > 0 dividing both sides, we obtain
f(x) + λ∗(b− g(x)) ≤ f(x∗), ∀x ≥ 0 with λ∗ = 1/λ0. [KT1]

In particular, if x = x∗ it follows that λ∗(b− g(x∗)) ≤ 0

But we know that (b ≥ g(x∗)) and λ∗ ≥ 0. Thus,

λ∗(b− g(x∗)) = 0. [KT2]

Finally, define the Lagrangian as: L(x, λ) = f(x) + λ(b− g(x)

From [KT1] and [KT2] and from the assumption y ≥ 0, it

follows that (x∗, λ∗) is a saddle point for L(x, λ) for

x ≥ 0, λ ≥ 0 thus proving the necessity part of the theorem.

Summarizing

Under the above assumptions x∗ solves the nonlinear
programming problem if ans only if ∃λ∗ such that (x∗, λ∗)
solves the saddle point problem.
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The saddle-point problem - Remark

Additional assumption: f(x) and g(x) are differentiable functions.

Part 1: maxx L(x, λ
∗) - Conditions

∂L

∂x
(x∗, λ∗) =≤ 0,

∂L

∂x
(x∗, λ∗)x∗ = 0,

x∗ ≥ 0.

Part 2: minλ L(x
∗, λ) - Conditions

∂L

∂λ
(x∗, λ∗) ≥ 0,

λ∗
∂L

∂λ
(x∗, λ∗) = 0,

λ∗ ≥ 0.
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Geometry of the Kuhn-Tucker conditions

The problem

max
x1,x2

f(x1, x2) subject to











g1(x1, x2) ≤ b1

g2(x1, x2) ≤ b2

x1, x2 ≥ 0

The K-T conditions

Let x∗ = (x∗1, x
∗

2) be an interior solution to this problem.

K-T theorem says that ∇f(x∗) must lie in the cone formed by

the gradients of the restrictions ∇g1(x
∗) and ∇g2(x

∗) ...

... i.e. ∇f(x∗) is a non-negative linear combination of ∇g1(x
∗)

and ∇g2(x
∗)

Formally, ∃(λ1, λ2) ≥ 0 s.t. ∇f = λ1∇g1 + λ2∇g2.
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Geometry of the Kuhn-Tucker conditions (2)

Case 1

Case 1a: all restrictions as equalities and active, interior
solution.

Case 1b: all restriction as equalities, some active, interior
solution

Case 2

Case 2a: some restrictions inactive, interior solution

Case 2b: some restrictions inactive, corner solution

OPT – p.25/45



Case 1a: K-T conditions satisfied at x∗ > 0, g(x∗) = b

Feasible set

x1x
∗

1

x
∗

2

x2

∇f(x∗)

∇g1(x
∗)

∇g2(x
∗)

f

g1(x
∗) = b1

g2(x
∗) = b2

Remarks:
g1(x

∗) = b1, g2(x
∗) = b2

∇f = λ1∇g1 + λ2∇g2, with λ1 > 0 and λ2 > 0
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Case 1b: K-T conditions satisfied at x∗ > 0, g(x∗) = b

Feasible set

x1x
∗

1

x
∗

2

x2

∇f(x∗)

∇g1(x
∗)

∇g2(x
∗)

f

g2(x
∗) = b2

g1(x
∗) = b1

Remarks:
g1(x

∗) = b1, g2(x
∗) = b2

∇f = λ1∇g1, with λ1 > 0 and λ2 = 0
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Geometry of the Kuhn-Tucker conditions (2)

What if ∇f(x∗) is not in the cone?

Consider f slightly perturbed (as in next figure) so that ∇f is
no longer in the cone.

(we could have perturbed g1 and/or g2 instead)

Observe that now there is a “lens” between the contours of f
and g1.

This lens contains feasible points allowing to achieve large
values of f than f(x∗).

Thus x∗ is no longer a maximizer of f , as it does not satisfy
K-T conditions.
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Geometry of the Kuhn-Tucker conditions (3)

Feasible set

x1x
∗

1

x
∗

2

x2

∇f(x∗)
∇g1(x

∗)

∇g2(x
∗)

f

g1(x
∗) = b1

g2(x
∗) = b2
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Geometry of the Kuhn-Tucker conditions (4)

Remark

The constraint qualification condition precisely means that ∇f
lies in the cone...

... i.e. that the restriccions are linearly independent
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Case 2a: K-T conditions satisfied at x∗j > 0, gi(x
∗) < bi

Let g2(x
∗) < b2. K-T conditions require λ2 = 0, and ∇f lies in

the cone defined by g1.

g2(x1, x2) = b2

Feasible set

x1
x
∗

1

x
∗

2

x2

∇f(x∗)

∇g1(x
∗)

∇g2(x
∗)

f

g2(x
∗) < b2

g1(x
∗) = b1

g1(x
∗ = b1, g2(x

∗) < b2 → λ2 = 0;∇f = λ1∇g1
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Case 2b: K-T conditions satisfied at x∗j = 0, gi(x
∗) < bi

Let ∂f
∂x2

<
∑2

i=1 λi
∂gi
∂x2

. K-T conditions require x∗2 = 0.

Assume g2(x
∗) < b2 so that λ2 = 0

Accordingly,
∂L
∂x1

= ∂f
∂x1

(x∗)− λ1
∂g1
∂x1

(x∗) ≤ 0 and

∂L
∂x2

= ∂f
∂x2

(x∗)− λ1
∂g1
∂x2

(x∗) < 0

In the next figure it happens that ∂f
∂x1

(x∗) < λ1
∂g1
∂x1

(x∗), i.e. ∇f

is not in the cone ∇g.

but it might be possible to have ∂f
∂x1

(x∗) = λ1
∂g1
∂x1

(x∗) in case of

tangency at x∗.
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Case 2b: K-T conditions satisfied at x∗j = 0, gi(x
∗) < bi (2)

Feasible set

x1
x
∗

1

x2

0

∇g1(x
∗)

∇f(x∗)

f(x∗)

g1(x
∗) = b1

λ1∇g1(x
∗)

g2(x) = b2
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Case 2b: K-T conditions satisfied at x∗j = 0, gi(x
∗) < bi (3)

Feasible set

x1
x
∗

1

x2

0

∇g1(x
∗)

f(x∗)

g1(x
∗) = b1

g2(x) = b2

∇f(x∗) = λ1∇g1(x
∗)
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The envelope theorem

Motivation

Consider the problem maxx f(x) s.t. g(x) ≤ c

Generalize this problem by allowing f and g to depend on a
parameter θ, i.e. maxx f(x, θ) s.t. g(x, θ) ≤ c

The solution of this problem is x∗(θ), and the optimal value of

f is f(x∗(θ), θ)

Now define the value function V : IR → IR as
V (θ) ≡ f(x∗(θ), θ) = maxx f(x, θ) s.t. g(x, θ) ≤ c

Question: evaluate how V changes with θ.

Example: Utility (U(c1, c2)) maximization. Income and prices

(I, p1, p2) are exogenous. Thus optimal demands are
c∗1(I, p1, p2), c

∗

2(I, p1, p2) and λ∗(I, p1, p2).

V (I) ≡ U(c∗1(I, ·), c
∗

2(I, ·)).
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The envelope theorem (2)

Evaluating V

Suppose in particular that we want to assess V ′(θ).

From K-T conditions, we know that (x∗, λ∗) must satisfy the

complementary slackness condition: λ∗[c− g(x∗, θ)] = 0

Thus, V (θ) ≡ f(x∗, θ) = f(x∗, θ) + λ∗[c− g(x∗, θ)]

Differentiate both sides wrt θ : V ′(θ) = ∂f
∂θ

− λ∗ ∂g
∂θ

BUT we know that x∗(θ) and λ∗(θ). Then, that derivative may

be wrong when ignoring the dependence of x∗ and λ∗ on θ.

HOWEVER, the envelope theorem tells us that the expression
of V ′(θ) is in fact correct, i.e.

The envelope theorem tells us that when computing V ′(θ) we

can ignore the dependence of x∗ and λ∗ on θ.
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The envelope theorem - Intuition

Unconstrained problem maxx f(x, θ)

Let x∗(θ) be the solution, and define V (θ) ≡ f(x∗(θ), θ).

Differentiate both sides wrt θ : V ′(θ) = ∂f
∂x∗

dx∗

dθ
+ ∂f

∂θ

but as x∗(θ) is a critical value of f , it must be that ∂f
∂x∗

= 0

Therefore, V ′(θ) = ∂f
∂θ
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The envelope theorem - Intuition (2)

Constrained problem maxx f(x, θ) s.t. g(x, θ) ≤ c

From K-T conditions, we know that (x∗(θ), λ∗(θ)) must satisfy
the complementary slackness condition:
λ∗(θ)[c− g(x∗(θ), θ)] = 0

Thus, V (θ) = f(x∗(θ), θ) + λ∗(θ)[c− g(x∗(θ), θ)]

Differentiate both sides wrt θ :
V ′(θ) =
∂f
∂x∗

dx∗

dθ
+ ∂f

∂θ
+ dλ∗(θ)

dθ
[c− g(x∗(θ), θ)]− λ∗(θ)[ ∂g

∂x∗

dx∗

dθ
+ ∂g

∂θ
] =

dx∗

dθ

[

∂f
∂x∗

− λ∗(θ) ∂g
∂x∗

]

+ ∂f
∂θ

+ dλ∗(θ)
dθ

[

c− g(x∗(θ), θ)
]

− λ∗(θ)∂g
∂θ

BUT (x∗(θ), λ∗(θ) is a critical point of the lagrangean function

L(x, λ) = f(x, ·) + λ[c− g(x, ·)]. Therefore,

∂L
∂x∗

= ∂f
∂x∗

− λ∗ ∂g
∂x∗

= 0, and ∂L
∂λ∗

= c− g(x∗, θ) = 0. Thus,

V ′(θ) = ∂f
∂θ

− λ∗(θ)∂g
∂θ
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The envelope theorem

Let f(x, θ) and g(x, θ) be contiunuously differentiable

functions.

For any given θ, x∗(θ) maximizes f(x, θ) s.t. g(x, θ) ≤ c.

Let λ∗(θ) be the value of the associated lagrange multiplier.

Suppose x∗(θ) and λ∗(θ) be continuously differentuiable.

Suppose that the constraint qualification, g(x∗(θ), θ) 6= 0 holds
∀θ.

Then, the maximum value function defined by
V (θ) = maxx f(x, θ) s.t. g(x, θ) ≤ c
satisfies

V ′(θ) = ∂f(x∗(θ),θ)
∂θ

− λ∗(θ)∂g(x
∗(θ),θ)
∂θ
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The envelope theorem - Proof

K-T theorem says that for any θ, x∗(θ) and λ∗(θ) satisfy
∂L(x∗(θ),λ∗(θ))

∂x
= ∂f(x∗(θ),θ)

∂x
− λ∗(θ)∂g(x

∗(θ),θ)
∂x

= 0, [1] and

λ∗[c− g(x∗(θ), θ)] = 0 [2]

Define V (θ) = f(x∗(θ), θ) + λ∗(θ)[c− g(x∗(θ), θ)]

Differentiate both sides wrt θ :

V ′(θ) = ∂f
∂x∗

dx∗

dθ
+ ∂f

∂θ
+ dλ∗(θ)

dθ
[c−g(x∗(θ), θ)]−λ∗(θ)[ ∂g

∂x∗

dx∗

dθ
+ ∂g

∂θ
]

Rewrite as
V ′(θ) =
[

∂f
∂x∗

− λ∗(θ) ∂g
∂x∗

]

dx∗

dθ
+ ∂f

∂θ
− λ∗(θ)∂g

∂θ
+ dλ∗(θ)

dθ
[c− g(x∗(θ), θ)]

The first term is zero from the FOC [1]

If the constraint binds the last term is also zero.
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The envelope theorem - Proof (cont’d)

If the constraint does not bind, λ∗(θ) = 0

The continuity of g and x∗ means that if the constraint does
not bind at θ,∃ε∗ > 0 such that the constraint does not bind for
θ + ε with |ε| < ε∗.

FOC [2] implies that λ∗(θ + ε) = 0,∀|ε| < ε∗.

From the definition of derivative
dλ∗(θ)
dθ

= limε→0
λ∗(θ+ε)−λ∗(θ)

ε
= limε→0

0
ε
= 0,

hence the last term is again zero.

Therefore, it follows that

V ′(θ) = ∂f(x∗(θ),θ)
∂θ

− λ∗(θ)∂g(x
∗(θ),θ)
∂θ

[See Ireland, 2010]
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The envelope theorem - Geometry

Unconstrained problem maxx f(x, θ)

Let x∗(θ) be the solution, and define V (θ) = maxx f(x, θ).

Let θ1 be a particular value of θ and let x1 = x∗(θ1).

Think of f(x1, θ) a function of θ holding x1 fixed.

Similarly consider θ2 > θ1 and x2 = x∗(θ2)

Think of f(x2, θ) a function of θ holding x2 fixed.

For θ = θ1 because x1 maximizes f(x, θ1) it follows that

V (θ1) = f(x1, θ1) > f(x2, θ1)

For θ = θ2 because x2 maximizes f(x, θ2) it follows that

V (θ2) = f(x2, θ2) > f(x1, θ2)

Graphically, at θ1, V (θ) = f(x1, θ) which lies above f(x2, θ).

Graphically, at θ2, V (θ) = f(x2, θ) which lies above f(x1, θ).
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The envelope theorem - Geometry (2)

0

f(x1, θ)

f(x2, θ)

θθ1 θ2

V (θ)
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The envelope theorem - Geometry (3)

Repeat the argument for more values of θi, i = 1, 2, 3, . . .

V (θ) is tangent to each f(xi, θ) at θi, i.e. V ′(θ) = ∂f(x∗(θ),θ)
∂θ

This is the same analytical result obtained.

For the constrained maximization problem
maxx f(x, θ) s.t. g(x, θ) ≤ c, define the lagrangean function

L(x, λ, θ) = f(x, θ) + λ(c− g(x, θ))

Define V (θ) = maxx L(x, λ, θ) and repeat the argument above
wrt L

Again V ′(θ) = ∂L
∂θ

= ∂f(x∗(θ),θ)
∂θ

− λ∗(θ)∂g(x
∗(θ),θ)
∂θ

The V function is tangent from above to all the L functions
associated to the values θi
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Applications

Consumer Theory (Utility max)

Producer Theory

Profit maximization

Cost minimization

Revenue max under profit constraint

Peak-Load pricing

Regulatory constraints: rate-of-return, environmental, ...

Welfare economics (Pareto optimal solutions)

Human capital investment

Non-Linear Least-Square estimation

... and many, many more
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