Optimization. A first course on mathematics foreconomists

Xavier Martinez-Giralt

Universitat Autònoma de Barcelona

xavier.martinez.giralt@uab.eu

II.3 Static optimization - Non-Linear programming

Inequality restrictions

$$
\bullet \quad g_i(\mathbf{x}) \leq b_i, \ i = 1, \ldots, m
$$

 $g_i(\mathbf{x})$ continuous, continuously differentiable

$$
\bullet \quad b_i \in \mathbf{R}
$$

Non-negativity restrictions

$$
x_j\geq 0, j=1,\ldots,n
$$

Problem:

$$
\bullet \quad \max_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } \begin{cases} \mathbf{g}(\mathbf{x}) \leq \mathbf{b} \\ \mathbf{x} \geq 0 \end{cases}
$$

 f continuously differentiable.

Nonlinear programming - Remarks

- (i) No restriction on m and n
- (ii) The direction of the inequality in the restrictions \leq is a convention.

e.g. $x_1 - 2x_2 \ge 7 \Leftrightarrow -x_1 + 2x_2 \le -7$

(iii) An equality restriction can be rewritten as two inequalityrestrictions.

e.g. $x_1 - 2x_2 = 7 \Leftrightarrow x_1 - 2x_2 \le 7$ and $-x_1 + 2x_2 \leq 7$

(iv) $\,$ A free instrument x_j can be rewritten as the difference of two non-negative instruments

e.g.
$$
x_j = x'_j - x''_j
$$
 with $x'_j \ge 0$ and $x''_j \ge 0$.

(v) Consequence: Classical programming is ^a particular case of non-linear programming without non-negativity restrictionsand the inequality restrictions written as equality restrictions.

Nonlinear programming - Geometry

- Each non-negativity restriction $x_j\geq0$ defines a semi-space of non-negative values.
- The intersection of all non-negativity restrictions defines the \bullet non-negative orthant, ^a subset of the Euclideanⁿ-dimensional space.

Nonlinear programming - Geometry (2)

- Each inequality restriction $g_i(\mathbf{x})\leq0$ defines a set of points in \mathbf{R}^n
- The intersection of all inequality restrictions defines ^a subset \bullet of the Euclidean n -dimensional space.
- The intersection of the non-negativity and inequality restrictions defines the feasible set, $X \subset \mathbf{R}^n$.

Nonlinear programming - Geometry (3)

- Solution is a vector $\mathbf{x}\in X$ allowing to achieve the highest
velue ef f value of $f.$
- Given that X is compact, assuming f continuous allows to
apply Weierstrass theorem so that a (set of) solution exists \bullet apply Weierstrass theorem so that ^a (set of) solution exists.
- Such solution(s) may be located either in the interior or on the \bullet frontier of $X.$
- Convexity assumptions are very important in non-linearprogramming problems
	- If f is concave and all restrictions g_i are convex, the local-global theorem tells us that ^a local maximum is alsoglobal and the set of solutions is ^a convex set.
	- Often this case is referred to as concave programming.

A simple case

- Assume $m=0$, so that only non-negativity restrictions. \bullet
- Problem reduces to $\max_\mathbf{x} f(\mathbf{x})$ s.t. $\mathbf{x} \geq 0$ \bullet
- One way to solve the problem is using Taylor's expansion \bullet around a solution \mathbf{x}^* , assuming such a solution exists.
- Consider a neighborhood of $x^* + \Delta x$.
- Since \mathbf{x}^* is a solution, $f(\mathbf{x}^*) \leq f(\mathbf{x}^* + h\Delta\mathbf{x})$, with $h \in \mathbf{R}$ arbitrarily small.
- Let f be twice continuously differentiable. Then, $f(\mathbf{x}^* + h\Delta \mathbf{x}) =$ $f(\mathbf{x}^*) + h\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\Delta \mathbf{x} + \frac{1}{2}h^2(\Delta \mathbf{x})'\frac{\partial^2 f}{\partial \mathbf{x}^{22}}(\mathbf{x}^* + \theta h \Delta \mathbf{x})\Delta \mathbf{x},$ with $\theta \in (0,1)$.
- Substitution yields the fundamental inequality: $h\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\Delta \mathbf{x} + \frac{1}{2}h^2(\Delta \mathbf{x})'\frac{\partial^2 f}{\partial \mathbf{x^2}^2}(\mathbf{x}^* + \theta h\Delta \mathbf{x})\Delta \mathbf{x} \leq 0$

A simple case (2)

- This is a necessary condition for a local maximum of f at \mathbf{x}^* .
- If \mathbf{x}^* is an interior solution $\mathbf{x}^* > 0$, the fundamental inequality
besite he verified in every direction Λ --- Thie is equivalent to has to be verified in every direction $\Delta {\bf x}.$ This is equivalent to the same FOC of classical programming, $\frac{\partial f}{\partial x_j}(\mathbf{x}^*)=0, \; \forall j.$

• Assume now
$$
\exists j
$$
 s.t. $x_j^* = 0$.

- The fundamental inequality means that the only feasibledirection is $\Delta x_j \geq 0.$
- Then, dividing by h and taking the $\lim_{h\to 0}$ we obtain, $\frac{\partial f}{\partial x_j}(\mathbf{x}^*)\Delta x_j \leq 0.$
- Summarizing, we have that (i) if $x_j^*>0$ then $\frac{\partial f}{\partial x_j}(\mathbf{x}^*)=0$, and (ii) if $x_j^*=0$ then $\frac{\partial f}{\partial x_j}(\mathbf{x}^*)\leq 0$.
- Combining both conditions, it follows that $\frac{\partial f}{\partial x_j}(\mathbf{x}^*)x^*_j=0.$

A simple case (3)

Consider now the $n\text{-}$ dimensions of the problem.

$$
\bullet \quad \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\mathbf{x}^* = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(\mathbf{x}^*)x_j^* = 0
$$

- This condition says that the sum of the products cancels, but also that each element of the sum cancels given that $\mathbf{x} \geq 0$ and that the first partial derivatives are non-positive.
- **•** Summarizing the FOCs are characterized by the following $2n+1$ conditions:

$$
\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*) \le 0
$$

$$
\mathbf{x} \ge 0
$$

$$
\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\mathbf{x}^* = 0
$$

or equivalently $\forall j=1,2,\ldots,n$

$$
\frac{\partial f}{\partial x_j}(\mathbf{x}^*) = 0, \quad \text{if} \quad x_j^* > 0
$$

$$
\frac{\partial f}{\partial x_j}(\mathbf{x}^*) \le 0, \quad \text{if} \quad x_j^* = 0
$$

Taxonomy of solutions

The general case

Preliminaries

- **•** The simple case provides the feeling for characterizing the solution of the general case.
- Constraints g_i may be binding or not: D

The general case (2)

The problem

$$
\bullet \quad \max_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } \begin{cases} \mathbf{g}(\mathbf{x}) \leq \mathbf{b} \\ \mathbf{x} \geq 0 \end{cases}
$$

Strategy of solution - Solving the saddle-point problem

- Follow the logic of the classical programming problem \bullet
- Define a vector $\lambda=(\lambda_1,\ldots,\lambda_m)$ of Lagrange multipliers, one \bullet for each inequality restriction $g_i.$
- Define the lagrangean function: ▲ $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda(\mathbf{b} - g(\mathbf{x}))$
- The set of FOC characterizing is known as the Kuhn-Tucker conditions

The K-T conditions

$$
\frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*) \le 0, \qquad \frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) \ge 0
$$

$$
\frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*)\mathbf{x}^* = 0, \qquad \lambda^* \frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) = 0
$$

$$
\mathbf{x}^* \ge 0, \qquad \lambda^* \ge 0
$$

Remark

- Note the different sign of the partial derivatives wrt ${\bf x}$ and $\lambda \rightarrow$ \bullet
- \mathbf{x}^* maximizes L , while λ^* minimizes L \bullet
- Thus $(\mathbf{x}^*, \lambda^*$ $^{\ast})$ is a saddle point of L , i.e. \bullet $L(\mathbf{x},\lambda^*) \leq$ $^*)\leq L(\mathbf{x}^*,\lambda^*)$ *) $\leq L(\mathbf{x}^*, \lambda), \ \forall \mathbf{x} \geq 0, \lambda \geq 0$
- Conditions content of Kuhn-Tucker theorem

The saddle point problem

Algebaric notation. The problem

$$
\max_{x_1,\dots,x_n} f(x_1,\dots,x_n) \text{ subject to } \begin{cases} g_1(x_1,\dots,x_n) \le b_1 \\ \vdots \\ g_m(x_1,\dots,x_n) \le b_m \\ x_i \ge 0, \ i = 1,2,\dots,n \end{cases}
$$

The K-T conditions

chaol of
conomics

MOVE⁹

$$
\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i} - \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} \le 0, \qquad \frac{\partial L}{\partial \lambda_j} = b_j - g_j(\cdot) \ge 0
$$

$$
x_i \frac{\partial L}{\partial x_i} = x_i \Big(\frac{\partial f}{\partial x_i} - \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} \Big) = 0, \quad \lambda_j \frac{\partial L}{\partial \lambda_j} = \lambda_j (b_j - g_j(\cdot) = 0
$$

$$
x_i \ge 0, \ (i = 1, 2, ..., n) \qquad \lambda_j \ge 0, \ (j = 1, 2, ..., m)
$$

The Kuhn-Tucker theorem

- (a) \mathbf{x}^* solves the non-linear programming problem if $(\mathbf{x}^*, \lambda^*)$ solution of the saddle point problem. $^{\ast})$ is a
- (b) Under some conditions, \mathbf{x}^* solves the non-linear programming problem only if $\exists \lambda^*$ for which $(\mathbf{x}^*, \lambda^*$ $^\ast)$ solves the saddle point problem.
- (c) What conditions?
	- $f(\mathbf{x})$ is concave,
	- $\forall j, \; g_j(\textbf{x})$ are convex.
	- *constraint qualification condition*: [∃]x0 such that x0 $\mathsf{\omega} \geq 0$ and $\mathbf{g}(\mathbf{x^0}$ $\ket{0} < \mathrm{b}.$

Proof of (a) - sufficiency ("if")

- If $(\mathbf{x}^*, \lambda^*$ $f(\mathbf{x}) + \lambda^*$ $^\ast)$ is a solution of the saddle point problem means and $*(\mathbf{b}-\mathbf{g}(\mathbf{x}))\leq f(\mathbf{x}^*)+\lambda^*$ $^*(\mathbf{b}-\mathbf{g}(\mathbf{x}^*))$ $f(\mathbf{x}^*) + \lambda^*$ $f^*(\mathbf{b}-\mathbf{g}(\mathbf{x}^*)) \leq f(\mathbf{x}^*) + \lambda(\mathbf{b}-\mathbf{g}(\mathbf{x}^*))$
- **•** Write the second inequality as $(\lambda-\lambda^*)(\mathbf{b}-\mathbf{g}(\mathbf{x}^*))\geq 0, \; \forall \lambda\geq 0$
- \bullet Then,
	- for λ such that $(\lambda \lambda^*$ $\mathbf{r}^{\ast})>0,$ it follows that $\mathbf{b}-\mathbf{g}(\mathbf{x}^{\ast})$ $^*)\geq 0$
	- for λ such that $(\lambda \lambda^*) < 0$, since $\mathbf{b} \mathbf{g}(\mathbf{x}^*) \geq 0$ it for that $\mathbf{b}-\mathbf{g}(\mathbf{x}^*)=0$ and $^{\ast})<0,$ since $\mathbf{b}-\mathbf{g}(\mathbf{x}^{\ast}%)<0$ $^*)\geq 0$ it follows
	- in particular for $\lambda=0$ it follows that λ^* $*(\mathbf{b}-\mathbf{g}(\mathbf{x}^*))=0$
- **•** Therefore, substituting in the first inequality, $f(\mathbf{x}) + \lambda^*$ $^*(\mathbf{b}-\mathbf{g}(\mathbf{x}))\leq f(\mathbf{x}^*)$ $^{\ast})$ implying $f(\mathbf{x})\leq f(\mathbf{x}^{\ast}%)$ *).

Proof of (b) - necessity ("only if")

- Assume \mathbf{x}^* solves the non-linear programming problem, i.e. $\mathbf{x}^* \geq 0$. g $^* \geq 0,\; \mathbf{g}(\mathbf{x}^*)$ $^{\ast})\leq$ $\bf{b}, \text{ and } f(\bf{x}^{\ast})$ $\mathbf{f}^*(\mathbf{x})\geq f(\mathbf{x}),\ \forall \mathbf{x}\geq 0,\ \mathbf{g}(\mathbf{x})\leq \mathbf{b}.$
- Let $a_0 \in \mathbb{R}, b_0$ $_0\in{\sf R}.$ Let ${\bf a}\in{\sf R}^m$ $, \mathbf{b} \in \mathbb{R}^m$.
- Define the following $(m + 1)$ -dimensional convex sets:

$$
A = \left\{ \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \middle| \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \le \begin{pmatrix} f(\mathbf{x}) \\ \mathbf{b} - \mathbf{g}(\mathbf{x}) \end{pmatrix} \right\}
$$

$$
B = \left\{ \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix} \middle| \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix} > \begin{pmatrix} f(\mathbf{x}^*) \\ \mathbf{0} \end{pmatrix} \right\}
$$

Let $m=n=1$ Then,

- A is a set bounded by points with vertical distance $f(x)$ and horizontal distance $b-g(x).$ Thus convex.
- B is the interior of the quadrant with vertex at the point $(f(x^{\ast}),0)$. Also convex.

The sets ^A **and** ^B

Proof of (b) - necessity ("only if") - [cont'd]

Note that A and B are disjoint

MOVE⁹

GSE

- Applying the theorem on the separating hyperplane, there is a \bullet vector (λ_0,λ) , with $\lambda_0\in{\bf R}$ and $\lambda\in{\bf R}^m$ such that $\left(\begin{array}{c}\right)$ **)** $\left(\begin{array}{c}\right)$ **)** $\left(\begin{array}{c}\right)$ **)** $\left(\begin{array}{c}\right)$ **)** $\it b$ $\it b$ $\it a$ $\it a$ 0 ω_0 0 ω_0 $\left($) \leq $($) $\lambda_0, \lambda)$ λ $\lambda_0, \lambda)$ λ $\begin{bmatrix} 0 \\ b \end{bmatrix}$, \forall $\in A,$ $\in B$. baa
- Note that from the definition of $B,$ the vector $(\lambda _0,\lambda)$ is \bullet nonnegative.
- Also, since $(f(\mathbf{x}^*$ $^{\ast}),$ $\mathbf{0})^{\prime}$ is on the boundary of $A,$ it follows that \bullet $\lambda_0 f(\mathbf{x}) + \lambda(\mathbf{b} - \mathbf{g}(\mathbf{x})) \leq \lambda_0 f(\mathbf{x}^*)$ $^{*}),\ \forall \mathbf{x}\geq \mathbf{0}$
- Because of the constraint qualification condition $\lambda_0>0.$ \bullet
	- If $\lambda_0 = 0 \rightarrow \lambda(\mathbf{b} \mathbf{g}(\mathbf{x})) \leq 0$, $\forall \mathbf{x} \geq \mathbf{0}$ and the nonnegativity of λ would contradict the existence of an $x^0 \geq 0$ such that $g(x^0) < b$.

Separating hyperplane - recall

\n- $$
(\lambda_0, \lambda)
$$
 separating hyperplane means: $(\lambda_0, \lambda) \begin{pmatrix} a_0 \\ a \end{pmatrix} \leq \begin{pmatrix} k_0 \\ k \end{pmatrix}$ and $(\lambda_0, \lambda) \begin{pmatrix} b_0 \\ b \end{pmatrix} \geq \begin{pmatrix} k_0 \\ k \end{pmatrix}$
\n- Hence.
\n

$$
(\lambda_0, \lambda) \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \le (\lambda_0, \lambda) \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix}
$$

Proof of (b) - necessity ("only if") - [cont'd (2)]

- If $\lambda_0>0$ dividing both sides, we obtain $f(\mathbf{x}) + \lambda^*(\mathbf{b} - \mathbf{g}(\mathbf{x})) \le f(\mathbf{x}^*), \ \forall \mathbf{x} \ge \mathbf{0}$ $^*(\mathbf{b}-\mathbf{g}(\mathbf{x}))\leq f(\mathbf{x}^*)$ $^{*}),\ \forall\mathbf{x}\ge\mathbf{0}$ with $\lambda^{*}=1/\lambda_{0}.$ $[KT1]$
- In particular, if $\mathbf{x}=\mathbf{x}^*$ it follows that λ^* $^*(\mathbf{b}-\mathbf{g}(\mathbf{x}^*))\leq 0$
- But we know that $(\mathbf{b} \geq \mathbf{g}(\mathbf{x}^*))$ and λ^* $\lambda^*(\mathbf{b}-\mathbf{g}(\mathbf{x}^*))=\mathbf{0}$. [KT2 * \geq $0.$ Thus, $*(\mathbf{b}-\mathbf{g}(\mathbf{x}^*))=\mathbf{0}.$ [KT2]
- Finally, define the Lagrangian as: $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda(\mathbf{b}-\mathbf{g}(\mathbf{x}))$
- From $[KT1]$ and $[KT2]$ and from the assumption $y \ge 0$, it follows that $(x^* \rightarrow x^*)$ is a saddle point for $I(x; \rightarrow x^*)$ for follows that $(\mathbf{x}^*, \lambda^*)$ is a saddle point for $L(\mathbf{x}, \lambda)$ fo $\mathbf{x}\ge\mathbf{0}, \lambda\ge\mathbf{0}$ thus proving the necessity part of the theorem. $^{\ast})$ is a saddle point for $L(\mathbf{x},\lambda)$ for

Summarizing

Under the above assumptions \mathbf{x}^* solves the nonlinear programming problem if ans only if $\exists \lambda^*$ such that $(\mathbf{x}^*, \lambda^*)$ $\left(\begin{array}{c} \ast \\ \ast \end{array} \right)$ solves the saddle point problem.

The saddle-point problem - Remark

Additional assumption: $f(\mathbf{x})$ and $\mathbf{g}(\mathbf{x})$ are differentiable functions. Part 1: $\max_\mathbf{x} L(\mathbf{x}, \lambda^*)$ - Conditions $^\ast)$ - Conditions

$$
\frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*) = \le 0, \n\frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*) \mathbf{x}^* = 0, \n\mathbf{x}^* \ge 0.
$$

Part 2: $\min_{\lambda} L(\mathbf{x}^*, \lambda)$ - Conditions

$$
\frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) \ge 0, \lambda^* \frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) = 0, \lambda^* \ge 0.
$$

Geometry of the Kuhn-Tucker conditions

The problem

$$
\max_{x_1, x_2} f(x_1, x_2) \text{ subject to } \begin{cases} g_1(x_1, x_2) \le b_1 \\ g_2(x_1, x_2) \le b_2 \\ x_1, x_2 \ge 0 \end{cases}
$$

The K-T conditions

- Let $x^* = (x_1^*$ $1, x_2^*$ $_2^\ast)$ be an interior solution to this problem.
- K-T theorem says that $\nabla f(x*)$ must lie in the cone formed by the gradients of the restrictions $\nabla g_1(x^*)$ $^*)$ and $\nabla g_2(x^*)$ $^{\ast})\;...$
- ... i.e. $\nabla f(x^*)$ is a non-negative linear combil and $\nabla g_2(x^*)$ $^{\ast})$ is a non-negative linear combination of $\nabla g_{1}(x^{\ast}% ,x^{\ast})$ $^*)$ $^*)$
- Formally, $\exists(\lambda_1,\lambda_2)\geq 0$ s.t. $\nabla f=\lambda_1\nabla g_1+\lambda_2\nabla g_2$.

Geometry of the Kuhn-Tucker conditions (2)

- **Case 1**
	- Case 1a: all restrictions as equalities and active, interiorsolution.
	- Case 1b: all restriction as equalities, some active, interiorsolution
- Case ²
	- Case 2a: some restrictions inactive, interior solution
	- Case 2b: some restrictions inactive, corner solution

Case 1a: K-T conditions satisfied atx∗ $^* > 0, g(x^*) = b$

Remarks:

$$
g_1(x^*) = b_1, \ g_2(x^*) = b_2
$$

 $\nabla f=\lambda_1\nabla g_1+\lambda_2\nabla g_2$, with $\lambda_1>0$ and $\lambda_2>0$

Case 1b: K-T conditions satisfied atx∗ $^* > 0, g(x^*) = b$

Remarks: $g_1(x^*) = b_1, g_2(x^*) = b_2$ $\nabla f=\lambda_1\nabla g_1$, with $\lambda_1>0$ and $\lambda_2=0$

What if $\nabla f(x*)$ is not in the cone?

- Consider f slightly perturbed (as in next figure) so that ∇f is no longer in the cone.
- (we could have perturbed g_1 $_1$ and/or g_2 $_{\rm 2}$ instead) \bullet
- Observe that now there is a "lens" between the contours of f and $g_1.$
- This lens contains feasible points allowing to achieve largevalues of f than $f(x^{\ast}% ,\varepsilon)$ *).
- Thus x^* is no longer a maximizer of $f,$ as it does not satisfy K-T conditions.

Geometry of the Kuhn-Tucker conditions (3)

Geometry of the Kuhn-Tucker conditions (4)

Remark

- The *constraint qualification condition* precisely means that ∇flies in the cone...
- **...** i.e. that the restriccions are linearly independent

Case 2a: K-T conditions satisfied at x^* j $> 0, g_i(x^*)$ *) $$ $\it i$

Let $g_2(x^{\ast}%)=\frac{\int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}}{\int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}}=\int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}% \int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}% \int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}% \int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}% \int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}% \int_{\mathbb{R}^n}f(x^{\ast})^{2\cdot}% \int_{\mathbb{R}^n}f(x^{\ast})^{2\$ the cone defined by $g_1.$ $\left(^{*}\right) < b_{2}.$ K-T conditions require λ_{2} $_{2}=$ 0, and ∇f lies in

$$
\bullet \quad g_1(x^* = b_1, g_2(x^*) < b_2 \to \lambda_2 = 0; \nabla f = \lambda_1 \nabla g_1
$$

×

Case 2b: K-T conditions satisfied atx∗ $j^* = 0, g_i(x^*)$ *) $$ $\it i$

- Let $\frac{\partial f}{\partial x_2}$ $<\sum_{i}^{2}$ $\frac{2}{i=1}\,\lambda_i\frac{\partial g_i}{\partial x_2}.$ K-T conditions require x_2^* 2 $_{2}^{*} = 0.$
- Assume $g_2(x^{\ast}%)=\sqrt{g_0(g_0,g_0)}$ *) $$ $_2$ so that $\lambda_2=0$
- Accordingly, \bullet $=\frac{\partial f}{\partial x_1}(x^*)$ $1\frac{\partial g_1}{\partial x_1}(x^*)$ ∂L $^{\ast})$ $(*) \leq 0$ and $-\,\lambda_1$ $\overline{\partial x_1}$ = $=\frac{\partial f}{\partial x_2}(x^*)$ $1\frac{\partial g_1}{\partial x_2}(x^*)$ ∂L ∂f (set) ∂q_1 (set) $^*)$ $^*)<0$ $-\lambda_1$ = ∂x_2
- In the next figure it happens that $\frac{\partial f}{\partial x_1}(x^*)$ $^*) < \lambda_1$ $1\frac{\partial g_1}{\partial x_1}(x^*)$ $^{*}),$ i.e. ∇f is not in the cone $\nabla g.$
- but it might be possible to have $\frac{\partial f}{\partial x_1}(x^*)=\lambda_1$ $1\frac{\partial g_1}{\partial x_1}(x^*)$ $^\ast)$ in case of tangency at x^{\ast} .

Case 2b: K-T conditions satisfied at x^* $j^* = 0, g_i($ x^\ast *) $$ i **(2)**

Case 2b: K-T conditions satisfied at x^* $j^* = 0, g_i($ x^\ast *) $$ i **(3)**

Motivation

- Consider the problem $\max_x f(x)$ s.t. $g(x) \leq c$
- Generalize this problem by allowing f and g to depend on a \bullet parameter θ , i.e. $\max_x f(x, \theta)$ s.t. $g(x, \theta) \leq c$
- The solution of this problem is $x^*(\theta)$, and the optimal value of f is $f(x^*(\theta), \theta)$
- Now define the value function $V : \mathbf{R} \to \mathbf{R}$ as
 $V(\theta) = f(x^*(\theta), \theta) \max_{\theta \in \mathcal{A}} f(x, \theta)$ at $g(x, \theta)$ $V(\theta) \equiv f(x^*(\theta), \theta) = \max_x f(x, \theta)$ s.t. $g(x, \theta) \leq c$
- Question: evaluate how V changes with $\theta.$
- **Example: Utility** $(U(c_1, c_2))$ maximization. Income and prices (I, p_1, p_2) are exogenous. Thus optimal demands are $c_1^*(I, p_1, p_2), c_2^*(I, p_1, p_2)$ and $\lambda^*(I, p_1, p_2).$
- $V(I) \equiv U(c_1^*(I, \cdot), c_2^*(I, \cdot)).$

Evaluating V

- Suppose in particular that we want to assess V^{\prime} $(\theta).$
- From K-T conditions, we know that $(x^*,\lambda^*$ complementary slackness condition: λ^* $^\ast)$ must satisfy the $*[c$ $-g(x^*, \theta)]=0$
- Thus, $V(\theta) \equiv f(x^*, \theta) = f(x^*, \theta) + \lambda^*$ $*[c$ $-g(x^*, \theta)]$ \bullet
- Differentiate both sides wrt $\theta: V'(\theta) =$ $(\theta) = \frac{\partial f}{\partial \theta}$ $-\ \lambda^* \frac{\partial g}{\partial \theta}$
- BUT we know that x^{\ast} be wrong when ignoring the dependence of x^* and λ^* on $\theta.$ $^{*}(\theta)$ and λ^{*} $^*(\theta).$ Then, that derivative may
- HOWEVER, the envelope theorem tells us that the expression of V^\prime (θ) is in fact correct, i.e.
- The envelope theorem tells us that when computing V' (θ) we can ignore the dependence of x^* and λ^* on $\theta.$

The envelope theorem - Intuition

Unconstrained problem $\max_x f(x, \theta)$

- Let x^\ast $^*(\theta)$ be the solution, and define $V(\theta)\equiv f(x^*)$ $^{\ast }(\theta),\theta).$
- Differentiate both sides wrt $\theta:~V'(\theta)=\frac{\partial f}{\partial x^{*}}$ $(\theta) = \frac{\partial f}{\partial x^2}$ ∗ $dx \$ ∗ $\frac{d\omega}{d\theta}+$ $+\frac{\partial f}{\partial \theta}$
- but as x^{\ast} $^*(\theta)$ is a critical value of $f,$ it must be that $\frac{\partial f}{\partial x^*}$ $\frac{1}{\ast} = 0$
- Therefore, V' $(\theta) = \frac{\partial f}{\partial \theta}$

The envelope theorem - Intuition (2)

Constrained problem $\max_x f(x, \theta)$ s.t. $g(x, \theta) \leq c$

From K-T conditions, we know that $(x^{\ast}% ,\mathrm{d}_{x^{\ast}})$ the complementary slackness condition: $^{\ast }(\theta),\lambda ^{\ast }$ $^*(\theta))$ must satisfy λ^* $^*(\theta)[c-g(x^*$ $^{\ast}(\theta),\theta)]=0$

Thus,
$$
V(\theta) = f(x^*(\theta), \theta) + \lambda^*(\theta)[c - g(x^*(\theta), \theta)]
$$

Differentiate both sides wrt θ : V^\prime $rac{\partial f}{\partial x^*} \frac{dx^*}{d\theta}$ $(\theta) =$ dx^* $\begin{bmatrix} \frac{\partial f}{\partial x^*} & \frac{\partial f}{\partial x} & \frac{\partial g}{\partial x} \end{bmatrix}$ $\begin{bmatrix} \frac{\partial f}{\partial x^*} & \frac{d\lambda^*(\theta)}{\partial x^*} \end{bmatrix}$ $dx \$ ∗ $\frac{d\omega}{d\theta}$ + $+\frac{\partial f}{\partial \theta}$ $\, + \,$ $+\frac{d\lambda^*}{d}$ $\frac{\lambda^*(\theta)}{d\theta}[c]$ $-g(x^*$ $^{*}(\theta),\theta)]$ λ^* $^{\ast}(\theta) [\frac{\partial g}{\partial x^{\ast}}$ $dx \$ ∗ $\frac{d\omega}{d\theta}+$ $+\frac{\partial g}{\partial \theta}]=$ ∗ $\frac{dx^*}{d\theta} \left[\frac{\partial f}{\partial x^*} \right]$ ∗−λ∗ \ast ($\theta)\frac{\partial g}{\partial x^*} \Big| +$ $\big]$ $+\frac{\partial f}{\partial \theta}$ $\, + \,$ $+\frac{d\lambda^*}{d}$ $\frac{d^*\left(\theta\right)}{d\theta}\Bigg[$ $c-g$ (x^\ast \ast ($\theta), \theta)$ $\overline{}$ λ^* \ast ($\theta)\frac{\partial g}{\partial \theta}$ $\mathsf{BUT}\;(x^*$ $L(x, \lambda) = f(x, \cdot) + \lambda[c]$ $^{\ast }(\theta),\lambda ^{\ast }$ $^*(\theta)$ is a critical point of the lagrangean function $-g(x, \cdot)]$. Therefore,

•
$$
\frac{\partial L}{\partial x^*} = \frac{\partial f}{\partial x^*} - \lambda^* \frac{\partial g}{\partial x^*} = 0
$$
, and $\frac{\partial L}{\partial \lambda^*} = c - g(x^*, \theta) = 0$. Thus,

$$
V'(\theta) = \frac{\partial f}{\partial \theta} - \lambda^*(\theta) \frac{\partial g}{\partial \theta}
$$

The envelope theorem

- Let $f(x,\theta)$ and $g(x,\theta)$ be contiunuously differentiable functions.
- For any given $\theta, x^*(\theta)$ maximizes $f(x, \theta)$ s.t. $g(x, \theta) \leq c$.
- Let $\lambda^*(\theta)$ be the value of the associated lagrange multiplier. \bullet
- Suppose $x^*(\theta)$ and $\lambda^*(\theta)$ be continuously differentuiable. \bullet
- Suppose that the constraint qualification, $g(x^*(\theta), \theta) \neq 0$ holds $\forall \theta$.
- Then, the maximum value function defined by \bullet $V(\theta) = \max_x f(x, \theta)$ s.t. $g(x, \theta) \leq c$ satisfies $V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial \theta}$

The envelope theorem - Proof

- K-T theorem says that for any θ, x^* $\frac{\partial L(x^*(\theta), \lambda^*(\theta))}{\partial \theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial \theta} = 0$. [1] and $^{*}(\theta)$ and λ^{*} $^{*}(\theta)$ satisfy ∗ $\frac{\partial^*(\theta),\lambda}{\partial}$ ∗ $\frac{(\theta),\lambda^{*}(\theta))}{\partial x}=$ $\lambda^*[c - q(x^*(\theta), \theta)] =$ $=\frac{\partial f(x^*)}{\partial}$ $\frac{\partial x^*(\theta),\theta)}{\partial x}-\lambda^*$ $^{\ast}(\theta)\frac{\partial g(x^{\ast})}{\partial}$ $\frac{\partial^*(\theta),\theta)}{\partial x}$ $\frac{(0,0)}{x} = 0$, [1] and $*[c$ $-g(x^*$ $[(\theta), \theta)] = 0$ [2]
- Define $V(\theta) = f(x^*)$ $^{\ast }(\theta),\theta)+\lambda ^{\ast }$ $^*(\theta)[c-g(x^*$ $^{*}(\theta),\theta)]$
- Differentiate both sides wrt θ : V^\prime $(\theta) = \frac{\partial f}{\partial x^2}$ ∗ $dx \$ ∗ $\frac{d\omega}{d\theta}+$ $+\frac{\partial f}{\partial \theta}$ $\, + \,$ $+\frac{d\lambda^*}{d}$ $\frac{\partial^*(\theta)}{\partial \theta}[c]$ $-g(x^*$ $^{*}(\theta),\theta)]$ $-\,\lambda^*$ $^{\ast}(\theta) [\frac{\partial g}{\partial x^{\ast}}$ $dx \$ ∗ $\frac{d\omega}{d\theta}+$ $+\frac{\partial g}{\partial \theta}$]
]
- **P** Rewrite as

$$
V'(\theta) = \left[\frac{\partial f}{\partial x^*} - \lambda^*(\theta)\frac{\partial g}{\partial x^*}\right] \frac{dx^*}{d\theta} + \frac{\partial f}{\partial \theta} - \lambda^*(\theta)\frac{\partial g}{\partial \theta} + \frac{d\lambda^*(\theta)}{d\theta}[c - g(x^*(\theta), \theta)]
$$

- The first term is zero from the FOC [1]
- If the constraint binds the last term is also zero.

The envelope theorem - Proof (cont'd)

- If the constraint does not bind, λ^* $^*(\theta) = 0$
- The continuity of g and $x*$ means that if the constraint does not bind at $\theta,\exists \varepsilon^*>0$ such that the constraint does not bind $\theta+\varepsilon$ with $|\varepsilon|<\varepsilon^*$ * $>$ 0 such that the constraint does not bind for .
- FOC [2] implies that λ^* $*(\theta + \varepsilon) = 0, \forall |\varepsilon| < \varepsilon^*$.
- **From the definition of derivative** $d\lambda^*(\theta)$ 1. $\lambda^*(\theta+\varepsilon)-\lambda^*(\theta)$ ∗ $\frac{\lambda^*(\theta)}{d\theta}$ $\frac{\partial}{\partial t} = \lim_{\longrightarrow}$ \blacksquare $\varepsilon{\rightarrow}0$ hence the last term is again zero. λ∗ $*(\theta +$ ^ε)−λ∗ $\frac{(\theta)-\lambda^*(\theta)}{\varepsilon}$ $=\lim_{\varepsilon\to 0}$ 0 $\frac{\sigma}{\varepsilon}=0,$

• Therefore, it follows that
\n
$$
V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial \theta}
$$

[See Ireland, 2010]

Unconstrained problem $\max_x f(x, \theta)$

- Let x^\ast $^*(\theta)$ be the solution, and define $V(\theta) = \max_x f(x, \theta)$.
- Let θ_1 $_1$ be a particular value of θ and let $x_1=x^*$ $^{\ast}(\theta_{1}).$
- Think of $f(x_1,\theta)$ a function of θ holding x_1 $_1$ fixed. \bullet
- Similarly consider θ_2 1 and $x_2=x^*$ $^*(\theta_2)$ $_2 > \theta_1$ \bullet 1
- Think of $f(x_2,\theta)$ a function of θ holding x_2 $_2$ fixed.
- For $\theta=\theta_1$ $_1$ because x_1 $_1$ maximizes $f(x, \theta_1)$ it follows that \bullet $V(\theta_1) = f(x_1, \theta_1) > f(x_2, \theta_1)$
- For $\theta=\theta_2$ $V(\theta_2) = f(x_2, \theta_2) > f(x_1, \theta_2)$ $_2$ because x_2 $_2$ maximizes $f(x,\theta_2)$ it follows that
- Graphically, at θ_1 , $V(\theta)=f(x_1,\theta)$ which lies above $f(x_2,\theta).$
- Graphically, at θ_2 , $V(\theta)=f(x_2, \theta)$ which lies above $f(x_1, \theta).$ \bullet

The envelope theorem - Geometry (2)

The envelope theorem - Geometry (3)

- Repeat the argument for more values of $\theta_i,\,i=1,2,3,\ldots$
- $V(\theta)$ is tangent to each $f(x_i, \theta)$ at θ_i , i.e. V' $(\theta) = \frac{\partial f(x^*)}{\partial}$ $\overset{\cdot \ast}{\partial \theta}^{(\theta), \theta)}$
- This is the same analytical result obtained.
- For the constrained maximization problem $\max_x f(x,\theta)$ s.t. $g(x,\theta)\leq c,$ define the lagrangean function $L(x, \lambda, \theta) = f(x, \theta) + \lambda(c - g(x, \theta))$
- Define $V(\theta) = \max_x L(x,\lambda,\theta)$ and repeat the argument above wrt L

Again
$$
V'(\theta) = \frac{\partial L}{\partial \theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial \theta}
$$

The V function is tangent from above to all the L functions associated to the values θ_i

Applications

- Consumer Theory (Utility max) \bullet
- **Producer Theory**
	- **•** Profit maximization
	- Cost minimization
	- Revenue max under profit constraint
	- Peak-Load pricing \bullet
	- Regulatory constraints: rate-of-return, environmental, ...
- Welfare economics (Pareto optimal solutions)
- Human capital investment
- **O** Non-Linear Least-Square estimation
- **...** and many, many more

