Optimization. A first course on mathematics for economists

Xavier Martinez-Giralt Universitat Autònoma de Barcelona xavier.martinez.giralt@uab.eu

II.3 Static optimization - Non-Linear programming

Inequality restrictions

$$g_i(\mathbf{x}) \le b_i, \ i = 1, \dots, m$$

 \bullet $g_i(\mathbf{x})$ continuous, continuously differentiable

$$b_i \in \mathbf{R}$$

Non-negativity restrictions

●
$$x_j \ge 0, \ j = 1, ..., n$$

Problem:

•
$$\max_{\mathbf{x}} f(\mathbf{x})$$
 s.t. $\begin{cases} \mathbf{g}(\mathbf{x}) \leq \mathbf{b} \\ \mathbf{x} \geq 0 \end{cases}$

 \bullet f continuously differentiable.

Nonlinear programming - Remarks

- (i) No restriction on m and n
- (ii) The direction of the inequality in the restrictions \leq is a convention.

e.g. $x_1 - 2x_2 \ge 7 \Leftrightarrow -x_1 + 2x_2 \le -7$

(iii) An equality restriction can be rewritten as two inequality restrictions.

e.g. $x_1 - 2x_2 = 7 \Leftrightarrow x_1 - 2x_2 \le 7$ and $-x_1 + 2x_2 \le 7$

(iv) A free instrument x_j can be rewritten as the difference of two non-negative instruments

e.g. $x_j = x'_j - x''_j$ with $x'_j \ge 0$ and $x''_j \ge 0$.

(v) Consequence: Classical programming is a particular case of non-linear programming without non-negativity restrictions and the inequality restrictions written as equality restrictions.

Nonlinear programming - Geometry

- Solution Each non-negativity restriction $x_j \ge 0$ defines a semi-space of non-negative values.
- The intersection of all non-negativity restrictions defines the non-negative orthant, a subset of the Euclidean *n*-dimensional space.

Nonlinear programming - Geometry (2)

- Each inequality restriction $g_i(\mathbf{x}) \le 0$ defines a set of points in \mathbb{R}^n .
- The intersection of all inequality restrictions defines a subset of the Euclidean n-dimensional space.
- The intersection of the non-negativity and inequality restrictions defines the feasible set, $X \subset \mathbb{R}^n$.

Nonlinear programming - Geometry (3)

- Solution is a vector $\mathbf{x} \in X$ allowing to achieve the highest value of f.
- Given that X is compact, assuming f continuous allows to apply Weierstrass theorem so that a (set of) solution exists.
- Such solution(s) may be located either in the interior or on the frontier of X.
- Convexity assumptions are very important in non-linear programming problems
 - If f is concave and all restrictions g_i are convex, the local-global theorem tells us that a local maximum is also global and the set of solutions is a convex set.
 - Often this case is referred to as concave programming.

A simple case

- Solution Assume m = 0, so that only non-negativity restrictions.
- Problem reduces to $\max_{\mathbf{x}} f(\mathbf{x})$ s.t. $\mathbf{x} \ge 0$
- One way to solve the problem is using Taylor's expansion around a solution x*, assuming such a solution exists.
- Consider a neighborhood of $\mathbf{x}^* + \Delta \mathbf{x}$.
- Since \mathbf{x}^* is a solution, $f(\mathbf{x}^*) \leq f(\mathbf{x}^* + h\Delta \mathbf{x})$, with $h \in \mathbf{R}$ arbitrarily small.
- Let *f* be twice continuously differentiable. Then, $f(\mathbf{x}^* + h\Delta \mathbf{x}) =$ $f(\mathbf{x}^*) + h\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\Delta \mathbf{x} + \frac{1}{2}h^2(\Delta \mathbf{x})'\frac{\partial^2 f}{\partial \mathbf{x}^{22}}(\mathbf{x}^* + \theta h\Delta \mathbf{x})\Delta \mathbf{x},$ with $\theta \in (0, 1)$.
- Substitution yields the fundamental inequality: $h\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\Delta \mathbf{x} + \frac{1}{2}h^2(\Delta \mathbf{x})'\frac{\partial^2 f}{\partial \mathbf{x}^{22}}(\mathbf{x}^* + \theta h\Delta \mathbf{x})\Delta \mathbf{x} \leq 0$

A simple case (2)

- This is a necessary condition for a local maximum of f at x^* .
- If \mathbf{x}^* is an interior solution $\mathbf{x}^* > 0$, the fundamental inequality has to be verified in every direction $\Delta \mathbf{x}$. This is equivalent to the same FOC of classical programming, $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0, \forall j$.

• Assume now
$$\exists j \text{ s.t. } x_j^* = 0.$$

- The fundamental inequality means that the only feasible direction is $\Delta x_j \ge 0$.
- Then, dividing by h and taking the $\lim_{h\to 0}$ we obtain, $\frac{\partial f}{\partial x_j}(\mathbf{x}^*)\Delta x_j \leq 0.$
- Summarizing, we have that (i) if $x_j^* > 0$ then $\frac{\partial f}{\partial x_j}(\mathbf{x}^*) = 0$, and (ii) if $x_j^* = 0$ then $\frac{\partial f}{\partial x_j}(\mathbf{x}^*) \le 0$.
- Combining both conditions, it follows that $\frac{\partial f}{\partial x_j}(\mathbf{x}^*)x_j^* = 0$.

A simple case (3)

Consider now the *n*-dimensions of the problem.

•
$$\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\mathbf{x}^* = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(\mathbf{x}^*)x_j^* = 0$$

- This condition says that the sum of the products cancels, but also that each element of the sum cancels given that $x \ge 0$ and that the first partial derivatives are non-positive.
- Summarizing the FOCs are characterized by the following 2n+1 conditions:

$$\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*) \le 0$$
$$\mathbf{x} \ge 0$$
$$\frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*)\mathbf{x}^* = 0$$

• or equivalently $\forall j = 1, 2, \dots, n$

$$\frac{\partial f}{\partial x_j}(\mathbf{x}^*) = 0, \quad \text{if} \quad x_j^* > 0$$
$$\frac{\partial f}{\partial x_j}(\mathbf{x}^*) \le 0, \quad \text{if} \quad x_j^* = 0$$

Taxonomy of solutions

The general case

Preliminaries

- The simple case provides the feeling for characterizing the solution of the general case.
- Constraints g_i may be binding or not:

The general case (2)

The problem

•
$$\max_{\mathbf{x}} f(\mathbf{x})$$
 s.t. $\begin{cases} \mathbf{g}(\mathbf{x}) \leq \mathbf{b} \\ \mathbf{x} \geq 0 \end{cases}$

Strategy of solution - Solving the saddle-point problem

- Follow the logic of the classical programming problem
- Define a vector $\lambda = (\lambda_1, \dots, \lambda_m)$ of Lagrange multipliers, one for each inequality restriction g_i .
- Define the lagrangean function: $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda(\mathbf{b} g(\mathbf{x}))$
- The set of FOC characterizing is known as the Kuhn-Tucker conditions

The K-T conditions

$$\begin{aligned} \frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*) &\leq 0, & \frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) \geq 0\\ \frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*)\mathbf{x}^* &= 0, & \lambda^* \frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) = 0\\ \mathbf{x}^* &\geq 0, & \lambda^* \geq 0 \end{aligned}$$

Remark

- Note the different sign of the partial derivatives wrt x and $\lambda \rightarrow \lambda$
- **9** \mathbf{x}^* maximizes L, while λ^* minimizes L
- Thus $(\mathbf{x}^*, \lambda^*)$ is a saddle point of *L*, i.e. $L(\mathbf{x}, \lambda^*) \leq L(\mathbf{x}^*, \lambda^*) \leq L(\mathbf{x}^*, \lambda), \ \forall \mathbf{x} \geq 0, \lambda \geq 0$
- Conditions content of Kuhn-Tucker theorem

The saddle point problem

Algebaric notation. The problem

$$\max_{x_1,...,x_n} f(x_1,...,x_n) \text{ subject to } \begin{cases} g_1(x_1,...,x_n) \le b_1 \\ \vdots \\ g_m(x_1,...,x_n) \le b_m \\ x_i \ge 0, \ i = 1, 2, ..., n \end{cases}$$

The K-T conditions

MOVE

de Barcelona

$$\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i} - \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} \le 0, \qquad \qquad \frac{\partial L}{\partial \lambda_j} = b_j - g_j(\cdot) \ge 0$$

$$x_i \frac{\partial L}{\partial x_i} = x_i \left(\frac{\partial f}{\partial x_i} - \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i}\right) = 0, \quad \lambda_j \frac{\partial L}{\partial \lambda_j} = \lambda_j (b_j - g_j(\cdot) = 0$$

$$x_i \ge 0, \ (i = 1, 2, \dots, n) \qquad \qquad \lambda_j \ge 0, \ (j = 1, 2, \dots, m)$$

The Kuhn-Tucker theorem

- (a) \mathbf{x}^* solves the non-linear programming problem if $(\mathbf{x}^*, \lambda^*)$ is a solution of the saddle point problem.
- (b) Under some conditions, x* solves the non-linear programming problem only if ∃λ* for which (x*, λ*) solves the saddle point problem.
- (c) What conditions?
 - $f(\mathbf{x})$ is concave,
 - $\forall j, g_j(\mathbf{x}) \text{ are convex.}$
 - constraint qualification condition: $\exists x^0$ such that $x^0 \ge 0$ and $g(x^0) < b$.

Proof of (a) - sufficiency ("if")

- If $(\mathbf{x}^*, \lambda^*)$ is a solution of the saddle point problem means $f(\mathbf{x}) + \lambda^* (\mathbf{b} - \mathbf{g}(\mathbf{x})) \le f(\mathbf{x}^*) + \lambda^* (\mathbf{b} - \mathbf{g}(\mathbf{x}^*))$ and $f(\mathbf{x}^*) + \lambda^* (\mathbf{b} - \mathbf{g}(\mathbf{x}^*)) \le f(\mathbf{x}^*) + \lambda (\mathbf{b} - \mathbf{g}(\mathbf{x}^*))$
- Write the second inequality as
 $(\lambda \lambda^*)(\mathbf{b} \mathbf{g}(\mathbf{x}^*)) \ge 0, \ \forall \lambda \ge 0$
- Then,
 - for λ such that $(\lambda \lambda^*) > 0$, it follows that $\mathbf{b} \mathbf{g}(\mathbf{x}^*) \ge 0$
 - for λ such that $(\lambda \lambda^*) < 0$, since $\mathbf{b} \mathbf{g}(\mathbf{x}^*) \ge 0$ it follows that $\mathbf{b} \mathbf{g}(\mathbf{x}^*) = 0$ and
 - in particular for $\lambda = 0$ it follows that $\lambda^*(\mathbf{b} \mathbf{g}(\mathbf{x}^*)) = 0$
- Therefore, substituting in the first inequality, $f(\mathbf{x}) + \lambda^*(\mathbf{b} - \mathbf{g}(\mathbf{x})) \leq f(\mathbf{x}^*)$ implying $f(\mathbf{x}) \leq f(\mathbf{x}^*)$.

Proof of (b) - necessity ("only if")

- Assume \mathbf{x}^* solves the non-linear programming problem, i.e. $\mathbf{x}^* \ge 0$, $\mathbf{g}(\mathbf{x}^*) \le \mathbf{b}$, and $f(\mathbf{x}^*) \ge f(\mathbf{x})$, $\forall \mathbf{x} \ge 0$, $\mathbf{g}(\mathbf{x}) \le \mathbf{b}$.
- Let $a_0 \in \mathbb{R}, b_0 \in \mathbb{R}$. Let $\mathbf{a} \in \mathbb{R}^m, \mathbf{b} \in \mathbb{R}^m$.
- Define the following (m+1)-dimensional convex sets:

$$A = \left\{ \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \middle| \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \le \begin{pmatrix} f(\mathbf{x}) \\ \mathbf{b} - \mathbf{g}(\mathbf{x}) \end{pmatrix} \right\}$$
$$B = \left\{ \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix} \middle| \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix} \ge \begin{pmatrix} f(\mathbf{x}^*) \\ \mathbf{0} \end{pmatrix} \right\}$$

• Let m = n = 1 Then,

- A is a set bounded by points with vertical distance f(x) and horizontal distance b g(x). Thus convex.
- B is the interior of the quadrant with vertex at the point $(f(x^*), 0)$. Also convex.

The sets A and B

Proof of (b) - necessity ("only if") - [cont'd]

Note that A and B are disjoint

M VE

- Applying the theorem on the separating hyperplane, there is a vector (λ_0, λ) , with $\lambda_0 \in \mathbb{R}$ and $\lambda \in \mathbb{R}^m$ such that $(\lambda_0, \lambda) \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \leq (\lambda_0, \lambda) \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix}, \ \forall \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \in A, \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix} \in B.$
- Solution Note that from the definition of B, the vector (λ_0, λ) is nonnegative.
- ▲ Also, since (f(x*), 0)' is on the boundary of A, it follows that $\lambda_0 f(\mathbf{x}) + \lambda(\mathbf{b} \mathbf{g}(\mathbf{x})) \leq \lambda_0 f(\mathbf{x}^*), \ \forall \mathbf{x} \geq \mathbf{0}$

Solution Because of the constraint qualification condition $\lambda_0 > 0$.

• If $\lambda_0 = 0 \rightarrow \lambda(\mathbf{b} - \mathbf{g}(\mathbf{x})) \leq 0, \ \forall \mathbf{x} \geq \mathbf{0}$ and the nonnegativity of λ would contradict the existence of an $\mathbf{x}^{\mathbf{0}} \geq \mathbf{0}$ such that $\mathbf{g}(\mathbf{x}^{\mathbf{0}}) < \mathbf{b}$.

Separating hyperplane - recall

•
$$(\lambda_0, \lambda)$$
 separating hyperplane means:
 $(\lambda_0, \lambda) \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \leq \begin{pmatrix} k_0 \\ \mathbf{k} \end{pmatrix}$ and
 $(\lambda_0, \lambda) \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix} \geq \begin{pmatrix} k_0 \\ \mathbf{k} \end{pmatrix}$

Hence,
$$(\lambda_0, \lambda) \begin{pmatrix} a_0 \\ \mathbf{a} \end{pmatrix} \leq (\lambda_0, \lambda) \begin{pmatrix} b_0 \\ \mathbf{b} \end{pmatrix}$$

Proof of (b) - necessity ("only if") - [cont'd (2)]

- If $\lambda_0 > 0$ dividing both sides, we obtain $f(\mathbf{x}) + \lambda^* (\mathbf{b} - \mathbf{g}(\mathbf{x})) \le f(\mathbf{x}^*), \ \forall \mathbf{x} \ge \mathbf{0} \text{ with } \lambda^* = 1/\lambda_0. \ [KT1]$
- In particular, if $\mathbf{x} = \mathbf{x}^*$ it follows that $\lambda^*(\mathbf{b} \mathbf{g}(\mathbf{x}^*)) \leq 0$
- But we know that $(\mathbf{b} \ge \mathbf{g}(\mathbf{x}^*))$ and $\lambda^* \ge \mathbf{0}$. Thus, $\lambda^*(\mathbf{b} \mathbf{g}(\mathbf{x}^*)) = \mathbf{0}$. [KT2]
- Finally, define the Lagrangian as: $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda(\mathbf{b} \mathbf{g}(\mathbf{x}))$
- From [KT1] and [KT2] and from the assumption $y \ge 0$, it follows that (x^*, λ^*) is a saddle point for $L(x, \lambda)$ for $x \ge 0, \lambda \ge 0$ thus proving the necessity part of the theorem.

Summarizing

• Under the above assumptions \mathbf{x}^* solves the nonlinear programming problem if ans only if $\exists \lambda^*$ such that $(\mathbf{x}^*, \lambda^*)$ solves the saddle point problem.

The saddle-point problem - Remark

Additional assumption: $f(\mathbf{x})$ and $\mathbf{g}(\mathbf{x})$ are differentiable functions. Part 1: $\max_{\mathbf{x}} L(\mathbf{x}, \lambda^*)$ - Conditions

$$\begin{aligned} &\frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*) = \leq 0, \\ &\frac{\partial L}{\partial \mathbf{x}}(\mathbf{x}^*, \lambda^*)\mathbf{x}^* = 0, \\ &\mathbf{x}^* > 0. \end{aligned}$$

Part 2: $\min_{\lambda} L(\mathbf{x}^*, \lambda)$ - Conditions

$$\begin{aligned} &\frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) \ge 0, \\ &\lambda^* \frac{\partial L}{\partial \lambda}(\mathbf{x}^*, \lambda^*) = 0, \\ &\lambda^* \ge 0. \end{aligned}$$

Geometry of the Kuhn-Tucker conditions

The problem

$$\max_{x_1, x_2} f(x_1, x_2) \text{ subject to } \begin{cases} g_1(x_1, x_2) \le b_1 \\ g_2(x_1, x_2) \le b_2 \\ x_1, x_2 \ge 0 \end{cases}$$

The K-T conditions

- Let $x^* = (x_1^*, x_2^*)$ be an interior solution to this problem.
- ✓ K-T theorem says that $\nabla f(x*)$ must lie in the cone formed by the gradients of the restrictions $\nabla g_1(x^*)$ and $\nabla g_2(x^*)$...
- ... i.e. $\nabla f(x^*)$ is a non-negative linear combination of $\nabla g_1(x^*)$ and $\nabla g_2(x^*)$
- ▶ Formally, $\exists (\lambda_1, \lambda_2) \ge 0$ s.t. $\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2$.

Geometry of the Kuhn-Tucker conditions (2)

- Case 1
 - Case 1a: all restrictions as equalities and active, interior solution.
 - Case 1b: all restriction as equalities, some active, interior solution
- Case 2
 - Case 2a: some restrictions inactive, interior solution
 - Case 2b: some restrictions inactive, corner solution

Case 1a: K-T conditions satisfied at $x^* > 0, g(x^*) = b$

Remarks:

$$g_1(x^*) = b_1, \ g_2(x^*) = b_2$$

 $\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2$, with $\lambda_1 > 0$ and $\lambda_2 > 0$

Case 1b: K-T conditions satisfied at $x^* > 0, g(x^*) = b$

Remarks:

$$g_1(x^*) = b_1, g_2(x^*) = b_2$$

$$\nabla f = \lambda_1 \nabla g_1$$
, with $\lambda_1 > 0$ and $\lambda_2 = 0$

What if $\nabla f(x*)$ is not in the cone?

- Consider f slightly perturbed (as in next figure) so that ∇f is no longer in the cone.
- (we could have perturbed g_1 and/or g_2 instead)
- Observe that now there is a "lens" between the contours of f and g_1 .
- This lens contains feasible points allowing to achieve large values of f than $f(x^*)$.
- Thus x* is no longer a maximizer of f, as it does not satisfy K-T conditions.

Geometry of the Kuhn-Tucker conditions (3)

Geometry of the Kuhn-Tucker conditions (4)

Remark

- The constraint qualification condition precisely means that ∇f lies in the cone...
- ... i.e. that the restriccions are linearly independent

Case 2a: K-T conditions satisfied at $x_i^* > 0, g_i(x^*) < b_i$

Let $g_2(x^*) < b_2$. K-T conditions require $\lambda_2 = 0$, and ∇f lies in the cone defined by g_1 .

$$g_1(x^* = b_1, g_2(x^*) < b_2 \to \lambda_2 = 0; \nabla f = \lambda_1 \nabla g_1$$

Case 2b: K-T conditions satisfied at $x_i^* = 0, g_i(x^*) < b_i$

- Let $\frac{\partial f}{\partial x_2} < \sum_{i=1}^2 \lambda_i \frac{\partial g_i}{\partial x_2}$. K-T conditions require $x_2^* = 0$.
- Assume $g_2(x^*) < b_2$ so that $\lambda_2 = 0$
- Accordingly, $\frac{\partial L}{\partial x_1} = \frac{\partial f}{\partial x_1}(x^*) - \lambda_1 \frac{\partial g_1}{\partial x_1}(x^*) \le 0 \text{ and}$ $\frac{\partial L}{\partial x_2} = \frac{\partial f}{\partial x_2}(x^*) - \lambda_1 \frac{\partial g_1}{\partial x_2}(x^*) < 0$
- In the next figure it happens that $\frac{\partial f}{\partial x_1}(x^*) < \lambda_1 \frac{\partial g_1}{\partial x_1}(x^*)$, i.e. ∇f is not in the cone ∇g .
- but it might be possible to have $\frac{\partial f}{\partial x_1}(x^*) = \lambda_1 \frac{\partial g_1}{\partial x_1}(x^*)$ in case of tangency at x^* .

Case 2b: K-T conditions satisfied at $x_j^* = 0, g_i(x^*) < b_i$ (2)

Case 2b: K-T conditions satisfied at $x_j^* = 0, g_i(x^*) < b_i$ (3)

Motivation

- Consider the problem $\max_x f(x)$ s.t. $g(x) \le c$
- Generalize this problem by allowing *f* and *g* to depend on a parameter θ, i.e. $\max_x f(x, \theta)$ s.t. $g(x, \theta) \le c$
- The solution of this problem is $x^*(\theta)$, and the optimal value of f is $f(x^*(\theta), \theta)$
- Now define the value function $V : \mathbb{R} \to \mathbb{R}$ as $V(\theta) \equiv f(x^*(\theta), \theta) = \max_x f(x, \theta) \text{ s.t. } g(x, \theta) \le c$
- **9** Question: evaluate how V changes with θ .
- Example: Utility $(U(c_1, c_2))$ maximization. Income and prices (I, p_1, p_2) are exogenous. Thus optimal demands are $c_1^*(I, p_1, p_2), c_2^*(I, p_1, p_2)$ and $\lambda^*(I, p_1, p_2)$.
- $V(I) \equiv U(c_1^*(I, \cdot), c_2^*(I, \cdot)).$

Evaluating V

- Suppose in particular that we want to assess $V'(\theta)$.
- From K-T conditions, we know that (x^*, λ^*) must satisfy the complementary slackness condition: $\lambda^*[c g(x^*, \theta)] = 0$

• Thus,
$$V(\theta) \equiv f(x^*, \theta) = f(x^*, \theta) + \lambda^* [c - g(x^*, \theta)]$$

- Differentiate both sides wrt θ : $V'(\theta) = \frac{\partial f}{\partial \theta} \lambda^* \frac{\partial g}{\partial \theta}$
- BUT we know that $x^*(\theta)$ and $\lambda^*(\theta)$. Then, that derivative may be wrong when ignoring the dependence of x^* and λ^* on θ .
- HOWEVER, the envelope theorem tells us that the expression of $V'(\theta)$ is in fact correct, i.e.
- The envelope theorem tells us that when computing $V'(\theta)$ we can ignore the dependence of x^* and λ^* on θ .

The envelope theorem - Intuition

Unconstrained problem $\max_x f(x, \theta)$

- Let $x^*(\theta)$ be the solution, and define $V(\theta) \equiv f(x^*(\theta), \theta)$.
- Differentiate both sides wrt θ : $V'(\theta) = \frac{\partial f}{\partial x^*} \frac{dx^*}{d\theta} + \frac{\partial f}{\partial \theta}$
- but as $x^*(\theta)$ is a critical value of f, it must be that $\frac{\partial f}{\partial x^*} = 0$
- Therefore, $V'(\theta) = \frac{\partial f}{\partial \theta}$

The envelope theorem - Intuition (2)

Constrained problem $\max_x f(x,\theta)$ s.t. $g(x,\theta) \leq c$

- ✓ From K-T conditions, we know that $(x^*(\theta), \lambda^*(\theta))$ must satisfy the complementary slackness condition: $\lambda^*(\theta)[c g(x^*(\theta), \theta)] = 0$
- Thus, $V(\theta) = f(x^*(\theta), \theta) + \lambda^*(\theta)[c g(x^*(\theta), \theta)]$

•
$$V'(\theta) = \frac{\partial f}{\partial \theta} - \lambda^*(\theta) \frac{\partial g}{\partial \theta}$$

The envelope theorem

- Let $f(x,\theta)$ and $g(x,\theta)$ be continuously differentiable functions.
- For any given θ , $x^*(\theta)$ maximizes $f(x, \theta)$ s.t. $g(x, \theta) \leq c$.
- Let $\lambda^*(\theta)$ be the value of the associated lagrange multiplier.
- Suppose $x^*(\theta)$ and $\lambda^*(\theta)$ be continuously differentuiable.
- Suppose that the constraint qualification, $g(x^*(\theta), \theta) \neq 0$ holds $\forall \theta$.
- Then, the maximum value function defined by $V(\theta) = \max_x f(x, \theta)$ s.t. $g(x, \theta) \le c$ satisfies $V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial \theta}$

The envelope theorem - Proof

- K-T theorem says that for any θ , $x^*(\theta)$ and $\lambda^*(\theta)$ satisfy $\frac{\partial L(x^*(\theta), \lambda^*(\theta))}{\partial x} = \frac{\partial f(x^*(\theta), \theta)}{\partial x} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial x} = 0$, [1] and $\lambda^*[c - g(x^*(\theta), \theta)] = 0$ [2]
- Define $V(\theta) = f(x^*(\theta), \theta) + \lambda^*(\theta)[c g(x^*(\theta), \theta)]$
- Differentiate both sides wrt θ : $V'(\theta) = \frac{\partial f}{\partial x^*} \frac{dx^*}{d\theta} + \frac{\partial f}{\partial \theta} + \frac{d\lambda^*(\theta)}{d\theta} [c g(x^*(\theta), \theta)] \lambda^*(\theta) [\frac{\partial g}{\partial x^*} \frac{dx^*}{d\theta} + \frac{\partial g}{\partial \theta}]$
- Rewrite as

$$V'(\theta) = \left[\frac{\partial f}{\partial x^*} - \lambda^*(\theta)\frac{\partial g}{\partial x^*}\right]\frac{dx^*}{d\theta} + \frac{\partial f}{\partial \theta} - \lambda^*(\theta)\frac{\partial g}{\partial \theta} + \frac{d\lambda^*(\theta)}{d\theta}[c - g(x^*(\theta), \theta)]$$

- The first term is zero from the FOC [1]
- If the constraint binds the last term is also zero.

The envelope theorem - Proof (cont'd)

- If the constraint does not bind, $\lambda^*(\theta) = 0$
- The continuity of g and x^* means that if the constraint does not bind at θ , $\exists \varepsilon^* > 0$ such that the constraint does not bind for $\theta + \varepsilon$ with $|\varepsilon| < \varepsilon^*$.
- FOC [2] implies that $\lambda^*(\theta + \varepsilon) = 0, \forall |\varepsilon| < \varepsilon^*$.
- From the definition of derivative
 $\frac{d\lambda^*(\theta)}{d\theta} = \lim_{\varepsilon \to 0} \frac{\lambda^*(\theta + \varepsilon) \lambda^*(\theta)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{0}{\varepsilon} = 0,$ hence the last term is again zero.

Therefore, it follows that
$$V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial \theta}$$

[See Ireland, 2010]

Unconstrained problem $\max_x f(x, \theta)$

- Let $x^*(\theta)$ be the solution, and define $V(\theta) = \max_x f(x, \theta)$.
- Let θ_1 be a particular value of θ and let $x_1 = x^*(\theta_1)$.
- If think of $f(x_1, \theta)$ a function of θ holding x_1 fixed.
- Similarly consider $\theta_2 > \theta_1$ and $x_2 = x^*(\theta_2)$
- If think of $f(x_2, \theta)$ a function of θ holding x_2 fixed.
- For $\theta = \theta_1$ because x_1 maximizes $f(x, \theta_1)$ it follows that $V(\theta_1) = f(x_1, \theta_1) > f(x_2, \theta_1)$
- For $\theta = \theta_2$ because x_2 maximizes $f(x, \theta_2)$ it follows that $V(\theta_2) = f(x_2, \theta_2) > f(x_1, \theta_2)$
- Graphically, at θ_1 , $V(\theta) = f(x_1, \theta)$ which lies above $f(x_2, \theta)$.
- Graphically, at θ_2 , $V(\theta) = f(x_2, \theta)$ which lies above $f(x_1, \theta)$.

The envelope theorem - Geometry (2)

The envelope theorem - Geometry (3)

- Solution Repeat the argument for more values of θ_i , i = 1, 2, 3, ...
- $V(\theta)$ is tangent to each $f(x_i, \theta)$ at θ_i , i.e. $V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta}$
- This is the same analytical result obtained.
- For the constrained maximization problem $\max_x f(x,\theta)$ s.t. $g(x,\theta) \le c$, define the lagrangean function $L(x,\lambda,\theta) = f(x,\theta) + \lambda(c - g(x,\theta))$
- Define $V(\theta) = \max_x L(x, \lambda, \theta)$ and repeat the argument above wrt L

• Again
$$V'(\theta) = \frac{\partial L}{\partial \theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} - \lambda^*(\theta) \frac{\partial g(x^*(\theta), \theta)}{\partial \theta}$$

The V function is tangent from above to all the L functions associated to the values θ_i

Applications

- Consumer Theory (Utility max)
- Producer Theory
 - Profit maximization
 - Cost minimization
 - Revenue max under profit constraint
 - Peak-Load pricing
 - Regulatory constraints: rate-of-return, environmental, ...
- Welfare economics (Pareto optimal solutions)
- Human capital investment
- Non-Linear Least-Square estimation
- ... and many, many more

