Optimization. A first course of mathematics for economists

Xavier Martinez-Giralt Universitat Autònoma de Barcelona

xavier.martinez.giralt@uab.eu

II.2 Static optimization - Classical programming

Classical programming

Problem:

where:

•
$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$$

• $\mathbf{g}(\mathbf{x}) = \begin{pmatrix} g_1(\mathbf{x}) \\ \vdots \\ g_m(\mathbf{x}) \end{pmatrix}; \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$

$$g_i(\mathbf{x}) = b_i, \ i = 1, \dots, m$$

 \bullet $g_i(\mathbf{x})$ continuous, continuously differentiable

$$b_i \in \mathbf{R}, \ \mathbf{x} \in \mathbf{R}^n$$

Classical programming (2)

Feasible set:

- $X = \{ \mathbf{x} \in \mathbf{R}^n | \mathbf{g}(\mathbf{x}) = \mathbf{b} \}. \text{ Points } \mathbf{x} \in \mathbf{R}^n \cap_{i=1}^m g_i(\mathbf{x})$
- Problem: find the set of points in X in the highest level set of objective function

Three possibilities:

- n > m. The difference n m is the *degrees of freedom* of the problem.
- Image: n = m. Problem is trivial. Consider: $\max_x ax^2$, s.t. bx = c. Equivalently $\max_x a(\frac{c}{d})^2$ that does not depend of x.
- In < m. Either there are m n redundant restrictions, or restrictions are inconsistent among them, and set of solutions is empty.

Getting the intuition with n = 1:

- ▶ Let $f : X \to \mathbb{R}$ be twice continuously differentiable on $X \subset \mathbb{R}$.
- ▶ Find $x^* \in \mathbb{R}$ solution of $\max_x f(x)$; Let Δx be arbitrarily small.
- First order (necessary) condition
 - Given that $x^* \in \mathbb{R}$ is solution, $f(x^*) \ge f(x^* + \Delta x)$
 - Taylor expansion around x^* : (with $\theta \in (0,1)$) $f(x^* + \Delta x) = f(x^*) + \frac{df}{dx}(x^*)\Delta x + \frac{1}{2}\frac{d^2f}{dx^2}(x^* + \theta\Delta x)(\Delta x)^2$
 - Define fundamental inequality $(FI) \equiv f(x^* + \Delta x) f(x^*)$: $FI(\Delta x) \equiv \Delta x [\frac{df}{dx}(x^*) + \frac{1}{2} \frac{d^2 f}{dx^2}(x^* + \theta \Delta x)(\Delta x)] \leq 0$
 - If $\Delta x > 0$, then $\lim_{\Delta x \to 0} FI(\Delta x) = \frac{df}{dx}(x^*) \le 0$
 - If $\Delta x < 0$, then $\lim_{\Delta x \to 0} FI(\Delta x) = \frac{df}{dx}(x^*) \ge 0$
 - Hence, *FI* implies as FOnC to maximize f(x) that $\frac{df}{dx}(x^*) = 0$.

Getting the intuition with n = 1:

Second order (necessary) condition

- Substituting FOC in *FI* we obtain $\frac{d^2f}{dx^2}(x^* + \theta \Delta x) \leq 0$.
- As it is verified $\forall \Delta x$, it follows that SOnC is $\frac{d^2f}{dx^2}(x^*) \leq 0$.
- Sufficient conditions for a local maximum: If

$$\frac{df}{dx}(x^*) = 0, \text{and}$$
$$\frac{d^2f}{dx^2}(x^*) < 0,$$

then, $f(x^*) > f(x^* + \Delta x)$. Proof: use either *mean value theorem* or *FI*.

A particular case m = 0. Free maximization (3)

Getting the intuition with n = 1:

- Mean value theorem
 - Let $f : [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b), a < b.
 - Then, $\exists c \in (a, b)$ such that $f'(c) = \frac{f(b) f(a)}{b a}$.

Getting the intuition with n = 1:

- Sufficient conditions Proof
 - Let $a = x^*$, let $b = x^* + \Delta x$, and let $c = x^* + \theta \Delta x$, $\theta \in (0, 1)$.
 - Mean value theorem says: $\frac{df}{dx}(x^* + \theta \Delta x) = \frac{f(x^* + \Delta x) - f(x^*)}{(x^* + \Delta x) - x^*} = \frac{f(x^* + \Delta x) - f(x^*)}{\Delta x}$
 - or equivalently $f(x^* + \Delta x) = f(x^*) + \frac{df}{dx}(x^* + \theta \Delta x)\Delta x$
 - given that $f'(x^*) = 0$ and $f''(x^*) < 0$, for $\Delta x > 0$, necessarily $\frac{df}{dx}(x^* + \theta \Delta x) < 0$.
 - given that $f'(x^*) = 0$ and $f''(x^*) < 0$, for $\Delta x < 0$, necessarily $\frac{df}{dx}(x^* + \theta \Delta x) > 0$.
 - hence, $\frac{df}{dx}(x^* + \theta \Delta x)\Delta x < 0$ and thus $f(x^* + \Delta x) < f(x^*)$.

Geometry of free maximization in **R**

Free maximization with n > 1

- Problem: $\max_{x_1,\ldots,x_n} f(x_1,\ldots,x_n)$
- Theorem: (proof parallel to the case n = 1)
 - Let $f: X \to \mathbb{R}$ be twice continuously differentiable on $X \subset \mathbb{R}^n$.
 - Let $\mathbf{x}^* \in \mathbf{R}^n$ be a local maximum of f.
 - Then, FOnCs are $\frac{\partial f(x)}{\partial x_j}(\mathbf{x}^*) = 0, \forall j$.
- SOnC : Hessian negative semidefinite: $(\Delta \mathbf{x}^*)' \frac{\partial^2 f}{\partial x^2}(\mathbf{x}^*)(\Delta \mathbf{x}^*) \leq 0, \ \forall \mathbf{x}$
- Sufficient conditions:

$$\frac{\partial f(x)}{\partial x_j}(\mathbf{x}^*) = 0, \ \forall j.$$
$$(\Delta \mathbf{x}^*)' \frac{\partial^2 f}{\partial x^2}(\mathbf{x}^*)(\Delta \mathbf{x}^*) < 0, \ \forall \mathbf{x}$$

Free maximization. Illustration with n = 2

Problem:
$$\max_{x_1,x_2} f(x_1,x_2)$$

• Let $(\mathbf{x}^*)' = (x_1^*, x_2^*)'$ be a local maximum.

• FOnC:
$$\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = 0, \ \frac{\partial f}{\partial x_2}(\mathbf{x}^*) = 0$$

SOnC: Hessian negative semidefinite, i.e.

Geometry of Free maximization with n = 2

Two strategies

- \checkmark Substitute restrictions \rightarrow solve a free maximization problem
- General method: Lagrange multipliers

Method of substitution. Illustration

- Problem: $\max_{x_1,x_2} f(x_1,x_2)$ s.t. $g(x_1,x_2) = 0$
- Assuming $\frac{\partial g}{\partial x_2} \neq 0$, we have an implicit function $x_2(x_1)$.

• Using the implicit function theorem we know, $\frac{\partial x_2}{\partial x_1} = -\frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}}$

• Problem: $\max_{x_1} f(x_1, x_2(x_1))$ with FOC: $\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_1} = 0$

• and the solution is:
$$\frac{\frac{\partial f}{\partial x_1}}{\frac{\partial f}{\partial x_2}} = \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}}, g(x_1, x_2) = 0$$

 \bullet i.e. set of tangency points between f function and g function.

Classical programming (4)

Method of substitution. Illustration (cont'd)

Rewrite FOC as (for future use):

$$\frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2} \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}} = 0$$
$$\frac{\partial f}{\partial x_1} + \lambda \frac{\partial g}{\partial x_1} = 0$$
with $\lambda = -\frac{\frac{\partial f}{\partial x_2}}{\frac{\partial g}{\partial x_2}}$

Geometry of the classical programming

Classical programming. Lagrange method.

Lagrange theorem:

- ▶ Let $f, g_i, i = 1, ..., m$ be twice continuously differentiable.
- Suppose $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ is a local interior extreme point of $f(\mathbf{x}^*)$ subject to $g_i(x_1, \dots, x_n) = b_i, i = 1, \dots, m$.

• Suppose
$$Jg(\mathbf{x}^*) \neq 0$$
.

- Then, $\exists \lambda^* = (\lambda_1^*, \dots, \lambda_n^*)$ such that $(\mathbf{x}^*, \lambda^*)$ is a critical point of the lagrangean function $L(\mathbf{x}, \lambda) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i (b_i g_i(\mathbf{x}^*))$.
- where λ_i gives the (shadow) price associated with constraint *i*.
- Equivalently, $\exists \lambda^*$ such that $\nabla f(\mathbf{x}^*) = \lambda^* \nabla g(\mathbf{x}^*)$

Lagrange theorem - Remarks

•
$$Jg(\mathbf{x}^*) = \begin{pmatrix} \frac{\partial g_1(\mathbf{x}^*)}{\partial x_1} & \cdots & \frac{\partial g_1(\mathbf{x}^*)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m(\mathbf{x}^*)}{\partial x_1} & \cdots & \frac{\partial g_m(\mathbf{x}^*)}{\partial x_n} \end{pmatrix} \neq 0$$
 means that the matrix

has rank m or that the m restrictions are linearly independent.

This is known as the constraint qualification.

•
$$\lambda_i^* \leq 0$$

•
$$\lambda_i^*$$
 satisfies $\frac{\partial f(\mathbf{x}^*)}{\partial x_j} = \sum_{i=1}^m \lambda_i^* \frac{\partial g_i(\mathbf{x}^*)}{\partial x_j}, \ j = 1, \dots, n.$ i.e.

 gradient vector of objective function = sum of product of lagrange multiplier by Jacobian of restrictions, or

 gradient vector of objective function is a linear combination of gradients of restrictions.

Lagrange method - Interpretation

- Note that the FOC of lagrangrean function is the same as the FOC of the problem under the substitution method.
- Graphically the gradient of the objective function must be contained in the cone formed by the gradients of the restrictions.
- Otherwise, we could achieve a higher value of the objective function without violating the restrictions. Contradiction with the assumption of x* being a local maximum.
- Once we have found candidate solutions x*, it is not always easy to assess whether they correspond to a minimum, a maximum or neither. (FOCs are necessary conditions). Two particular cases:
 - If f concave and g_i linear, then \mathbf{x}^* are local maxima.
 - If f convex and g_i linear, then \mathbf{x}^* are local minima.

Geometry of the constraint qualification

An example violating the constraint qualification

$$\square$$
 $n = 2, m = 1$

$$max_{x_1,x_2} c_1 x_1 - c_2 x_2 s.t. a_1 x_1 + a_2 x_2 = b, \ c_i, a_i > 0$$

•
$$L(x_1, x_2, \lambda) = c_1 x_1 - c_2 x_2 + \lambda (b - a_1 x_1 - a_2 x_2)$$

• from the first two conditions we obtain $\lambda = \frac{c_1}{a_1}$; $\lambda = \frac{-c_2}{a_2}$

- Contradiction $!! \rightarrow$ no solution.
- Graphical representation:

An example violating the constraint qualification (2)

An example satisfying the constraint qualification

n = 2, m = 1
max_{x1,x2} c₁x₁ + c₂x₂ s.t. a₁x₁ + a₂x₂ = b, c_i, a_i > 0
L(x₁, x₂, λ) = c₁x₁ + c₂x₂ + λ(b - a₁x₁ - a₂x₂)
$$\frac{\partial L}{\partial x_1} = c_1 - \lambda a_1 = 0$$
 $\frac{\partial L}{\partial x_2} = c_2 - \lambda a_2 = 0$
 $\frac{\partial L}{\partial \lambda} = b - a_1x_1 - a_2x_2 = 0$

from the first two conditions we obtain $\frac{c_1}{a_1} = \lambda = \frac{c_2}{a_2}$
Then, $a_2 = \frac{c_2a_1}{c_1}$ and restriction is $x_2 = \frac{b}{a_2} - \frac{c_1}{c_2}x_1$
 $Jf = (c_1, c_2)$.
 $Jg = (a_1, a_2) = (a_1, \frac{a_1c_2}{c_1}) = \frac{a_1}{c_1}(c_1, c_2) = \frac{a_1}{c_1}Jf$.
Graphical representation:

An example satisfying the constraint qualification (2)

Lagrange method

SOnC

Hessian evaluated at $(\mathbf{x}^*, \lambda^*)$ of lagrangian function negative semidefinite:

Necessary and sufficient conditions

•
$$\mathbf{b} = \mathbf{g}(\mathbf{x}^*)$$

Hessian negative definite.

On lagrange multipliers

Proposition: Lagrange multipliers evaluated at the solution provide a measure of the sensibility of the optimal value of the objective function $f(\mathbf{x}^*)$ to variations in the constants b of each restriction, namely

$$\lambda^* = \frac{\partial f(\mathbf{x}^*)}{\partial \mathbf{b}}, \text{ or } \lambda_i^* = \frac{\partial f(\mathbf{x}^*)}{\partial b_i}, \ i = 1, 2, \dots, m.$$

Proof

- FOCs: m + n equations and 2m + n variables $(\mathbf{b}, \lambda, \mathbf{x})$.
- Implicit function theorem: solve system of m + nequations as function of constants b, i.e. $\lambda = \lambda(\mathbf{b}); \mathbf{x} = \mathbf{x}(\mathbf{b}).$
- Rewrite lagrangian function as: $L(\mathbf{b}) = f(\mathbf{x}(\mathbf{b})) + \lambda(\mathbf{b})[\mathbf{b} - \mathbf{g}(\mathbf{x}(\mathbf{b}))]$
- Differentiate $L(\mathbf{b})$ wrt \mathbf{b}

•
$$\frac{\partial L}{\partial \mathbf{b}} = \left(\frac{\partial f}{\partial \mathbf{x}} - \lambda \frac{\partial g}{\partial \mathbf{x}}\right) \left(\frac{\partial \mathbf{x}}{\partial \mathbf{b}}\right) + (\mathbf{b} - \mathbf{g}(\mathbf{x}))' \frac{\partial \lambda'}{\partial \mathbf{b}} + \lambda$$

On lagrange multipliers (2)

- Proof (cont'd)
 - Evaluated at $(\mathbf{x}^*, \lambda^*)$, first two terms = 0 from FOCs.
 - Thus, $\frac{\partial L}{\partial \mathbf{b}} = \lambda$
 - Also, evaluated at $(\mathbf{x}^*, \lambda^*)$, $L(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*)$.
 - Thus, $\frac{\partial L}{\partial \mathbf{b}}(\mathbf{x}^*, \lambda^*) = \frac{\partial f(\mathbf{x}^*)}{\partial \mathbf{b}}$
 - Hence, $\frac{\partial L}{\partial \mathbf{b}}(\mathbf{x}^*, \lambda^*) = \frac{\partial f(\mathbf{x}^*)}{\partial \mathbf{b}} = \lambda^*$.
- Economic interpretation: objective function (profits, costs, revenues, ...) and restrictions (inputs, ...). Then,
 - Lagrange multipliers measure sensibility of say cost, to variations in a quantity (of inputs).
 - Thus, lagrange multipliers represent a price, often referred to as "shadow price" of each input.

Theorem (consider \mathbb{R}^2)

- Let $f(x_1, x_2)$ and $g(x_1, x_2)$ be continuously differentiable.
- Let $x^* \equiv (x_1^*, x_2^*)$ be an interior point in the domain of f.
- Let x^* be a local extreme point for $f(x_1, x_2)$ subject to $g(x_1, x_2) = c$.
- Suppose that $\frac{\partial g}{\partial x_1}(x^*)$ and $\frac{\partial g}{\partial x_2}(x^*)$ are not both zero.
- Then, $\exists \lambda \in \mathbf{R}$ such that the lagrangean function

$$L(x_1, x_2, \lambda) = f(x_1, x_2) - \lambda(g(x_1, x_2) - c)$$

has a stationary point at x^* .

Lagrange's Theorem - Proof (2)

Proof

• Suppose that
$$\frac{\partial g}{\partial x_2}(x^*) \neq 0$$
.

- By the implicit function theorem, the equation $g(x_1, x_2) = c$ defines x_2 as a differentiable function of x_1 , $x_2 = h(x_1)$ in a neighborhood of x^* . Also, $h'(x_1) = -(\frac{\partial g}{\partial x_1})/(\frac{\partial g}{\partial x_2})$.
- Replacing $g(x_1, x_2) = c$ by $x_2 = h(x_1)$, the problem

$$\max_{x_1, x_2} f(x_1, x_2) \text{ s.t. } g(x_1, x_2) = c \tag{1}$$

becomes

$$\max_{x_1} f(x_1, h(x_1))$$

Lagrange's Theorem - Proof (3)

Proof (cont'd)

A neccessary condition for a maximum of this free-maximization problem is

$$\frac{df(x_1, h(x_1))}{x_1} = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2}h'(x_1) = 0$$

That is

$$\frac{\partial f}{\partial x_1}(x^*) - \frac{\partial f}{\partial x_2}(x^*) \frac{\frac{\partial g}{\partial x_1}(x^*)}{\frac{\partial g}{\partial x_2}(x^*)} = 0$$
(2)

Then, the expression (2) is precisely the necessary condition for x^* to be a local (interior) extreme point of the problem (1).

FOC of problem (1)

•
$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial g}{\partial x_1} = 0$$

• $\frac{\partial f}{\partial x_2} - \lambda \frac{\partial g}{\partial x_2} = 0$

That is,

$$\frac{\frac{\partial f}{\partial x_1}}{\frac{\partial f}{\partial x_2}} = \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}}$$

that we can rewrite as,

$$\frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2} \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}} = 0$$

that is precisely expression (2).

Proof (cont'd)

- Accordingly, we conclude that when $\frac{\partial g}{\partial x_2}(x^*) \neq 0$, the Lagrangean function $L(x_1, x_2, \lambda)$ has a stationary point at x^* .
- It remains to prove that x^* is also a stationary point of $L(x_1, x_2, \lambda)$ when $\frac{\partial g}{\partial x_2}(x^*) = 0$. In this case, it follows that $\frac{\partial g}{\partial x_1}(x^*) \neq 0$ and a parallel argument completes the proof of the theorem.

Lagrange's Theorem - Alternative proof

- Let \mathbf{x}^* be a local extreme point for $f(x_1, x_2)$ s.t. $g(x_1, x_2) = c$.
- Represent $g(x_1, x_2) = c$ by the vector valued function $\mathbf{r}(t) = x_1(t)\mathbf{i} + x_2(t)\mathbf{j} \text{ with } \mathbf{r}(t) \neq \mathbf{0}$
- **Define** $h(t) = f(x_1(t), x_2(t))$
- Because $f(\mathbf{x}^*)$ is an extreme value of f, $h(t^*) = f(x_1(t^*), x_2(t^*)) = f(\mathbf{x}^*) \text{ is an extreme value of } h.$
- It means that $h'(t^*) = 0$

• But
$$h'(t^*) = \frac{\partial f}{\partial x_1}(\mathbf{x}^*)x_1'(\mathbf{x_1}^*) + \frac{\partial f}{\partial x_2}(\mathbf{x}^*)x_2'(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) \cdot \mathbf{r}'(\mathbf{t}^*)$$

- Hence, $\nabla f(\mathbf{x}^*)$ is orthogonal to $\mathbf{r}'(\mathbf{t}^*)$
- Differentiating g we obtain $\frac{\partial g}{\partial x_1}(\mathbf{x}^*)x'_1(\mathbf{x}^*) + \frac{\partial g}{\partial x_2}(\mathbf{x}^*)x'_2(\mathbf{x}^*) = 0$ or $\nabla g(\mathbf{x}^*) \cdot \mathbf{r}'(\mathbf{t}^*) = 0$ and $\nabla g(\mathbf{x}^*)$ is orthogonal to $\mathbf{r}'(\mathbf{t}^*)$
- Thus, $\nabla f(\mathbf{x}^*)$ and $\nabla g(\mathbf{x}^*)$ are parallel. That is, $\exists \lambda^*$ such that $\nabla f(\mathbf{x}^*) = \lambda^* \nabla g(\mathbf{x}^*)$

Motivation

- Let $F(x, y; \theta)$ be a function with (x, y) as endogenous variables while θ represent some exogenous variable.
- F might be the profit function of a firm producing two outputs (x, y), and θ be the wage rate paid to its workers (determined by labor market conditions).
- Suppose (x^*, y^*) are the profit-maximizing production volumes and $F(x^*, y^*; \theta)$ is the maximum level of profits.
- It should be obviuos that $x^* = x^*(\theta), y^* = y^*(\theta), F(x^*, y^*; \theta) = F^*(\theta)$
- How variation of θ affect F^* ? Formally, compute $dF^*/d\theta$.
- Apply the envelope theorem

The envelope theorem

■ Consider $F(x, y; \theta)$, and suppose $x^* = x^*(\theta), y^* = y^*(\theta)$ exist.

Then,

$$\frac{dF^*}{d\theta} = \frac{\partial F^*}{\partial \theta}$$

Proof

• Compute
$$dF^*/d\theta$$
:

$$\frac{dF^*}{d\theta} = \frac{\partial F^*}{\partial x}\frac{dx^*}{d\theta} + \frac{\partial F^*}{\partial y}\frac{dy^*}{d\theta} + \frac{\partial F^*}{\partial \theta}\frac{d\theta}{d\theta} = \frac{\partial F^*}{\partial \theta}$$

where we have used the fact that the FOCs evaluated at the optimal values are zero, i.e.

$$\frac{\partial F}{\partial x}(x^*, y^*; \theta) = 0 = \frac{\partial F}{\partial y}(x^*, y^*; \theta)$$

Remarks

- The envelope theorem only requires (x^*, y^*) be critical points of *F*, not optimal.
- An immediate application of the envelope theorem allows us to assess the impact of a variation of the lagrange multiplier on the optimal value of the objective function.

Interpretating the Lagrange multiplier

- Let the Lagrangian function be $F(x, y, \lambda; \theta) = f(x, y) - \lambda(g(x, y) - \theta)$
- Recall that at the optimum, $F^* = f^*$

• Therefore,
$$\frac{dF^*}{d\theta} = \frac{\partial F^*}{\partial \theta} = \frac{df^*}{d\theta}$$

But we can write $F(x, y, \lambda; \theta) = f(x, y) - \lambda g(x, y) + \lambda \theta$ so that $\frac{dF^*}{d\theta} = \frac{\partial F^*}{\partial \theta} = \lambda^* = \frac{df^*}{d\theta}$