Optimization. A first course of mathematics foreconomists

Xavier Martinez-Giralt

Universitat Autònoma de Barcelona

xavier.martinez.giralt@uab.eu

II.2 Static optimization - Classical programming

Classical programming

Problem:

$$
\bullet \quad \max_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } \mathbf{g}(\mathbf{x}) = \mathbf{b}
$$

where:

$$
\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n
$$

$$
\mathbf{g}(\mathbf{x}) = \begin{pmatrix} g_1(\mathbf{x}) \\ \vdots \\ g_m(\mathbf{x}) \end{pmatrix}; \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}
$$

$$
g_i(\mathbf{x}) = b_i, i = 1, \dots, m
$$

 $g_i(\mathbf{x})$ continuous, continuously differentiable

$$
\bullet \quad b_i \in \mathbf{R}, \ \mathbf{x} \in \mathbf{R}^n
$$

Classical programming (2)

Feasible set:

- $X=\,$ $\{ \mathbf{x} \in \mathbb{R}^n$ $\lfloor n \rfloor$ g $(\mathbf{x}) = \mathbf{b}$ }. Points $\mathbf{x} \in \mathbb{R}^n$ $\lceil \bigcap_{i=1}^m$ $\sum\limits_{i=1}^{m}g_i(\mathbf{x})$
- Problem: find the set of points in X in the highest level set of
objective function objective function

Three possibilities:

- $n > m$. The difference $n-m$ is the *degrees of freedom* of the
problem problem.
- $n=% \begin{cases} 1\,, & \frac{1}{2}\,\mathrm{d}x\,, \end{cases} \qquad\beta _{2}=\beta _{1}\,,$ Equivalently $\max_x a(\frac{c}{d})^2$ that does not d m . Problem is trivial. Consider: $\max_x ax$ 2 , s.t. $bx=c$. $\frac{c}{d})^2$ that does not depend of $x.$
- $n < m$. Either there are $m-n$ redundant restrictions, or restrictions are inconsistent among them, and set of solutionsis empty.

Getting the intuition with $n=1$:

- Let $f : X \to \mathbf{R}$ be twice continuously differentiable on $X \subset \mathbf{R}$.
- Find $x^* \in \mathbf{R}$ solution of $\max_x f(x)$; Let Δx be arbitrarily small.
- First order (necessary) condition
	- Given that $x^* \in \mathbf{R}$ is solution, $f(x^*) \ge f(x^* + \Delta x)$
	- Taylor expansion around $x^* \colon ($ with $\theta \in (0,1))$ $f(x^* + \Delta x) = f(x^*) + \frac{df}{dx}(x^*)\Delta x + \frac{1}{2}\frac{d^2f}{dx^2}(x^* + \theta \Delta x)(\Delta x)^2$
	- Define *fundamental inequality* $(FI) \equiv f(x^* + \Delta x) f(x^*)$: $FI(\Delta x) \equiv \Delta x \left[\frac{df}{dx}(x^*) + \frac{1}{2}\frac{d^2f}{dx^2}(x^* + \theta \Delta x)(\Delta x)\right] \le 0$
	- If $\Delta x > 0$, then $\lim_{\Delta x \to 0} FI(\Delta x) = \frac{df}{dx}(x^*) \leq 0$
	- If $\Delta x < 0$, then $\lim_{\Delta x \to 0} FI(\Delta x) = \frac{df}{dx}(x^*) \ge 0$
	- Hence, FI implies as FOnC to maximize $f(x)$ that $\frac{df}{dx}(x^*)=0.$

Getting the intuition with $n=1$:

Second order (necessary) condition

- Substituting FOC in FI we obtain $\frac{d^2f}{dx^2}(x^* + \theta \Delta x) \leq 0$. \bullet
- As it is verified $\forall \Delta x$, it follows that SOnC is $\frac{d^2f}{dx^2}(x^*) \leq 0.$
- **•** Sufficient conditions for a local maximum: If

$$
\frac{df}{dx}(x^*) = 0, \text{and}
$$

$$
\frac{d^2f}{dx^2}(x^*) < 0,
$$

then, $f(x^*) > f(x^* + \Delta x)$. Proof: use either *mean value theorem* or ^F ^I.

A particular case $m = 0$. Free maximization (3)

Getting the intuition with $n=1$:

- **•** Mean value theorem
	- Let $f:[a,b]\rightarrow \mathbf{R}$ be continuous and differentiable on $(a,b)\cdot a$ $(a, b), a < b.$
	- Then, $\exists c \in (a, b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Getting the intuition with $n=1$:

- **Sufficient conditions Proof**
	- Let $a=x^*$, let $b=x^*+\Delta x$, and let $c = x^* + \theta \Delta x, \ \theta \in (0, 1).$
	- Mean value theorem says: $\frac{d f}{d x}$ $\frac{df}{dx}(x^* + \theta \Delta x) = \frac{f(x^* + \Delta x) - f(x^*)}{(x^* + \Delta x) - x^*} = \frac{f(x^* + \Delta x) - f(x^*)}{\Delta x}$

or equivalently
$$
f(x^* + \Delta x) = f(x^*) + \frac{df}{dx}(x^* + \theta \Delta x) \Delta x
$$

- given that $f'(x^*)=0$ and $f''(x^*)< 0,$ for $\Delta x>0,$ necessarily $\frac{df}{dx} (x^* + \theta \Delta x) < 0.$
- given that $f'(x^*)=0$ and $f''(x^*)< 0,$ for $\Delta x < 0,$ necessarily $\frac{df}{dx} (x^* + \theta \Delta x) > 0.$
- hence, $\frac{df}{dx} (x^* + \theta \Delta x) \Delta x < 0$ and thus $f(x^* + \Delta x) < f(x^*)$.

Geometry of free maximization in IR

Free maximization with $n > 1$

- Problem: $\max_{x_1,...,x_n}f(x_1,\dots,x_n)$
- Theorem: (proof parallel to the case $n=1)$
	- Let $f : X \to \mathbf{R}$ be twice continuously differentiable on $X \subset \mathbf{R}^n$ $X\subset{\mathbf R}^n$.
	- Letx∗ $\mathbf{F}^*\in\mathbf{R}^n$ be a local maximum of $f.$
	- Then, FOnCs are $\frac{\partial f(x)}{\partial x_j}($ \mathbf{x}^*) = 0, $\forall j$.
- SOnC : Hessian negative semidefinite: $(\Delta \mathbf{x}^*$ $^{\ast})^{\prime}\frac{\partial}{\partial}$ 2 $\frac{\partial^2 f}{\partial x^2}(\mathbf{x}^*) (\Delta \mathbf{x}^*$ $^{\ast})\leq0,\;\forall\mathbf{x}% =\mathbf{0},\;\mathbf{0}\in\mathbb{R}^{d},\;\mathbf{0}\in\mathbb{R}^{d},\;\mathbf{0}\in\mathbb{R}^{d},$
- **Sufficient conditions:**

$$
\frac{\partial f(x)}{\partial x_j}(\mathbf{x}^*) = 0, \ \forall j.
$$

$$
(\Delta \mathbf{x}^*)' \frac{\partial^2 f}{\partial x^2}(\mathbf{x}^*)(\Delta \mathbf{x}^*) < 0, \ \forall \mathbf{x}
$$

Free maximization. Illustration with $n = 2$

$$
\bullet \quad \text{Problem: } \max_{x_1, x_2} f(x_1, x_2)
$$

Let(x∗ $^*)^{\prime} =$ (x_1^*) $_1^*, x_2^*$ $_2^\ast)'$ be a local maximum.

• **FOnC:**
$$
\frac{\partial f}{\partial x_1}(\mathbf{x}^*) = 0
$$
, $\frac{\partial f}{\partial x_2}(\mathbf{x}^*) = 0$

SOnC: Hessian negative semidefinite, i.e. \bullet

Geometry of Free maximization with $n = 2$

Two strategies

- Substitute restrictions→ solve ^a free maximization problem
- General method: Lagrange multipliers

Method of substitution. Illustration

- Problem: $\max_{x_1, x_2} f(x_1, x_2)$ s.t. $g(x_1, x_2) = 0$
- Assuming $\frac{\partial g}{\partial x_2}\neq 0,$ we have an implicit function $x_2(x_1).$

Using the implicit function theorem we know, $\frac{\partial x_2}{\partial x_1}$ $\overline{\partial x_1}= -\frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}}$ $\frac{\partial g}{\partial x}$ 2

Problem: $\max_{x_1} f(x_1, x_2(x_1))$ with FOC: $\frac{\partial f}{\partial x_1}+$ $+\frac{\partial f}{\partial x_2}$ ∂x 2 $\frac{\partial x_2}{\partial x_1} = 0$

3 and the solution is:
$$
\frac{\frac{\partial f}{\partial x_1}}{\frac{\partial f}{\partial x_2}} = \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}}, \ g(x_1, x_2) = 0
$$

i.e. set of tangency points between f function and g function.

Classical programming (4)

Method of substitution. Illustration (cont'd)

• Rewrite FOC as (for future use):

$$
\frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2} \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}} = 0
$$

$$
\frac{\partial f}{\partial x_1} + \lambda \frac{\partial g}{\partial x_1} = 0
$$
with $\lambda = -\frac{\frac{\partial f}{\partial x_2}}{\frac{\partial g}{\partial x_2}}$

Geometry of the classical programming

Classical programming. Lagrange method.

Lagrange theorem:

- Let $f,g_i, \; i=1,\ldots m$ be twice continuously differentiable.
- Suppose $\mathbf{x}^* = (x_1^*$ $f(\mathbf{x}^*)$ subject to $g_i(x_1, \dots)$ $x_1^*, \ldots x_n^*$ $_{n}^{\ast})$ is a local interior extreme point of *) subject to $g_i(x_1, \ldots x_n) = b_i, i = 1, \ldots, m$.

Suppose
$$
Jg(\mathbf{x}^*) \neq 0
$$
.

- Then, $\exists \lambda^*=(\lambda_1^*$ the lagrangean function $L(\mathbf{x}, \lambda) = f(\mathbf{x}^*) + \sum_{i=1}^m$ $_1^\ast,\ldots,\lambda_n^\ast$ $_n^{*})$ such that $(\mathbf{x}^*, \lambda^*)$ $^\ast)$ is a critical point of $\sum\limits_{i=1}^m\lambda_i(b_i-g_i({\bf x}^*)).$
- where λ_i gives the (shadow) price associated with constraint $i.$
- Equivalently, $\exists \lambda^*$ such that $\nabla f(\mathbf{x}^*) = \lambda^*$ $^{\ast }\nabla g(\mathbf{x}^{\ast }%)=\sigma (\mathbf{x}^{\ast })^{2}=\sigma (\mathbf$ $\left(\begin{array}{c} \ast \end{array} \right)$ \bullet

Lagrange theorem - Remarks

$$
Jg(\mathbf{x}^*) = \begin{pmatrix} \frac{\partial g_1(\mathbf{x}^*)}{\partial x_1} & \cdots & \frac{\partial g_1(\mathbf{x}^*)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m(\mathbf{x}^*)}{\partial x_1} & \cdots & \frac{\partial g_m(\mathbf{x}^*)}{\partial x_n} \end{pmatrix} \neq 0
$$
 means that the matrix

has rank m or that the m restrictions are linearly independent.

This is known as the constraint qualification.

$$
\bullet\quad\lambda_i^*\lessgtr 0
$$

•
$$
\lambda_i^*
$$
 satisfies $\frac{\partial f(\mathbf{x}^*)}{\partial x_j} = \sum_{i=1}^m \lambda_i^* \frac{\partial g_i(\mathbf{x}^*)}{\partial x_j}, j = 1, ..., n$. i.e.

- gradient vector of objective function lagrange multiplier by Jacobian of restrictions, or== sum of product of
- gradient vector of objective function is ^a linearcombination of gradients of restrictions.

Lagrange method - Interpretation

- Note that the FOC of lagrangrean function is the same as the \bullet FOC of the problem under the substitution method.
- Graphically the gradient of the objective function must becontained in the cone formed by the gradients of therestrictions.
- Otherwise, we could achieve ^a higher value of the objective function without violating the restrictions. Contradiction withthe assumption of \mathbf{x}^* being a local maximum.
- Once we have found candidate solutions \mathbf{x}^* , it is not always easy to assess whether they correspond to ^a minimum, ^a maximum or neither. (FOCs are necessary conditions). Twoparticular cases:
	- If f concave and g_i linear, then \mathbf{x}^* are local maxima.
	- If f convex and g_i linear, then \mathbf{x}^* are local minima.

Geometry of the constraint qualification

An example violating the constraint qualification

$$
n=2, m=1
$$

$$
\bullet \quad \max_{x_1, x_2} c_1 x_1 - c_2 x_2 \text{ s.t. } a_1 x_1 + a_2 x_2 = b, \ c_i, a_i > 0
$$

$$
L(x_1, x_2, \lambda) = c_1 x_1 - c_2 x_2 + \lambda (b - a_1 x_1 - a_2 x_2)
$$

$$
\bullet \quad \frac{\partial L}{\partial x_1} = c_1 - \lambda a_1 = 0
$$

$$
\bullet \quad \frac{\partial L}{\partial x_2} = -c_2 - \lambda a_2 = 0
$$

$$
\bullet \quad \frac{\partial L}{\partial \lambda} = b - a_1 x_1 - a_2 x_2 = 0
$$

from the first two conditions we obtain $\lambda=\frac{c_1}{a_1}$ $\,c\,$ $\frac{c_1}{a_1};\;\lambda=\frac{-}{a}$ \bullet $\frac{c_2}{}$.
, a_{2}

- $\textsf{Contraction}!!\to\textsf{no}\textsf{ solution}.$ \bullet
- Graphical representation: \bullet

An example violating the constraint qualification (2)

An example satisfying the constraint qualification

\n- \n
$$
n = 2, m = 1
$$
\n
\n- \n $\max_{x_1, x_2} c_1 x_1 + c_2 x_2$ s.t. $a_1 x_1 + a_2 x_2 = b$, $c_i, a_i > 0$ \n
\n- \n $L(x_1, x_2, \lambda) = c_1 x_1 + c_2 x_2 + \lambda (b - a_1 x_1 - a_2 x_2)$ \n
\n- \n $\frac{\partial L}{\partial x_1} = c_1 - \lambda a_1 = 0$ \n
\n- \n $\frac{\partial L}{\partial x_2} = c_2 - \lambda a_2 = 0$ \n
\n- \n $\frac{\partial L}{\partial \lambda} = b - a_1 x_1 - a_2 x_2 = 0$ \n
\n- \n from the first two conditions we obtain $\frac{c_1}{a_1} = \lambda = \frac{c_2}{a_2}$ \n
\n- \n Then, $a_2 = \frac{c_2 a_1}{c_1}$ and restriction is $x_2 = \frac{b}{a_2} - \frac{c_1}{c_2} x_1$ \n
\n- \n $Jf = (c_1, c_2)$ \n
\n- \n $Jg = (a_1, a_2) = (a_1, \frac{a_1 c_2}{c_1}) = \frac{a_1}{c_1} (c_1, c_2) = \frac{a_1}{c_1} Jf$ \n
\n- \n Graphical representation:\n
\n

An example satisfying the constraint qualification (2)

Lagrange method

SOnC

Hessian evaluated at (x^*, λ^*) of lagrangian function negative semidefinite:

$$
H = \begin{pmatrix} \frac{\partial^2 L}{\partial x_1^2} & \frac{\partial^2 L}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 L}{\partial x_1 \partial x_n} \\ \frac{\partial^2 L}{\partial x_2 \partial x_1} & \frac{\partial^2 L}{\partial x_2^2} & \cdots & \frac{\partial^2 L}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 L}{\partial x_n^2} x_1 & \frac{\partial^2 L}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 L}{\partial x_n^2} \end{pmatrix}
$$

Necessary and sufficient conditions

$$
\bullet \quad \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x}^*) = \lambda^* \frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}^*)
$$

$$
\bullet \quad \mathbf{b} = \mathbf{g}(\mathbf{x}^*)
$$

All Hessian negative definite.

On lagrange multipliers

Proposition: Lagrange multipliers evaluated at the solution \bullet provide ^a measure of the sensibility of the optimal value of theobjective function $f(\mathbf{x}^*$ $^{\ast})$ to variations in the constants $\bf b$ of each restriction, namely

$$
\lambda^* = \frac{\partial f(\mathbf{x}^*)}{\partial \mathbf{b}}, \text{ or } \lambda_i^* = \frac{\partial f(\mathbf{x}^*)}{\partial b_i}, i = 1, 2, ..., m.
$$

Proof

- FOCs: $m+n$ equations and $2m+n$ variables $(\mathbf{b}, \lambda, \mathbf{x})$.
- Implicit function theorem: solve system of $m+n$ \bullet equations as function of constants $\bf b$, i.e. $\lambda=\lambda(\mathbf{b});\;\mathbf{x}=\mathbf{x}(\mathbf{b}).$
- Rewrite lagrangian function as: $L(\mathbf{b}) = f(\mathbf{x}(\mathbf{b})) + \lambda(\mathbf{b})[\mathbf{b} - \mathbf{g}(\mathbf{x}(\mathbf{b}))]$
- Differentiate $L(\mathbf{b})$ wrt b

$$
\bullet \quad \frac{\partial L}{\partial \mathbf{b}} = \left(\frac{\partial f}{\partial \mathbf{x}} - \lambda \frac{\partial g}{\partial \mathbf{x}}\right) \left(\frac{\partial \mathbf{x}}{\partial \mathbf{b}}\right) + (\mathbf{b} - \mathbf{g}(\mathbf{x}))' \frac{\partial \lambda'}{\partial \mathbf{b}} + \lambda
$$

On lagrange multipliers (2)

- Proof (cont'd)
	- Evaluated at $(\mathbf{x}^*, \lambda^*$ *), first two terms $= 0$ from FOCs.
	- Thus, $\frac{\partial L}{\partial \mathbf{b}}=\lambda$
	- Also, evaluated at $(\mathbf{x}^*, \lambda^*$), $L(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*)$ *).
	- Thus, $\frac{\partial L}{\partial \mathbf{b}}(\mathbf{x}^*, \lambda^*) = \frac{\partial f(\mathbf{x}^*)}{\partial \mathbf{b}}$ $\frac{\partial^{\mathbf{r}}(\mathbf{x}^*)}{\partial \mathbf{b}}$
	- Hence, $\frac{\partial L}{\partial \mathbf{b}}(\mathbf{x}^*, \lambda^*) = \frac{\partial f(\mathbf{x}^*)}{\partial \mathbf{b}}$ $\frac{\partial^{\mathrm{r}}(\mathbf{x}^*)}{\partial \mathbf{b}}=\lambda^*$.
- Economic interpretation: objective function (profits, costs, \bullet revenues, ...) and restrictions (inputs, ...). Then,
	- Lagrange multipliers measure sensibility of say cost, tovariations in ^a quantity (of inputs).
	- **•** Thus, lagrange multipliers represent a price, often referred to as "shadow price" of each input.

Theorem (consider \mathbf{R}^2 $\left(\frac{2}{\pi}\right)$

- Let $f(x_1, x_2)$ and $g(x_1, x_2)$ be continuously differentiable.
- Let x^\ast $^* \equiv (x_1^*$ $_1^*, x_2^*$ $_2^{\ast})$ be an interior point in the domain of $f.$
- Let x^* be a local extreme point for $f(x_1, x_2)$ subject to $g(x_1, x_2) = c.$
- Suppose that $\frac{\partial g}{\partial x_1}(x^*)$ $^{\ast})$ and $\frac{\partial g}{\partial x_{2}}(x^{\ast}% ,t)=\left(\frac{\partial g}{\partial x_{1}}\right) ^{\ast}\left(x^{\ast}\right)$ $^{\ast})$ are not both zero.
- Then, $\exists \lambda \in \mathbf{R}$ such that the lagrangean function

$$
L(x_1, x_2, \lambda) = f(x_1, x_2) - \lambda(g(x_1, x_2) - c)
$$

has a stationary point at x^{\ast} .

Lagrange's Theorem - Proof (2)

Proof

Suppose that
$$
\frac{\partial g}{\partial x_2}(x^*) \neq 0
$$
.

- By the implicit function theorem, the equation $g(x_1, x_2) =c$ \bullet defines x_2 as a differentiable function of $x_1, x_2 = h(x_1)$ in $_2$ as a differentiable function of $x_1, x_2=h(x_1)$ in a $\left(\frac{\partial g}{\partial x_1}\right)/\left(\frac{\partial g}{\partial x_2}\right).$ neighborhood of x^* . Also, $h'(x_1)=-(\frac{\partial g}{\partial x_1})/(\frac{\partial g}{\partial x_2})$ $(x_1) =$ −
- Replacing $g(x_1, x_2) = c$ by $x_2=h(x_1)$, the problem

$$
\max_{x_1, x_2} f(x_1, x_2) \text{ s.t. } g(x_1, x_2) = c \tag{1}
$$

becomes

$$
\max_{x_1} f(x_1, h(x_1))
$$

Lagrange's Theorem - Proof (3)

Proof (cont'd)

A neccessary condition for a maximum of this free-maximization problem is

$$
\frac{df(x_1, h(x_1))}{x_1} = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2}h'(x_1) = 0
$$

That is

$$
\frac{\partial f}{\partial x_1}(x^*) - \frac{\partial f}{\partial x_2}(x^*) \frac{\frac{\partial g}{\partial x_1}(x^*)}{\frac{\partial g}{\partial x_2}(x^*)} = 0 \tag{2}
$$

Then, the expression [\(2\)](#page-27-0) is precisely the necessary condition for x^* to be a local (interior) extreme point of the problem [\(1\)](#page-26-0).

FOC of problem [\(1\)](#page-26-0)

$$
\frac{\partial f}{\partial x_1} - \lambda \frac{\partial g}{\partial x_1} = 0
$$

$$
\frac{\partial f}{\partial x_2} - \lambda \frac{\partial g}{\partial x_2} = 0
$$

O That is,

$$
\frac{\frac{\partial f}{\partial x_1}}{\frac{\partial f}{\partial x_2}} = \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}}
$$

 \bullet that we can rewrite as,

$$
\frac{\partial f}{\partial x_1} - \frac{\partial f}{\partial x_2} \frac{\frac{\partial g}{\partial x_1}}{\frac{\partial g}{\partial x_2}} = 0
$$

that is precisely expression [\(2\)](#page-27-0).

Proof (cont'd)

- Accordingly, we conclude that when $\frac{\partial g}{\partial x_2}(x^*)$ Lagrangean function $L(x_1, x_2, \lambda)$ has a stationary point at x^* $^{*})\neq 0$, the .
- It remains to prove that x^{\ast} is also a stationary point of $L(x_1, x_2, \lambda)$ when $\frac{\partial g}{\partial x_2}(x^*) = 0.$ In this case, it follows that $\frac{\partial g}{\partial x_1}(x^*) \neq 0$ and a pa the theorem. $\phi^*(t)\neq 0$ and a parallel argument completes the proof of

Lagrange's Theorem - Alternative proof

- Let \mathbf{x}^* be a local extreme point for $f(x_1, x_2)$ s.t. $g(x_1, x_2) = c$.
- Represent $g(x_1, x_2) = c$ by the vector valued function $\mathbf{r}(t) = x_1(t)\mathbf{i} + x_2(t)\mathbf{j}$ with $\mathbf{r}(t) \neq \mathbf{0}$
- Define $h(t) = f(x_1(t), x_2(t))$
- Because $f(\mathbf{x}^*$ $^\ast)$ is an extreme value of $f,$ \bullet $h(t^*) = f(x_1(t^*))$ $(x,y,z_2(t^*))=f(\mathbf{x}^*)$ $^\ast)$ is an extreme value of $h.$
- It means that h^\prime $(t^*) = 0$

MOVE⁹

But
$$
h'(t^*) = \frac{\partial f}{\partial x_1}(\mathbf{x}^*)x_1'(\mathbf{x_1}^*) + \frac{\partial f}{\partial x_2}(\mathbf{x}^*)x_2'(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) \cdot \mathbf{r}'(\mathbf{t}^*)
$$

- $^\ast)$ is orthogonal to \mathbf{r}' Hence, $\nabla f(\mathbf{x}^*$ $(\mathbf{t}^*$ $^{\ast})$ \bullet
- Differentiating g we obtain $\frac{\partial g}{\partial x_1}(\mathbf{x}^*)$ or $\nabla g({\mathbf{x}}^*)\cdot{\mathbf{r}}'({\mathbf{t}}^*)=0$ and $\nabla g({\mathbf{x}}^*)$ is orthogonal to ${\mathbf{r}}'({\mathbf{t}}^*)$ $(x^*)x_1'(\mathbf{x}^*)+\frac{\partial g}{\partial x_2}(\mathbf{x}^*)$ * $x'_2(\mathbf{x}^*)=0$ $^{\ast})\cdot{\bf r}'$ $(\mathbf{t}^*) = 0$ and $\nabla g(\mathbf{x}^*)$ $^\ast)$ is orthogonal to \mathbf{r}' $({\bf t}^{*}$ $\left(\begin{array}{c} \ast \\ \ast \end{array} \right)$
- Thus, $\nabla f(\mathbf{x}^*)$ and $\nabla g(\mathbf{x}^*)$ $\nabla f(\mathbf{x}^*) = \lambda^* \nabla g(\mathbf{x}^*)$ $^*)$ and $\nabla g(\mathbf{x}^*)$ $^{\ast})$ are parallel. That is, $\exists \lambda^{\ast}$ such that $^{\ast }\nabla g(\mathbf{x}^{\ast }%)=\sigma (\mathbf{x}^{\ast })^{2}=\sigma (\mathbf$ $^*)$

Motivation

- Let $F(x,y;\theta)$ be a function with (x,y) as endogenous variables while θ represent some exogenous variable.
- F might be the profit function of a firm producing two outputs \bullet (x,y) , and θ be the wage rate paid to its workers (determined by labor market conditions).
- Suppose $(x^{\ast},y^{\ast}% ,y^{\ast},z)$ volumes and $F(x^*,y^*;\theta)$ is the maximum level of prc $^\ast)$ are the profit-maximizing production $^{*};\theta)$ is the maximum level of profits. .
,
- \bullet It should be obviuos that x^\ast $^* = x^*$ $^{\ast }(\theta),y^{\ast }$ $^*=y^*$ $^*(\theta), F(x^*, y^*)$;
, $;\theta)=F^*$ $^{\ast}(\theta)$
- How variation of θ affect F^* ? Formally, compute $dF^*/d\theta.$
- Apply the envelope theorem

The envelope theorem

Consider $F(x,y;\theta)$, and suppose x^* $^* = x^*$ $^{\ast }(\theta),y^{\ast }$ $^*=y^*$ $^{*}(\theta)$ exist.

Then,

$$
\frac{dF^*}{d\theta} = \frac{\partial F^*}{\partial \theta}
$$

Proof

1.1 Compute
$$
dF^*/d\theta
$$
:

$$
\frac{dF^*}{d\theta} = \frac{\partial F^*}{\partial x}\frac{dx^*}{d\theta} + \frac{\partial F^*}{\partial y}\frac{dy^*}{d\theta} + \frac{\partial F^*}{\partial \theta}\frac{d\theta}{d\theta} = \frac{\partial F^*}{\partial \theta}
$$

where we have used the fact that the FOCs evaluated at theoptimal values are zero, i.e.

$$
\frac{\partial F}{\partial x}(x^*, y^*; \theta) = 0 = \frac{\partial F}{\partial y}(x^*, y^*; \theta)
$$

Remarks

- The envelope theorem only requires (x^*, y^*) $^\ast)$ be critical points \bullet of $F,$ not optimal.
- An immediate application of the envelope theorem allows us to assess the impact of ^a variation of the lagrange multiplieron the optimal value of the objective function.

Interpretating the Lagrange multiplier

- **C** Let the Lagrangian function be $F(x, y, \lambda; \theta) = f(x, y) - \lambda(g(x))$ $-\lambda(g(x,y))$ $-\,\theta)$
- Recall that at the optimum, $F^{\ast}=$ $^{\ast}=f^{\ast}$

• Therefore,
$$
\frac{dF^*}{d\theta} = \frac{\partial F^*}{\partial \theta} = \frac{df^*}{d\theta}
$$

But we can write $F(x,y,\lambda; \theta) = f(x,y)$ dF^* ∂F^* \longrightarrow $-\lambda g(x,y) + \lambda \theta$ so that ∗ $\frac{dF^*}{d\theta}=\frac{\partial F}{\partial \theta}$ ∗ $\frac{\partial F}{\partial \theta}=\lambda^*$ $=$ $=\frac{df^*}{d\theta}$ $\overline{\overline{d}\theta}$

