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Classical programming

Problem:

maxx f(x) s.t. g(x) = b

where:

x = (x1, . . . , xn) ∈ IRn

g(x) =







g1(x)
...

gm(x)






; b =







b1
...

bm







gi(x) = bi, i = 1, . . . ,m

gi(x) continuous, continuously differentiable

bi ∈ IR, x ∈ IRn
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Classical programming (2)

Feasible set:

X = {x ∈ IRn|g(x) = b}. Points x ∈ IRn ∩m
i=1 gi(x)

Problem: find the set of points in X in the highest level set of
objective function

Three possibilities:

n > m. The difference n−m is the degrees of freedom of the
problem.

n = m. Problem is trivial. Consider: maxx ax
2, s.t. bx = c.

Equivalently maxx a(
c
d
)2 that does not depend of x.

n < m. Either there are m− n redundant restrictions, or
restrictions are inconsistent among them, and set of solutions
is empty.
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A particular case m = 0. Free maximization

Getting the intuition with n = 1:

Let f : X → IR be twice continuously differentiable on X ⊂ IR.

Find x∗ ∈ IR solution of maxx f(x); Let ∆x be arbitrarily small.

First order (necessary) condition

Given that x∗ ∈ IR is solution, f(x∗) ≥ f(x∗ +∆x)

Taylor expansion around x∗: (with θ ∈ (0, 1))

f(x∗ +∆x) = f(x∗) + df
dx
(x∗)∆x+ 1

2
d2f
dx2 (x

∗ + θ∆x)(∆x)2

Define fundamental inequality(FI) ≡ f(x∗ +∆x)− f(x∗):

FI(∆x) ≡ ∆x[ df
dx
(x∗) + 1

2
d2f
dx2 (x∗ + θ∆x)(∆x)] ≤ 0

If ∆x > 0, then lim∆x→0 FI(∆x) = df
dx
(x∗) ≤ 0

If ∆x < 0, then lim∆x→0 FI(∆x) = df
dx
(x∗) ≥ 0

Hence, FI implies as FOnC to maximize f(x) that df
dx
(x∗) = 0.
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A particular case m = 0. Free maximization (2)

Getting the intuition with n = 1:

Second order (necessary) condition

Substituting FOC in FI we obtain d2f
dx2 (x∗ + θ∆x) ≤ 0.

As it is verified ∀∆x, it follows that SOnC is d2f
dx2 (x∗) ≤ 0.

Sufficient conditions for a local maximum: If

df

dx
(x∗) = 0,and

d2f

dx2
(x∗) < 0,

then, f(x∗) > f(x∗ +∆x).
Proof: use either mean value theorem or FI.
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A particular case m = 0. Free maximization (3)

Getting the intuition with n = 1:

Mean value theorem

Let f : [a, b] → IR be continuous and differentiable on

(a, b), a < b.

Then, ∃c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a

.

f(x)

xa bc

b− a

f(b)− f(a)
α

tg(α) = f ′(c)
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A particular case m = 0. Free maximization (3)

Getting the intuition with n = 1:

Sufficient conditions - Proof

Let a = x∗, let b = x∗ +∆x, and let
c = x∗ + θ∆x, θ ∈ (0, 1).

Mean value theorem says:
df
dx
(x∗ + θ∆x) = f(x∗+∆x)−f(x∗)

(x∗+∆x)−x∗
= f(x∗+∆x)−f(x∗)

∆x

or equivalently f(x∗ +∆x) = f(x∗) + df
dx
(x∗ + θ∆x)∆x

given that f ′(x∗) = 0 and f ′′(x∗) < 0, for ∆x > 0,

necessarily df
dx
(x∗ + θ∆x) < 0.

given that f ′(x∗) = 0 and f ′′(x∗) < 0, for ∆x < 0,

necessarily df
dx
(x∗ + θ∆x) > 0.

hence, df
dx
(x∗ + θ∆x)∆x < 0 and thus f(x∗ +∆x) < f(x∗).
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Geometry of free maximization in IR

f(x)

x

x

f ′′(x)

x

f ′(x)
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Free maximization with n > 1

Problem: maxx1,...,xn
f(x1, . . . , xn)

Theorem: (proof parallel to the case n = 1)

Let f : X → IR be twice continuously differentiable on
X ⊂ IRn.

Let x∗ ∈ IRn be a local maximum of f .

Then, FOnCs are
∂f(x)
∂xj

(x∗) = 0, ∀j.

SOnC : Hessian negative semidefinite:

(∆x∗)′ ∂
2f

∂x2 (x∗)(∆x∗) ≤ 0, ∀x

Sufficient conditions:

∂f(x)

∂xj
(x∗) = 0, ∀j.

(∆x∗)′
∂2f

∂x2
(x∗)(∆x∗) < 0, ∀x
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Free maximization. Illustration with n = 2

Problem: maxx1,x2
f(x1, x2)

Let (x∗)′ = (x∗1, x
∗

2)
′ be a local maximum.

FOnC: ∂f
∂x1

(x∗) = 0, ∂f
∂x2

(x∗) = 0

SOnC: Hessian negative semidefinite, i.e.

∂2f

∂x21
(x∗) ≤ 0,

∣

∣

∣

∣

∣

∂2f
∂x2

1

(x∗) ∂2f
∂x1∂x2

(x∗)
∂2f

∂x2∂x1

(x∗) ∂2f
∂x2

2

(x∗)

∣

∣

∣

∣

∣

≥ 0
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Geometry of Free maximization with n = 2

f(x1, x2) f(x1, x2) f(x1, x2)

x1 x1 x1

x2 x2
x2

x2

x1

x2

x1

x2

x1

x
∗

x
∗

x
∗

x
∗

x
∗
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Classical programming (3)

Two strategies

Substitute restrictions → solve a free maximization problem

General method: Lagrange multipliers

Method of substitution. Illustration

Problem: maxx1,x2
f(x1, x2) s.t. g(x1, x2) = 0

Assuming ∂g
∂x2

6= 0, we have an implicit function x2(x1).

Using the implicit function theorem we know, ∂x2

∂x1

= −
∂g

∂x1

∂g

∂x2

Problem: maxx1
f(x1, x2(x1)) with FOC: ∂f

∂x1

+ ∂f
∂x2

∂x2

∂x1

= 0

and the solution is:
∂f

∂x1

∂f

∂x2

=
∂g

∂x1

∂g

∂x2

, g(x1, x2) = 0

i.e. set of tangency points between f function and g function.
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Classical programming (4)

Method of substitution. Illustration (cont’d)

Rewrite FOC as (for future use):

∂f

∂x1
−

∂f

∂x2

∂g
∂x1

∂g
∂x2

= 0

∂f

∂x1
+ λ

∂g

∂x1
= 0

with λ = −

∂f
∂x2

∂g
∂x2
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Geometry of the classical programming

f

x1

x2

free max

restricted max
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Classical programming. Lagrange method.

Lagrange theorem:

Let f, gi, i = 1, . . . m be twice continuously differentiable.

Suppose x∗ = (x∗1, . . . x
∗

n) is a local interior extreme point of

f(x∗) subject to gi(x1, . . . xn) = bi, i = 1, . . . ,m.

Suppose Jg(x∗) 6= 0.

Then, ∃λ∗ = (λ∗

1, . . . , λ
∗

n) such that (x∗, λ∗) is a critical point of

the lagrangean function L(x, λ) = f(x∗)+
∑m

i=1 λi(bi− gi(x
∗)).

where λi gives the (shadow) price associated with constraint i.

Equivalently, ∃λ∗ such that ∇f(x∗) = λ∗∇g(x∗)

OPT – p.15/34



Classical programming. Lagrange method (2)

Lagrange theorem - Remarks

Jg(x∗) =









∂g1(x∗)
∂x1

. . . ∂g1(x∗)
∂xn

...
. . .

...
∂gm(x∗)

∂x1

. . . ∂gm(x∗)
∂xn









6= 0 means that the matrix

has rank m or that the m restrictions are linearly independent.

This is known as the constraint qualification.

λ∗

i ≶ 0

λ∗

i satisfies
∂f(x∗)
∂xj

=
∑m

i=1 λ
∗

i
∂gi(x∗)
∂xj

, j = 1, . . . , n. i.e.

gradient vector of objective function = sum of product of
lagrange multiplier by Jacobian of restrictions, or

gradient vector of objective function is a linear
combination of gradients of restrictions.
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Lagrange method - Interpretation

Note that the FOC of lagrangrean function is the same as the
FOC of the problem under the substitution method.

Graphically the gradient of the objective function must be
contained in the cone formed by the gradients of the
restrictions.

Otherwise, we could achieve a higher value of the objective
function without violating the restrictions. Contradiction with
the assumption of x∗ being a local maximum.

Once we have found candidate solutions x∗, it is not always
easy to assess whether they correspond to a minimum, a
maximum or neither. (FOCs are necessary conditions). Two
particular cases:

If f concave and gi linear, then x∗ are local maxima.

If f convex and gi linear, then x∗ are local minima.
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Geometry of the constraint qualification

g1(x1, x2) = b1

g2(x1, x2) = b2

Dg2

Dg1

Df

x1

x2

f(x1, x2) = k

g1(x1, x2) = b1

Dg1

Df

x1

x2

f(x1, x2) = k
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An example violating the constraint qualification

n = 2, m = 1

maxx1,x2
c1x1 − c2x2 s.t. a1x1 + a2x2 = b, ci, ai > 0

L(x1, x2, λ) = c1x1 − c2x2 + λ(b− a1x1 − a2x2)

∂L
∂x1

= c1 − λa1 = 0

∂L
∂x2

= −c2 − λa2 = 0

∂L
∂λ

= b− a1x1 − a2x2 = 0

from the first two conditions we obtain λ = c1
a1

; λ = −c2
a2

Contradiction!! → no solution.

Graphical representation:
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An example violating the constraint qualification (2)

x1

x2

b/a2

b/a1

a1x1 + a2x2 = b

Df = (c1,−c2)

Dg = (a1, a2)

∆f

OPT – p.20/34



An example satisfying the constraint qualification

n = 2, m = 1

maxx1,x2
c1x1 + c2x2 s.t. a1x1 + a2x2 = b, ci, ai > 0

L(x1, x2, λ) = c1x1 + c2x2 + λ(b− a1x1 − a2x2)

∂L
∂x1

= c1 − λa1 = 0

∂L
∂x2

= c2 − λa2 = 0

∂L
∂λ

= b− a1x1 − a2x2 = 0

from the first two conditions we obtain c1
a1

= λ = c2
a2

Then, a2 =
c2a1

c1
and restriction is x2 =

b
a2

− c1
c2
x1

Jf = (c1, c2).

Jg = (a1, a2) = (a1,
a1c2
c1

) = a1

c1
(c1, c2) =

a1

c1
Jf .

Graphical representation:
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An example satisfying the constraint qualification (2)

x1

x2

b/a2

b/a1

a1x1 + a2x2 = b

Dg = (a1, a2)

∆f

Df = (c1, c2)
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Lagrange method

SOnC

Hessian evaluated at (x∗, λ∗) of lagrangian function negative

semidefinite:

H =













∂2L
∂x2

1

∂2L
∂x1∂x2

. . . ∂2L
∂x1∂xn

∂2L
∂x2∂x1

∂2L
∂x2

2

. . . ∂2L
∂x2∂xn

...
...

. . .
...

∂2L
∂x2

n

x1
∂2L

∂xn∂x2

. . . ∂2L
∂x2

n













Necessary and sufficient conditions

∂f
∂x

(x∗) = λ∗ ∂g
∂x

(x∗)

b = g(x∗)

Hessian negative definite.
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On lagrange multipliers

Proposition: Lagrange multipliers evaluated at the solution
provide a measure of the sensibility of the optimal value of the
objective function f(x∗) to variations in the constants b of
each restriction, namely

λ∗ = ∂f(x∗)
∂b

, or λ∗

i =
∂f(x∗)
∂bi

, i = 1, 2, . . . ,m.

Proof

FOCs: m+ n equations and 2m+ n variables (b, λ,x).

Implicit function theorem: solve system of m+ n
equations as function of constants b, i.e.
λ = λ(b); x = x(b).

Rewrite lagrangian function as:
L(b) = f(x(b)) + λ(b)[b− g(x(b))]

Differentiate L(b) wrt b

∂L
∂b

=
(

∂f
∂x

− λ ∂g
∂x

)(

∂x
∂b

)

+ (b− g(x))′ ∂λ
′

∂b
+ λ
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On lagrange multipliers (2)

Proof (cont’d)

Evaluated at (x∗, λ∗), first two terms = 0 from FOCs.

Thus, ∂L
∂b

= λ

Also, evaluated at (x∗, λ∗), L(x∗, λ∗) = f(x∗).

Thus, ∂L
∂b

(x∗, λ∗) = ∂f(x∗)
∂b

Hence, ∂L
∂b

(x∗, λ∗) = ∂f(x∗)
∂b

= λ∗.

Economic interpretation: objective function (profits, costs,
revenues, ...) and restrictions (inputs, ...). Then,

Lagrange multipliers measure sensibility of say cost, to
variations in a quantity (of inputs).

Thus, lagrange multipliers represent a price, often
referred to as “shadow price" of each input.
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Lagrange’s Theorem - Proof

Theorem (consider IR2)

Let f(x1, x2) and g(x1, x2) be continuously differentiable.

Let x∗ ≡ (x∗1, x
∗

2) be an interior point in the domain of f .

Let x∗ be a local extreme point for f(x1, x2) subject to

g(x1, x2) = c.

Suppose that ∂g
∂x1

(x∗) and ∂g
∂x2

(x∗) are not both zero.

Then, ∃λ ∈ IR such that the lagrangean function

L(x1, x2, λ) = f(x1, x2)− λ(g(x1, x2)− c)

has a stationary point at x∗.

OPT – p.26/34



Lagrange’s Theorem - Proof (2)

Proof

Suppose that ∂g
∂x2

(x∗) 6= 0.

By the implicit function theorem, the equation g(x1, x2) = c
defines x2 as a differentiable function of x1, x2 = h(x1) in a

neighborhood of x∗. Also, h′(x1) = −( ∂g
∂x1

)/( ∂g
∂x2

).

Replacing g(x1, x2) = c by x2 = h(x1), the problem

max
x1,x2

f(x1, x2) s.t. g(x1, x2) = c (1)

becomes

max
x1

f(x1, h(x1))
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Lagrange’s Theorem - Proof (3)

Proof (cont’d)

A neccessary condition for a maximum of this
free-maximization problem is

df(x1, h(x1))

x1
=

∂f

∂x1
+

∂f

∂x2
h′(x1) = 0

That is

∂f

∂x1
(x∗)−

∂f

∂x2
(x∗)

∂g
∂x1

(x∗)
∂g
∂x2

(x∗)
= 0 (2)

Then, the expression (2) is precisely the necessary condition
for x∗ to be a local (interior) extreme point of the problem (1).
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FOC of problem (1)

∂f
∂x1

− λ ∂g
∂x1

= 0

∂f
∂x2

− λ ∂g
∂x2

= 0

That is,
∂f
∂x1

∂f
∂x2

=

∂g
∂x1

∂g
∂x2

that we can rewrite as,

∂f

∂x1
−

∂f

∂x2

∂g
∂x1

∂g
∂x2

= 0

that is precisely expression (2).
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Lagrange’s Theorem - Proof (4)

Proof (cont’d)

Accordingly, we conclude that when ∂g
∂x2

(x∗) 6= 0, the

Lagrangean function L(x1, x2, λ) has a stationary point at x∗.

It remains to prove that x∗ is also a stationary point of

L(x1, x2, λ) when ∂g
∂x2

(x∗) = 0. In this case, it follows that
∂g
∂x1

(x∗) 6= 0 and a parallel argument completes the proof of

the theorem.

OPT – p.30/34



Lagrange’s Theorem - Alternative proof

Let x∗ be a local extreme point for f(x1, x2) s.t. g(x1, x2) = c.

Represent g(x1, x2) = c by the vector valued function

r(t) = x1(t)i+ x2(t)j with r(t) 6= 0

Define h(t) = f(x1(t), x2(t))

Because f(x∗) is an extreme value of f ,

h(t∗) = f(x1(t
∗), x2(t

∗)) = f(x∗) is an extreme value of h.

It means that h′(t∗) = 0

But h′(t∗) = ∂f
∂x1

(x∗)x′1(x1
∗) + ∂f

∂x2

(x∗)x′2(x
∗) = ∇f(x∗) · r′(t∗)

Hence, ∇f(x∗) is orthogonal to r′(t∗)

Differentiating g we obtain ∂g
∂x1

(x∗)x′1(x
∗) + ∂g

∂x2

(x∗)x′2(x
∗) = 0

or ∇g(x∗) · r′(t∗) = 0 and ∇g(x∗) is orthogonal to r′(t∗)

Thus, ∇f(x∗) and ∇g(x∗) are parallel. That is, ∃λ∗ such that

∇f(x∗) = λ∗∇g(x∗)
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The Envelope Theorem

Motivation

Let F (x, y; θ) be a function with (x, y) as endogenous
variables while θ represent some exogenous variable.

F might be the profit function of a firm producing two outputs
(x, y), and θ be the wage rate paid to its workers (determined
by labor market conditions).

Suppose (x∗, y∗) are the profit-maximizing production

volumes and F (x∗, y∗; θ) is the maximum level of profits.

It should be obviuos that
x∗ = x∗(θ), y∗ = y∗(θ), F (x∗, y∗; θ) = F ∗(θ)

How variation of θ affect F ∗? Formally, compute dF ∗/dθ.

Apply the envelope theorem
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The Envelope Theorem (2)

The envelope theorem

Consider F (x, y; θ), and suppose x∗ = x∗(θ), y∗ = y∗(θ) exist.

Then,
dF ∗

dθ
=

∂F ∗

∂θ

Proof

Compute dF ∗/dθ:

dF ∗

dθ
=

∂F ∗

∂x

dx∗

dθ
+

∂F ∗

∂y

dy∗

dθ
+

∂F ∗

∂θ

dθ

dθ
=

∂F ∗

∂θ

where we have used the fact that the FOCs evaluated at the
optimal values are zero, i.e.

∂F

∂x
(x∗, y∗; θ) = 0 =

∂F

∂y
(x∗, y∗; θ)

OPT – p.33/34



The Envelope Theorem (3)

Remarks

The envelope theorem only requires (x∗, y∗) be critical points

of F , not optimal.

An immediate application of the envelope theorem allows us
to assess the impact of a variation of the lagrange multiplier
on the optimal value of the objective function.

Interpretating the Lagrange multiplier

Let the Lagrangian function be
F (x, y, λ; θ) = f(x, y)− λ(g(x, y)− θ)

Recall that at the optimum, F ∗ = f∗

Therefore, dF ∗

dθ
= ∂F ∗

∂θ
= df∗

dθ

But we can write F (x, y, λ; θ) = f(x, y)− λg(x, y) + λθ so that
dF ∗

dθ
= ∂F ∗

∂θ
= λ∗ = df∗

dθ
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