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Classical programming

Problem:

® maxy f(x)S.t.g(x)=Db
where:

® x=(x1,...,2,) € R"

91(x) by
® gx)=|  |; b=]:
gm (x) bim
® g(x)=0b,i=1,...,m
® g;(x) continuous, continuously differentiable
® hcecR, xR
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Classical programming (2)

Feasible set:
® X ={x e R"|g(x)=Db}. Points x € R" N, gi(x)
® Problem: find the set of points in X in the highest level set of
objective function
Three possibilities:

® n > m. The difference n — m is the degrees of freedom of the
problem.

® 1 = m. Problem is trivial. Consider: max, ax?, s.t. bz = c.
Equivalently max, a()? that does not depend of z.

® n < m. Either there are m — n redundant restrictions, or
restrictions are inconsistent among them, and set of solutions
IS empty.
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A particular case m = 0. Free maximization

Getting the intuition with n = 1:
® Let f: X — R be twice continuously differentiable on X C R.
® Find z* € R solution of max, f(x); Let Az be arbitrarily small.

® First order (necessary) condition
o Given that z* € R is solution, f(z*) > f(z* + Ax)
» Taylor expansion around z*: (with 6 € (0,1))

f(z* + Az) = f(a* )+ ( Az + 2d L(z* + 0Az)(Ax)?
o Define fundamental inequality (F'I) = f(z* + Axz) — f(z™*):
FI(Az) = Az (2*) + L 2L (2% + 0Az) (Az)] <0
o If Ax > 0,thenlima, .o FI(Ax) = df( *) <0
o If Ax <0, thenlima, o FI(Ax) = f( *) >0

® Hence, FI implies as FOnC to maximize f(z) that L (+*) = 0.
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A particular case m = 0. Free maximization (2)

Getting the intuition with n = 1:
®» Second order (necessary) condition
» Substituting FOC in F'I we obtain L (z* + §Az) < 0.

o As itis verified YAz, it follows that SOnC is ;%{(a:*) < 0.

» Sufficient conditions for a local maximum: If

df

d:c( ") =0,and
f
@(ﬂf ) <0,

then, f(z*) > f(z* + Ax).
Proof: use either mean value theorem or F'I.
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A particular case m = 0. Free maximization (3)

Getting the intuition with n = 1:

» Mean value theorem

o Let f:[a,b] — R be continuous and differentiable on
(a,b), a <b.

o Then, Jc € (a,b) such that f'(c) = f(bl)):g(“).

fx)4
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A particular case m = 0. Free maximization (3)

Getting the intuition with n = 1:

» Sufficient conditions - Proof

nnnnnnnnnnnnnnn

nnnnnn

o

Leta = 2™, let b = 2™ + Ax, and let
c=x"4+0Ax, 6 € (0,1).
Mean value theorem says:

x*+Ax T r*+Ax T
df(x +0Az) = f((x++Ax))f( ) S +Aa): f(z)

or equivalently f(z* + Az) = f(z*) + L (2* + Az)Ax
given that f/(z*) = 0 and f"(z*) < 0, for Az > 0,
necessarily L (z* 4+ 0Az) < 0.

given that f/(z*) = 0 and f"(z*) < 0, for Az < 0,
necessarily L (z* 4+ 0Az) > 0.

hence, 4 (2* + 0Ax)Az < 0 and thus f(z* + Az) < f(z
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Geometry of free maximization in R
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Free maximization with n» > 1

® Problem: max,, .. f(x1,...,2n)

® Theorem: (proof parallel to the case n = 1)
o Let f: X — R be twice continuously differentiable on
X c R".
o Letx* € R" be a local maximum of f.

o Then, FOnCs are %f—g@(x*) =0, Vj.

® S5SOnC : Hessian negative semidefinite:
(Ax") G (x")(Ax") <0, ¥x

®» Sufficient conditions:

Of () v _ vy
o, (x*) =0, Vj.
82
(Ax )’a—xé(x*)(AX*) < 0, Vx
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Free maximization. lllustration with n = 2

® o o o

Problem: maXg, x, f(:l?l, .CUQ)

Let (x*)" = (2%, x%) be a local maximum.

FONC: 5L (x*) =0, SL(x*) =0

) 8%2

SONC: Hessian negative semidefinite, i.e.

9

—=(x™) <0,
O f (o 02 f *
gg;g (x*) 8%128x2 (x*) >0
33:28];1 (x7) a_a:]gc (x*) |~
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Geometry of Free maximization with n =2

f(z1,22) f(x1,22) f(x1,22)
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> > >
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Classical programming (3)

Two strategies
® Substitute restrictions — solve a free maximization problem
® General method: Lagrange multipliers

Method of substitution. lllustration
® Problem: maxg, », f(x1,22) S.t. g(x1,22) =0

® Assuming SZ # 0, we have an implicit function x(z1).

® Using the implicit function theorem we know, §% = — 53

® Problem: max,, f(z1,z2(z1)) with FOC: 5L + 2L8r2 — g

i ra
® and the solution is: 92+ = 221 g(x1,29) =0

Oxo Oxo

® i.e. set of tangency points between f function and g function.

M/ VE? UHB LS
mmmmmmmmmmmmmmmmmmmmmmm Z OPT - p.12/34



Classical programming (4)

Method of substitution. lllustration (cont’d)
® Rewrite FOC as (for future use):

of _Af #r _,
8331 (95132 8879 N
of dg
— 4+ A—=0
(9561 * 8331

of
with A = — %

0xo
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Geometry of the classical programming

fA

free max

restricted max

/ » L1

X2
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Classical programming. Lagrange method.

Lagrange theorem:
® letf, g, i =1,...m be twice continuously differentiable.

® Suppose x* = (x7,...z)) is alocal extreme point of
f(x*) subject to g;(x1,...x,) =b;, i =1,...,m.

® Suppose Jg(x*) # 0.

® Then, I\* = (A],..., \}) such that (x*, \*) is a critical point of
the lagrangean function L(x, \) = f(x*)+ > "1 Xi(bi — gi(x")).

® where )\; gives the (shadow) price associated with constraint .
® Equivalently, 9\* such that V f(x*) = \*Vg(x*)
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Classical programming. Lagrange method (2)

Lagrange theorem - Remarks

0g1 (x*) dg:1 (x*)
833‘1 T 8xn
® Jg(x*) = : #+ (0 means that the matrix
Ogm (x*) agm(x ))
833‘1 T 8xn

has rank m or that the m restrictions are linearly independent.
® This is known as the constraint qualification.
® <0

® )\ satisfies a](;(;*) APy (x L j=1,... nie.

1=1""

# Qradient vector of objectlve functlon = sum of product of
lagrange multiplier by Jacobian of restrictions, or

# gradient vector of objective function is a linear
combination of gradients of restrictions.
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Lagrange method - Interpretation

9

9

Note that the FOC of lagrangrean function is the same as the
FOC of the problem under the substitution method.

Graphically the gradient of the objective function must be
contained in the cone formed by the gradients of the
restrictions.

Otherwise, we could achieve a higher value of the objective
function without violating the restrictions. Contradiction with
the assumption of x* being a local maximum.

Once we have found candidate solutions x*, it is not always
easy to assess whether they correspond to a minimum, a
maximum or neither. (FOCs are necessary conditions). Two
particular cases:

» If f concave and g; linear, then x* are local maxima.
» |If f convex and g; linear, then x* are local minima.
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Geometry of the constraint qualification

T2 A

gl(xh $2) = bl

Cy
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An example violating the constraint qualification

from the first two conditions we obtain A = &: \ = ==

ay’ as

Contradiction!! — no solution.

® n=2 m=1

® maxy, g, 121 — c2w2 St a1z +asre =0, ¢,a; >0
® [(x1,x2,\) =c1x1 — cowa + AN(b— a1z — asxs)

¥ g—le —=c1 —Aa; =0

¥ g—é — —c9 — Aag =0

< g—]i:b—alxl—azxzz()

9o

9

9o

Graphical representation:
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An example violating the constraint qualification (2)

1

\ ‘&
b/as

Df =/, —Cg)

A: (a1,az)

ai1x1 + asreg = b

///// b/al\\\\ x1

/
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An example satisfying the constraint qualification

©® o o o o o o o 0 0

°

n=2 m=1

maXg, z, C121 + c2x2 S.t. a1z + asxa = b, ¢;,a; >0
L(lel, T9, )\) = C1T1 + Coxo + )\(b — 11 — CLQCEQ)

g—:fl — C1 — )\al =0

g—é — C2 — )\CLQ =0

g—g\’ :b—alﬂjl—ag.ﬂ?g:o

from the first two conditions we obtain &£ =\ =<
Then, as = 2% and restriction is 1o = £ — <ay
C1

Jf: (01702)-
Jg — (al,GQ) — (a’17 aé—lcQ) — ch_ll(clacQ) — CCL_11Jf

Graphical representation:

uuuuuuuuuuuuuuu
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An example satisfying the constraint qualification (2)

1

b/ag

—
b/al\ A\ X1
a1xr1 + asre = b
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Lagrange method

SONnC
#® Hessian evaluated at (x*, A*) of lagrangian function negative
semidefinite:
2L 8L 5L
Ox? Or,0xs " 8:1318:%\
5L 2L 5L
o I— Ox20x, 83:% T 8x2.833n
\ v 0L 82L )
83:2 0x,0xy " °° Ox?

n

Necessary and sufficient conditions
®» ZL(x*) = \g(x")
® b=g(x")
® Hessian negative definite.
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On lagrange multipliers

® Proposition: Lagrange multipliers evaluated at the solution
provide a measure of the sensibility of the optimal value of the
objective function f(x*) to variations in the constants b of
each restriction, namely

« _ Of(x¥) « _ Of(x*) . _
)\ = ob ,Or)\i—a—bi,f&—l,Z,...,m.

® Proof
o FOCs: m + n equations and 2m + n variables (b, A, x).

» |mplicit function theorem: solve system of m + n
equations as function of constants b, i.e.
A= A(b); x =x(b).

» Rewrite lagrangian function as:
L(b) = f(x(b)) + A(b)[b — g(x(b))]

» Differentiate L(b) wrtb

s GE= (528 (5)+b-gx)g+)

MOVEQ U"B Barcelona
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On lagrange multipliers (2)

® Proof (contd)
o Evaluated at (x*, \*), first two terms = 0 from FOCs.

o Thus, g{; = A\
o Also, evaluated at (x*, \*), L(x*,\*) = f(x*).

s Thus, %L (x* A*) = 21<)

s Hence, 2&(x*, \*) = % — \*.

® Economic interpretation: objective function (profits, costs,
revenues, ...) and restrictions (inputs, ...). Then,
» Lagrange multipliers measure sensibility of say cost, to
variations in a quantity (of inputs).

# Thus, lagrange multipliers represent a price, often
referred to as “shadow price" of each input.
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Lagrange’s Theorem - Proof

Theorem (consider R?)

9
9
9

Let f(z1,22) and g(x1, x2) be continuously differentiable.

Let * = («7, z3) be an interior point in the domain of f.

Let z* be a local extreme point for f(x1,x2) subject to
g(x1,19) = cC.

Suppose that 52 (z*) and 5 (*) are not both zero.
Then, 94X\ € R such that the lagrangean function

L(x1,22,\) = f(x1,22) — AMg(z1,22) — C)

has a stationary point at x*.
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Lagrange’s Theorem - Proof (2)

Proof
® Suppose that £Z(z*) # 0.
#® By the implicit function theorem, the equation g(z1,2z2) = ¢

defines x4, as a differentiable function of xy, x2 = h(x1) in a

neighborhood of z*. Also, h/(x1) = —(5’51)/(38—;;).

® Replacing g(x1,x2) = c by x2 = h(x1), the problem

maXf(.fUl,ZUQ) S.L. 9(331,5132) = C (1)

L1,T2

becomes
max f(x1,h(x1))

L1

M OVE 9 U NB [ )
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Lagrange’s Theorem - Proof (3)

Proof (cont'd)

® A neccessary condition for a maximum of this
free-maximization problem is

df (x1,h(z1))  Of | Of

I 5’:61 8x2h(x1) 0
That is
Of OFf G
621" " 9ay" ) 2w () 7O )

® Then, the expression (2) is precisely the necessary condition
for * to be a local (interior) extreme point of the problem ().

MOVEQ UHB Barcelona
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FOC of problem (1))

o 9L _ )2 _

833‘1 - 85131
Of _ \9g9 _
.. 833‘2 )\8332 o
® Thatis,
of 99
8331 . 8:131
of  Og
85132 8:132
® that we can rewrite as,
dg
Of  90f &r _
8331 8332 99
833‘2

that is precisely expression (2).
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Lagrange’s Theorem - Proof (4)

Proof (cont'd)

® Accordingly, we conclude that when 2£ (z*) # 0, the
Lagrangean function L(x1, x2, \) has a stationary point at x*.

® |t remains to prove that =* is also a stationary point of

L(z1, 22, A) when $L(z*) = 0. In this case, it follows that
%(m*) #+ 0 and a paraIIeI argument completes the proof of
the theorem.
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Lagrange’s Theorem - Alternative proof

® |etx* be alocal extreme point for f(x1,z9) S.t. g(x1,22) = ¢
® Represent g(x1,x2) = ¢ by the vector valued function
r(t) = x1(¢)i + xo(t)j with r(t) # 0
® Define h(t) = f(x1(t), x2(t))
® Because f(x*) is an extreme value of f,
h(t*) = f(z1(t%), z2(t")) = f(x*) is an extreme value of h.
® It meansthat A/(t*) =0
® Buth/(t) = gL (x")a (x17) + 5L (x)ah(x*) = V(x7) - /(")
® Hence, V f(x*) is orthogonal to r'(t*)
» Differentiating g we obtain L (x*)af (x*) + 5L (x*)zh(x*) = 0

or Vg(x*) - r'(t*) = 0 and Vg(x*) is orthogonal to r'(t*)

® Thus, Vf(x*)and Vg(x*) are parallel. That is, 3\* such that
V/f(x") = M'Vg(x")

MOVE‘? UHB Baéon :
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The Envelope Theorem

Motivation

® Let F'(x,y;0) be afunction with (x,y) as endogenous
variables while 6 represent some exogenous variable.

® F might be the profit function of a firm producing two outputs
(x,y), and 6 be the wage rate paid to its workers (determined
by labor market conditions).

® Suppose (z*,y*) are the profit-maximizing production
volumes and F'(z*,y*; 0) is the maximum level of profits.

® [t should be obviuos that
¥ =2*(0),y" = y*(0), F(z*,y*;0) = F*(0)

® How variation of § affect F*? Formally, compute dF*/df.
® Apply the envelope theorem
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The Envelope Theorem (2)

The envelope theorem
® Consider F(x,y;0), and suppose z* = x*(0),y* = y*(0) exist.

® Then,
dF*  OF*
o 06

Proof
o Compute dF*/do:

dF*  OF*de* OF*dy* OF*do OF

0~ Oz d0 oy do 00 do 00

where we have used the fact that the FOCs evaluated at the
optimal values are zero, Ii.e.

orF . . . ., OF _
m('x » Y 76)_0_ ﬁ:’,’(x » Y 76)
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The Envelope Theorem (3)

Remarks

#® The envelope theorem only requires (z*,y*) be critical points
of F', not optimal.

® An immediate application of the envelope theorem allows us
to assess the impact of a variation of the lagrange multiplier
on the optimal value of the objective function.

Interpretating the Lagrange multiplier

® Letthe Lagrangian function be
F(z,y,\;0) = f(2,y) — Mg(=,y) — 0)

#® Recall that at the optimum, F* = f*
dF* _ 9F* _ df*
® Therefore, % = %5 = %
® But we can write F(z,y,\;0) = f(x,y) — Ag(x,y) + M\ so that

dF*_@F*_)\*_df_*
do ~— 00 —do
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