Optimization. A first course of mathematics for economists

Xavier Martinez-Giralt

Universitat Autònoma de Barcelona

xavier.martinez.giralt@uab.eu

I.2.- Continuity

Continuity

Intuition

A function f is continuous when given any two arbitrarily close points of its domain generate images arbitrarily close.

Formal definition - preliminaries

- Let $A \subset \mathbb{R}^n$, $f : A \to \mathbb{R}^m$. Let x_0 be an accumulation point of A.
- We say that $b \in \mathbb{R}^m$ is the limit of f at the point $x_0 \in A$, $\lim_{x \to x_0} f(x) = b$, if given an arbitrary $\varepsilon > 0, \exists \delta > 0$ (dependent of f, x_0 and ε) such that $\forall x \in A, x \neq x_0, ||x - x_0|| < \delta$ implies $||f(x) - b|| < \varepsilon$.
- Remark 1: If x_0 is not accumulation point, $\exists x \neq x_0, x \in A$ close to x_0 , and the definition is empty of content.
- Remark 2: It may happen that the limit of a function at a point does not exist. But whenever it exists, it is unique.

Continuity (2)

Formal definitions

- Let A ⊂ ℝⁿ, f : A → ℝ^m. Let x₀ ∈ A. We say that f is continuous at a point x₀ ∈ A if ∀ε > 0, ∃δ > 0 such that ∀x ∈ A, ||x − x₀|| < δ implies ||f(x) − f(x₀)|| < ε.</p>
- Solution We say that f is continuous on $B \subset A$ if it is continuous $\forall x \in B$.
- When we say that "f is continuous" it means that f is continuous on its domain A.
- Continuity of f in [a, b]:
 - f continuous in (a, b), i.e. $\lim_{x \to x_0} f(x) = f(x_0)$ and
 - *f* right-continuous at *a* i.e. $\lim_{x\to a^+} f(x) = f(a)$ and
 - f left-continuous at b i.e. $\lim_{x\to b^-} f(x) = f(b)$

Continuity - Illustration

Algebra with Continuous Functions

Preliminaries

- Let $f : A \to \mathbb{R}^m$ and $g : B \to \mathbb{R}^p$ be two functions such that $f(A) \subset B$. The composition of function g with function f, denoted as $g \circ f : A \to \mathbb{R}^p$ is defined as $x \mapsto g(f(x))$.
- Let $f: A → \mathbb{R}^m$ and $g: B → \mathbb{R}^p$ be two continuous functions such that $f(A) \subset B$. Then, $g \circ f: A → R^p$ is a continuous function.
- Let $A \subset \mathbb{R}^n$. Let x_0 be an accumulation point of A. Let $f: A \to R^m$ and $g: A \to R^m$ be two functions. Assume $\lim_{x\to x_0} f(x) = a$ and $\lim_{x\to x_0} g(x) = b$.
 - Then, $\lim_{x\to x_0} (f+g)(x) = a+b$, where $f+g: A \to R^m$ is defined as (f+g)(x) = f(x) + g(x).
 - Then, $\lim_{x\to x_0} (f \cdot g)(x) = ab$, where $f \cdot g : A \to R^m$ is defined as $(f \cdot g)(x) = f(x)g(x)$.

Preliminaries (cont'd)

- Solution Assume $\lim_{x \to x_0} f(x) = a ≠ 0$ and *f* is not zero in a neighborhood of x_0
 - Then, $\lim_{x\to x_0} (g/f)(x) = b/a$, where $g/f : A \to R^m$ is defined as (g/f)(x) = g(x)/f(x).

Algebra with Continuous Functions

Let $A \subset \mathbb{R}^n$. Let x_0 be an accumulation point of A.

- Let $f : A \to R^m$ and $g : A \to R^m$ be two continuous functions at x_0 . Then, $f + g : A \to R^m$ is continuous at x_0 .
- Let $f : A \to R^m$ and $g : A \to R^m$ be two continuous functions at x_0 . Then, $f \cdot g : A \to R^m$ is continuous at x_0 .
- Let $f : A \to R^m$ and $g : A \to R^m$ be two continuous functions at x_0 . Let $f(x_0) \neq 0$. Then, f is not zero in a neighborhood Uof x_0 , and $g/f : U \to R^m$ is continuous at x_0 .

Intuition

- A continuous function defined on a compact set attains its maximum and minimum values at some point of the set.
- Remark 1: A continuous function need not be bounded.
 Example: $f(x) = 1/x, x \in (0, 1).$
- Remark 2: A continuous and bounded function need not reach its maximum value at any point of its domain. Example: $f(x) = x, \ x \in [0, 1).$

Boundedness Theorem (2)

Theorem

- ▶ Let $A \subset \mathbb{R}^n$ and $f : A \to \mathbb{R}$ be continuous.
- Let $K \subset A$ be a compact set.
- Then, *f* is bounded on *K*, that is $B = \{f(x) | x \in K\}$ is a bounded set.
- Furthermore, $\exists (x_0, x_1) \in K$ such that $f(x_0) = \inf(B)$ and
 $f(x_1) = \sup(B)$
- where $\sup(B)$ denotes the absolute maximum of f on K and $\inf(B)$ denotes the absolute minimum of f on K.

The Intermediate Value Theorem

- Let $A \subset \mathbb{R}^n$
- ▶ Let $f : A \to \mathbb{R}$ be a continuous function.
- Let $K \subset A$ be a connected set.
- Consider $a, b \in K$.
- Then, $\forall c \in [f(a), f(b)], \exists z \in K \text{ such that } f(z) = c.$

Bolzano's Theorem

- Let $f : A \to \mathbb{R}$ be a continuous function.
- Let $K \subset A$ be a connected set.
- Consider $a, b \in K$, such that $signf(a) \neq signf(b)$.
- There $\exists z \in K$ such that f(z) = 0.

Intermediate Value and Bolzano Theorems - Illustration

Weaker concepts of continuity

- directional continuity
 - right continuity no jump when appraoching the limit from the right
 - left continuity no jump when appraoching the limit from the left
- semi-continuity
 - upper semi-continuity: jumps if any, only go up
 - Iower semi-continuity: jumps if any, only go down

Weaker concepts of continuity- Illustration

$$\forall x \in (c, c + \delta), \ |(f(x) - f(c))| < \varepsilon$$

 $\forall x \in (c - \delta, c), \ |(f(x) - f(c))| < \varepsilon$

Weaker concepts of continuity- Illustration

Lower semi-continuity

 $\forall x, |x-c| < \delta, f(x) \ge f(c) - \varepsilon$