
Optimization. A first course of mathematics for
economists

Xavier Martinez-Giralt
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Metric Spaces

Definitions

Let E be a set over which a notion of “distance” between any
two elements can be applied.

Distance between x and y, (x, y) ∈ E is a function d,

d : E × E → R,

satisfying the following properties:

∀(x, y) ∈ E, d(x, y) ≥ 0

∀(x, y) ∈ E, d(x, y) = 0 ⇔ x = y

∀(x, y) ∈ E, d(x, y) = d(y, x) (symmetry)

∀(x, y, z) ∈ E, d(x, y) ≤ d(x, z) + d(y, z) (triangle inequality).

A pair (E, d) is called a metric space.
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On the notion of distance

Lemma: In a metric space (E, d)
∀x, y, z, t ∈ E, |d(x, y) − d(z, t)| ≤ d(x, z) + d(y, t).
In particular,
∀x, y, z ∈ E, |d(x, z) − d(y, z)| ≤ d(x, y).
Distance between a point and a set

Let (E, d) be a metric space. Let x0 ∈ E and A ⊂ E.

Denote by {d(x0, x)}x∈A the set of real numbers defined by

the distances from x0 to each element of A. This set has a
lower bound of zero. Thus, it admits an infimum not smaller
than zero.

The distance from x0 to the set A is the real number
d(x0, A) = inf{d(x0, x)}x∈A.
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Remark: infimum vs. minimum

Infimum (inf): greatest lower bound (GLB)

If GLB belongs to the set → inf = min

example: Let A = {2, 3, 4}. Then,

inf{2, 3, 4} = 2

Note 1 is also a lower bound but it is not the GLB.

2 = min{2, 3, 4}
If GLB 6∈ set:

example: Let A = {x ∈ IR|0 < x < 1}. Then,

inf{0 < x < 1} = 0.

min{0 < x < 1} = 6 ∃.

Parallel argument for sup vs. max
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On the notion of distance (2)

Distance between two sets

Let (E, d) be a metric space. Let A,B ⊂ E, A,B 6= ∅.

Denote by {d(x, y)}x∈A,y∈B the set of real numbers defined by

the distances between a point of A and a point of B. This set
has a lower bound of zero. Thus, it admits an infimum not
smaller than zero.

The distance between sets A and B is the real number
d(A,B) = inf{d(x, y)}x∈A,y∈B
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Euclidean Spaces

Definition

Particular case of a metric space where E = IRn

Properties

Let x = (x1, . . . , xn) ∈ IRn, y = (y1, . . . , yn) ∈ IRn; let α ∈ IR.

Define the following vector operations (i = 1, . . . , n)

x+ y = (x1 + y1, . . . , xn + yn) ∈ IRn (addition)

αx = (αx1, . . . , αxn) ∈ IRn (scalar product)

‖x‖ = (

n∑

i=1

x2i )
1

2 ∈ IR (euclidean norm)

< x, y > =

n∑

i=1

xiyi ∈ IR (inner [dot] product)

< x, y > = ‖x‖‖y‖ cos(θx − θy) ∈ IR (inner product)
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Vector operations - Illustration
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Norm and inner product - Illustration
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Euclidean Spaces (2)

The euclidean norm - properties

∀x ∈ IRn, ‖x‖ ≥ 0, and = 0 ⇔ x = 0,

∀x ∈ IRn,∀α ∈ IR, ‖αx‖ = |α|‖x‖,
∀x, y ∈ IRn, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

Triangle inequality - proof

‖x+ y‖2 =< x+ y, x+ y >

=< x, x > +2 < x, y > + < y, y >

≤ ‖x‖2 + 2| < x, y > |+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2[apply Cauchy-Schwartz ineq]

= (‖x‖+ ‖y‖)2

OPT – p.9/38



Triangle inequality - Illustration

‖x+ y‖ ≤ ‖x‖+ ‖y‖

x+ y
x

y

if not satisfied x, y and x+ y cannot draw a triangle
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Triangle inequality - example

x = (1, 2) → ‖x‖ =
√
5

y = (2, 1) → ‖y‖ =
√
5

‖x‖+ ‖y‖ = 2
√
5 ≈ 4.47

x+ y = (3, 3) → ‖x+ y‖ =
√
18 = 3

√
2 ≈ 4.24

and 4.24 ≈ ‖x+ y‖ < ‖x‖+ ‖y‖ ≈ 4.47

Exercise: Show when ‖x+ y‖ = ‖x‖+ ‖y‖
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Euclidean Spaces (3)

Euclidean distance - definition

∀x, y ∈ IRn, d(x, y) = ‖x− y‖ =
[∑n

i=1
(xi − yi)

2

] 1

2

Euclidean distance - properties

∀(x, y) ∈ E, d(x, y) ≥ 0

∀(x, y) ∈ E, d(x, y) = 0 ⇔ x = y

∀(x, y) ∈ E, d(x, y) = d(y, x) (symmetry)

∀(x, y, z) ∈ E, d(x, y) ≤ d(x, z) + d(y, z) (triangle inequality).

Triangle inequality - proof

d(x, y) = ‖x− y‖ = ‖(x− z) + (z − y)‖
≤ ‖x− z‖+ ‖z − y‖ = d(x, z) + d(y, z)
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Euclidean distance - remark

Application of Pythagoras’ theorem

Illustration in IR2

Let x = (x1, x2) and y = (y1, y2)

Consider the right-angled triangle Axy

The distance between vectors x and y, d(x, y) is its
hypotenuse.

Applying Pythagoras’ theorem

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

Similarly, the length of vector x (its norm) is the hypotenuse of
the right-angled triangle 0xx1. Hence,

d(x, 0) = ‖x‖ =
√

x2
1
+ x2

2

Mutatis mutandis, d(y, 0) = ‖y‖ =
√

y2
1
+ y2

2
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Euclidean distance in IR2 - Illustration
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Euclidean distance - remark (2)

Illustration in IR3

Let x = (x1, x2, x3) and y = (y1, y2, y3)

Consider the right triangle yxC

The distance between vectors x and y, d(x, y) is its
hypotenuse.

Applying Pythagoras’ theorem

d(x, y) =

√
yC

2
+ xC

2

where

yC
2
= AB

2
= (x1 − y1)

2 + (x2 − y2)
2 and

xC
2
= (x3 − y3)

2

Therefore, d(x, y) =
√

x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2
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Euclidean distance in IR3 - Illustration
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The inner product

Geometric and algebraic definitions

Consider vector x ∈ IRn.

cos θx =
x1

‖x‖ → x1 = ‖x‖ cos θx

sin θx =
x2

‖x‖ → x2 = ‖x‖ sin θx

Consider vector y ∈ IRn.

cos θy =
y1

‖y‖ → y1 = ‖y‖ cos θy

sin θy =
y2

‖y‖ → y2 = ‖y‖ sin θy
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The inner product (2)

Geometric and algebraic definitions (cont’d)

< x, y >= ‖x‖‖y‖ cos(θx − θy)

= ‖x‖‖y‖(cos θx cos θy + sin θx sin θy)

= ‖x‖ cos θx‖y‖ cos θy + ‖x‖ sin θx‖y‖ sin θy
= x1y1 + x2y2 =

∑

i

xiyi

Remarks

If x and y are orthogonal, cos(θx − θy) = 0 and < x, y >= 0.

If x and y are parallel, cos(θx − θy) = ±1 and

< x, y >= ±‖x‖‖y‖
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The inner product - properties

∀x, y1, y2 ∈ IRn, < x, y1 + y2 >=< x, y1 > + < x, y2 >,

∀x, y ∈ IRn,∀α ∈ R,< x, αy >= α < x, y >,

∀x, y ∈ IRn, < x, y >=< y, x >,

∀x, y ∈ IRn, x and y orthogonal ⇔< x, y >= 0,

∀x ∈ IRn, < x, x >≥ 0 and < x, x >= 0 ⇔ x = 0,

∀x, y, z ∈ IRn, If < x, y >=< x, z >, x 6= 0, then < x, y − z >= 0 ⇒
x orthogonal (y − z). Thus, it allows for (y − z) 6= 0 and thus y 6= z.

∀x, y ∈ IRn, | < x, y > | ≤ ‖x‖‖y‖ (Cauchy-Schwartz inequality).

If vectors x and y are linearly dependent, then equality
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Cauchy-Schwartz inequality - proof

Recall | < x, y > | ≤ ‖x‖‖y‖
and rewrite it as | < x, y > |2 ≤< x, x > · < y, y > or(∑n

i=1
xiyi

)2

≤ ∑n
i=1

x2i
∑n

i=1
y2i

Consider the following quadratic polynomial in z ∈ IR:

‖zx+ y‖2 = (x1z + y1)
2 + · · ·+ (xnz + yn)

2 =

z2
∑

(x2i ) + 2z
∑

(xiyi) +
∑

(y2i )

It is non-negative (as it is the sum of non-negative terms).
Also, it has at most one real root in z if the discriminant is
non-positive, ie, if(∑n

i=1
xiyi

)2

−∑n
i=1

x2i
∑n

i=1
y2i ≤ 0

and this is Cauchy-Schwartz inequality.

Remark: Equality if x and y linearly dependent.
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Open sets

Preliminary defs

Let x ∈ IRn and r > 0. An open ball of radius r centered at x is
the set: B(x, r) = {y ∈ IRn|d(x, y) < r}
Let x ∈ IRn and r > 0. An closed ball of radius r centered at x
is the set: B(x, r) = {y ∈ IRn|d(x, y) ≤ r}
Let A ⊂ IRn. We say that x ∈ A is an interior point of A, if
∃r > 0 such that, B(x, r) ⊂ A.

Let A ⊂ IRn. We define the interior of set A as
int(A) = {x ∈ A|x is an interior point ofA}
Trivially, int(A) ⊂ A

Let A ⊂ IRn. Let x ∈ IRn. We say that x is an accumulation
point of A if (B(x, r) \ {x}) ∩ A 6= ∅.
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Open sets (2)

Definitions

Let A ⊂ IRn. We say that A is open if ∀x ∈ A,∃r > 0 such that
B(x, r) ⊂ A.

Remark: In general r depends of x.

Let A ⊂ IRn. We say that A is open if A = int(A), i.e. if all
points are interior.

Two theorems

Theorem 1: Any open ball is an open set.

Theorem 2:

The union of an arbitrary number of open sets is an open
set.

The intersection of a finite number of open sets is an
open set.
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Closed sets

Let A ⊂ IRn. We say that A is closed if its complement, IRn \A
is open.

Let A ⊂ IRn. We say that x ∈ A belongs to the frontier of A,
∂A, if we can find a ball B(x, d), with d arbitrarily small, such

that ∃y ∈ B(x, d) and y 6∈ A.

Let A ⊂ IRn. We say that A is closed if ∀x ∈ ∂A ⇒ x ∈ A.

Let A ⊂ IRn. We define the interior of set A as the set of points
that belong to A but do not belong to ∂A

Let A ⊂ IRn. We say that x ∈ IRn is an accumulation point of A
if ∀d > 0, ∃y ∈ A with y 6= x such that y ∈ B(x, d).

(Thm) Let A ⊂ IRn. We say that A is closed if it contains all its
acumulation points
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Closed sets - Illustration
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Compact sets

Bounded set

Let A ⊂ IRn. We say that A is bounded iff ∃M ≥ 0 allowing to
define B(0,M) such that A ⊂ B(0,M).

Compact set

Let A ⊂ IRn. We say that A is compact if it is closed and
bounded.

Compact and non-compact sets
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Convex sets

Intuition

Let A ⊂ IRn. We say that A is convex if ∀(x, y) ∈ A any point c
in the segment linking x and y also belongs to A.

Preliminary definitions

Consider a finite number of points xi ∈ IRn, i = 1, 2, . . . , s.
A linear combination is a point of the form∑s

i=1
αixi

Consider a finite number of points xi ∈ IRn, i = 1, 2, . . . , s.
An affine combination is a point of the form∑s

i=1
αixi,

∑s
i=1

αi = 1

Consider a finite number of points xi ∈ IRn, i = 1, 2, . . . , s.
A convex combination is a point of the form∑s

i=1
αixi,

∑s
i=1

αi = 1, αi ≥ 0
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Convex sets (2)

Definitions

Let A ⊂ IRn. We say that A is convex if given any two points
(x, y) of the set, any convex combination of these two points,

[x, y], is also in the set.

Let A ⊂ IRn. We say that A is convex if (x, y) ∈ A implies

[x, y] ⊂ A.

Let A ⊂ IRn. We say that A is strictly convex if (x, y) ∈ A

implies [x, y] ⊂ int(A), α > 0.

Let A ⊂ IRn. The set of all convex combinations of points in A

constitute de convex hull of A. Smallest convex set containing A.

The unit simplex of IRn is a convex and compact set defined by

Sn−1 = {(λ1, . . . , λn) ∈ IRn
+|

∑n
i λi = 1}

A simplex is the convex hull of a finite set of points called the
vertices of the simplex. Smallest convex set containing the given vertices
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Convex sets - Illustration

Convex, strictly convex and non-convex sets
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Simplex - Illustration
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Connected and disconnected sets

Intuition

A set A is called disconnected if it can be separated into two
open, disjoint sets in such a way that neither set is empty and
both sets combined give the original set A

Definitions

An open set A is called disconnected if there are two open,
non-empty sets U and V such that:
U ∩ V = ∅ and
U ∪ V = A

A set A (not necessarily open) is called disconnected if there
are two non-empty open sets U and V such that
(U ∩A) 6= ∅ and (V ∩ A) 6= ∅
U ∩ V ∩A = ∅
U ∪ V ⊇ A

If A is not disconnected it is called connected.
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Connected and disconnected sets - Illustration

Example 1: [0, 1] does not contain any limit points of [2, 3], and
vice versa.

Example 2: [0, 2] can be written as [0, 1] ∪ (1, 2], but 1 is a limit

point of (1, 2].
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Hyperplanes

Definitions

Let A ⊂ IRn. Let p ∈ IRn, and β ∈ IR. A hyperplane is the set of

points H = {x ∈ A|∑n
i=1

pixi = β} ⊂ IRn−1

Remark: For any two points (x, y) ∈ H, px = py = β so that

p(x− y) = 0 i.e. p is orthogonal to the hyperplane.

Let A ⊂ IRn be a convex set. Let p ∈ IRn, and β ∈ IR. A
hyperplane H = {x ∈ A|∑n

i=1
pixi = β} is a supporting

hyperplane of A if,

A belongs to either one of the two closed semi-spaces∑n
i=1

pixi ≤ β or
∑n

i=1
pixi ≥ β, and

the hyperplane has a common point with A.

Remark: If a is the intersection point, we refer to the
support hyperplane of A at a.
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Hyperplanes (2)

Definitions (cont’d)

Let A,B ⊂ IRn be nonempty convex disjoint sets i.e.,
A ∩B = 6 ∅. A separating hyperplane for A and B is a
hyperplane that has A on one side of it and B on the other.

Minkowski separation theorems

Theorem 1
Let A ⊂ IRn be a convex set. Then we can construct a
hyperplane H passing through a point a that is separating for
A if a 6∈ int(A).

Theorem 2
Let A,B ⊂ IRn be two non-empty convex sets such that
int(A)

⋂
int(B) = ∅. Then we can construct a hyperplane H

separating both sets, i.e. ∃p ∈ IRn and β ∈ IR such that
∀x ∈ A,px ≤ β and ∀x ∈ B,px ≥ β.

OPT – p.33/38



Hyperplanes - Illustration

Supporting and separating hyperplanes
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Fixed point theorems

Theorem 1 (Brower)

Let A ⊂ IRn be a convex, compact and non-empty set.

Let f : A → A a continuous function associating a point x ∈ A

to a point f(x) ∈ A.

Then, f has a fixed point x̂ so that x̂ = f(x̂).

Intuition

Let g(x) = f(x)− x maps [a, b] on itself.

Thus, g(a) = f(a)− a ≥ 0 and g(b) = f(b)− b ≤ 0

If any of them holds with equality the fixed point is one of the
end points of the interval.

Otherwise the intermediate value theorem implies the
existence of an interior zero of g(x), i.e. a fixed point of f(x).
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Fixed point theorems (2)

Theorem 2 (Tarsky)

Let f be a non-decreasing function mapping the
n-dimensional cube [0, 1]× [0, 1] into itself.

Then, f has a fixed point x̂ so that x̂ = f(x̂).

Intuition

If f(0) = 0 and/or f(1) = 1 We have a fixed point.

If f(0) > 0, Then f starts above the 45◦-line. Since it can only

jump upwards at points of discontinuity, it cannot cross the
diagonal at those points.

If f(1) < 1 the graph of f must cross the diagonal at some
point.
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Fixed points - Illustration

x̂
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a b
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Brower's fixed point Tarsky's fixed point

0 1

1

OPT – p.37/38



Other fixed point theorems

Border, K.M., 1990, Fixed Point Theorems with Applications to
Economics and Game Theory, Cambridge University Press.
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