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Metric Spaces

Definitions

® |et E be a set over which a notion of “distance” between any
two elements can be applied.

® Distance between x and y, (z,y) € E is a function d,
d: ExFE — R,

satisfying the following properties:

® Anpair (F,d) is called a metric space.
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On the notion of distance

Lemma: In a metric space (F,d)

Vr,y,z,t € B, |d(x,y) —d(z,t)| <d(x,z) + d(y,t).
In particular,

Vr,y,z € E |ld(z,z) — d(y, 2)| < d(x,y).

Distance between a point and a set

® Let(FE,d) be ametric space. Letxzg € Eand A C F.

® Denote by {d(xg, x)}.ca the set of real numbers defined by
the distances from z( to each element of A. This set has a
lower bound of zero. Thus, it admits an infimum not smaller

than zero.

® The distance from zy to the set A is the real number
d(zg, A) = inf{d(zg, ) }rca-
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Remark: infimum vs. minimum

® Infimum (inf): greatest lower bound (GLB)

°

If GLB belongs to the set — inf = min
® example: Let A = {2,3,4}. Then,
e inf{2,3,4} =2
# Note 1 is also a lower bound but it is not the GLB.
® 2 =min{2,3,4}
® |[f GLB ¢ set:
® example: Let A = {z € R|0 < x < 1}. Then,
o inf{l0 <x<1}=0.
s min{0<z<1}=A
® Parallel argument for sup vs. max
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On the notion of distance (2)

Distance between two sets
® Let (F,d) be ametric space. Let A,B C E, A, B # .

® Denote by {d(z,y)}+ca ycn the set of real numbers defined by
the distances between a point of A and a point of B. This set
has a lower bound of zero. Thus, it admits an infimum not
smaller than zero.

® The distance between sets A and B is the real number
d(A7 B) — iﬂf{d(% y)}a:EA,yEB
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Euclidean Spaces

Definition
#® Particular case of a metric space where £ = R"

Properties
® letr=(x1,...,2,) € R, y=(y1,.-.-.,yn) € R";leta € R.
#® Define the following vector operations (i = 1,...,n)

r+y=(r1+y,.-.,xn+y,) € R" (addition)

ar = (axy,...,ar,) € R" (scalar product)
|zl = () 2> €R (euclidean norm)
<zy>=>)» zy €R (inner [dot] product)
1=1
<z, y>= x|yl cos(d, —b,) € R (inner product)
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Vector operations - lllustration

ar (o> 1)

o'z (o €(0,1))

o’z (o <0)

Vector addition Scalar product
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Norm and inner product - lllustration

Inner product
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Euclidean Spaces (2)

The euclidean norm - properties

Ve e R",||z|| >0, and=0< x =0,
Ve € R",Va € R, ||az| = |a|||z],

Ve,y € R", ||z + y| < ||z|| + ||y|| (triangle inequality).

Triangle inequality - proof

lz+yl? =<z +y,z4+y>
=<z, x>F2<z,y>+<y,y>

< al® +2 < zy > [+ |yl
< [lz]* + 2]z || ly]| + llylI*[apply Cauchy-Schwartz ineq]
= (<]l + llyl)?
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Triangle inequality - lllustration

lz +yll < [l= + [ly]

® if not satisfied z,y and = + y cannot draw a triangle

MOVEQ U"B Barcelona
AT, Ve dnorns S = OPT - p.10/38



Triangle inequality - example

r=(1,2) = [lz]l = V5
y=(2,1) = [yl = V5
2l + [lyl| = 2v/5 ~ 4.47

r+y=(33) = [lz+y|=VI8=3vV2~ 424
and 4.24 ~ |z + y[| < |lz|[ + [ly|| =~ 4.47

Exercise: Show when ||z + y|| = ||z|| + ||y|

elona 5
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ SEE:

nnnnnn

OPT - p.11/38



Euclidean Spaces (3)

Euclidean distance - definition

va,y € R d(x,y) = o -yl = | X7 (o — 9)?]
Euclidean distance - properties

Triangle inequality - proof

d(z,y) = |z =yl = (z = 2) + (z = )|
< |l =2l + llz = yl| = d(=, 2) + d(y, 2)
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Euclidean distance - remark

® Application of Pythagoras’ theorem

#® lllustration in R
e lLetz = (z1,20) and y = (y1,y2)
o Consider the right-angled triangle Axy

» The distance between vectors z and y, d(z,y) is its
hypotenuse.

o Applying Pythagoras’ theorem
d(z,y) = v/ (x1 — y1)? + (22 — y2)?

® Similarly, the length of vector z (its norm) is the hypotenuse of
the right-angled triangle 0xz,. Hence,

d(x,0) = ||z = /2T + 23
® Mutatis mutandis, d(y,0) = ||ly|| = /%2 + 12
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Euclidean distance in R’ - lllustration
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Euclidean distance - remark (2)

® lllustration in R®

s letzr = (37173727373) and Yy = (ylny,yS)
o Consider the right triangle yxC

o The distance between vectors x and vy, d

hypotenuse.

o Applying Pythagoras’ theorem
d(.y) = \/yC° + 2C°

® Wwhere

yC’ =AB" = (21 — y1)? + (22 — y2)? and

2C" = (z3 — y3>2

x,y) IS its

s Therefore, d = /11 — (22 — y2)* + (3 — y3)*
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Euclidean distance in R’ - lllustration
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The inner product

Geometric and algebraic definitions
® Consider vector x € R".

cosf, = — — x1 = ||x|| cos b,
HﬂfH
sin 0, = W — x9 = ||x|| sin 0,
® Consider vector y € R".
cos 0, = m — y1 = ||y|| cos 8,
sinf, = —— — y2 = ||y|| sin 4,
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The inner product (2)

Geometric and algebraic definitions (cont'd)

<,y >= ||z||lly[| cos(6r — 0,)
= ||z |ly||(cos O cos 8, + sin O, sin 6,))

= ||z cos O[|yl| cos Oy +- ||| sin bz [[y[| sin 6,

= Ty + Toya = Y Ty
)

Remarks
® |If z and y are orthogonal, cos(f, — 6,) =0and < z,y >= 0.

® |If z and y are parallel, cos(6, — 0,) = +£1 and
<,y >= =£||zf|[[y]]
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The inner product - properties

Ve, y1,y2 € R, <z, y1 +yo >=< z,y1 > + < 2,y >,

Ve,ye R"Va e R, < x,ay >=a < xz,y >,

Ve,ye R, < x,y >=<y,x >,

Vz,y € R", z and y orthogonal &< x,y >= 0,

Ve R, <z, >>0and <z, >=0< z =0,

Ve,y,z € RV If <x,y >=<z,2>,2#0, then <z,y—2>=0=
x orthogonal (y — z). Thus, it allows for (y — z) # 0 and thus y # z.
Ve,y € R, | <x,y > | <||z|||ly|]| (Cauchy-Schwartz inequality).

If vectors = and y are linearly dependent, then equality
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Cauchy-Schwartz inequality - proof

L I

Recall | < z,y > | < [|=|[|y|
and rewriteitas | < z,y > |* << z,x > - <y,y > or

2
(Ciimy) < i a? S, v

Consider the following quadratic polynomial in z € R:
lzz +yl|* = (z12 +y1)* + -+ (Tpz +yn)? =

2? Z( ) + 22 ) (wiyi) + Z(yz)

It is non-negative (as it is the sum of non-negative terms).

Also, it has at most one real root in z if the discriminant is
non-positive, ie, If

2
(Z?ﬂ %yz) — > i >y <0
and this is Cauchy-Schwartz inequality.
Remark: Equality if z and y linearly dependent.
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Open sets

Preliminary defs

® letx € R"andr > 0. An open ball of radius r centered at z is
the set: B(z,r) ={y € R"|d(x,y) < r}

® letzx e R”_and r > 0. An closed ball of radius r centered at x
is the set: B(x,r) = {y € R"|d(z,y) <r}

® let AC R". Wesaythat x € Ais an interior point of A, if
dr > 0 such that, B(x,r) C A.

® Let A C R"™. We define the interior of set A as
int(A) = {z € A|x is an interior point of A}

® Trivially, int(A) C A

® let AcC R". Letxz e R". We say that x is an accumulation
point of Aif (B(z,r)\ {z}) N A #£ (.
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Open sets (2)

Definitions

® lLet AcC R". We saythat AisopenifVz € A,3dr > 0 such that
B(x,r) C A.
Remark: In general » depends of .

® let AcC R" Wesaythat Aisopenif A= 1int(A),i.e. ifall
points are interior.

Two theorems
® Theorem 1: Any open ball is an open set.

®» Theorem 2:

o The union of an arbitrary number of open sets is an open
set.

# The intersection of a finite number of open sets is an
open set.
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Closed sets

® let A C R". We say that A is closed if its complement, R" \ A
IS open.

® et AC R". We say that x € A belongs to the frontier of A,
0A, if we can find a ball B(x, d), with d arbitrarily small, such
that 4y € B(z,d) and y ¢ A.

® let AC R". Wesaythat Aisclosedif Vo € 0A = x € A.

® Let A C R". We define the interior of set A as the set of points
that belong to A but do not belong to 0 A

® Llet AcC R". Wesay that x € R" is an accumulation point of A
if Vd > 0, dy € A with y # x such that y € B(x, d).

® (Thm) Let A Cc R". We say that A is closed if it contains all its
acumulation points
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Closed sets - lllustration

Mf VEQ U"B Barcelonal
J::’;*::::ﬁ:zl::‘;z";. Ui s S = OPT - p.24/38



Compact sets

Bounded set

® let A C R". We saythat A is bounded iff M > 0 allowing to
define B(0, M) such that A C B(0, M).

Compact set

® let A cC R". We saythat A is compact if it is closed and
bounded.
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Convex sets

Intuition
® lLet AC R". Wesaythat Ais convex if V(z,y) € A any point ¢

In the segment linking « and y also belongs to A.

Preliminary definitions

9

Consider a finite number of points z; € R, 1 =1,2,...,s.

A linear combination is a point of the form
D i1 QT

Consider a finite number of points z; € R, i =1,2,...,s.

An affine combination is a point of the form
D i1 QiTiy Y g =1

Consider a finite number of points z; € R", i =1,2,...,s.

A convex combination is a point of the form
D i QTiy Y = 1,0, >0
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Convex sets (2)

Definitions

9

9

Let A C R". We say that A is convex if given any two points
(x,y) of the set, any convex combination of these two points,
[z, y], is also in the set.

Let A C R"™. We say that A is convex if (x,y) € A implies
z,y] C A.

Let A C R". We say that A is strictly convex if (z,y) € A
implies [z, y] C int(A),a > 0.

Let A € R". The set of all convex combinations of points in A
constitute de convex hull of A. Smallest convex set containing A.

The unit simplex of R" is a convex and compact set defined by
ST ={(A\,..., ) € RL DN =1}

A simplex is the convex hull of a finite set of points called the
vertices of the simplex. Smallest convex set containing the given vertices
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Convex sets - lllustration

AYORA

Convex, strictly convex and non-convex sets

as

a
1 as

o ay

ag as

A= {Gl,CLQ, as, a4, as, CL6,CL7}

Convex hull of A
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Simplex - lllustration
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Connected and disconnected sets

Intuition

® A set Ais called disconnected if it can be separated into two
open, disjoint sets in such a way that neither set is empty and
both sets combined give the original set A

Definitions

® An open set A is called disconnected if there are two open,
non-empty sets U and V' such that:
UNV =0and
UUV =A

® A set A (not necessarily open) is called disconnected if there
are two non-empty open sets U and V such that
(UNA)#Pand (VNA) #(
UNVNA=
UUV2OA

® |[f Ais not disconnected it is called connected.
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Connected and disconnected sets - lllustration

® Example 1: [0, 1] does not contain any limit points of |2, 3|, and
vice versa.

® Example 2: |0,2] can be written as [0, 1] U (1, 2], but 1 is a limit
point of (1, 2].

A 1s connected
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Hyperplanes

Definitions

® let AC R". Letp e R", and g € R. A hyperplane is the set of
points H = {z € A|>" , piw; = B} c R*™!
Remark: For any two points (z,y) € H, px = py = 8 so that
p(x —y) = 0i.e. pis orthogonal to the hyperplane.

® letACR"beaconvexset. Letpe R",and 5 € R. A
hyperplane H = {z € A|>_"_, pixz; = B} is a supporting
hyperplane of A if,

# A belongs to either one of the two closed semi-spaces
> i1 pixy < por ) pix; > 3, and
» the hyperplane has a common point with A.

o Remark: If a is the intersection point, we refer to the
support hyperplane of A at a.
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Hyperplanes (2)

Definitions (cont'd)

® lLet A, B C R" be nonempty convex disjoint sets i.e.,
AN B = ). A separating hyperplane for A and B is a
hyperplane that has A on one side of it and B on the other.

Minkowski separation theorems

® Theorem 1
Let A ¢ R™ be a convex set. Then we can construct a

hyperplane H passing through a point a that is separating for
Alfa & int(A).

® Theorem?2
Let A, B C R" be two non-empty convex sets such that
int(A)(int(B) = (). Then we can construct a hyperplane H

separating both sets, i.e. dp € R" and 5 € R such that
Vx € A, px < fgand Vx € B,px > (.
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Hyperplanes - lllustration

o %

Supporting and separating hyperplanes

H H
A
‘ B
MOYE? UMB 855

e, vamuion OPT - p.34/38




Fixed point theorems

Theorem 1 (Brower)
® lLet A C R"” be aconvex, compact and non-empty set.

® let f: A— Aacontinuous function associating a pointz € A
to a point f(z) € A.
® Then, f has a fixed point ' so that x = f(7).
Intuition
® letg(x)= f(x) —x maps [a,b] on itself.
® Thus, g(a) = f(a) —a>0and g(b) = f(b) —b <0

#® If any of them holds with equality the fixed point is one of the
end points of the interval.

#® Otherwise the intermediate value theorem implies the
existence of an interior zero of g(z), i.e. a fixed point of f(z).
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Fixed point theorems (2)

Theorem 2 (Tarsky)

® Let f be a non-decreasing function mapping the
n-dimensional cube [0, 1] x [0, 1] into itself.

® Then, f has a fixed point z so that x = f().
Intuition
® |If f(0)=0and/or f(1) =1 We have a fixed point.

® |[f f(0) > 0, Then f starts above the 45°-line. Since it can only
jump upwards at points of discontinuity, it cannot cross the
diagonal at those points.

® |If f(1) < 1the graph of f must cross the diagonal at some
point.
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Fixed points - lllustration

Brower's fixed point

Tarsky's fixed point
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Other fixed point theorems

® Border, K.M., 1990, Fixed Point Theorems with Applications to
Economics and Game Theory, Cambridge University Press.
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