Lagrange multipliers

Consider $f^1, ..., f^k$ some C^1 functions from \mathbb{R}^n to \mathbb{R} , where $k \le n$. Assume the set of constraints is regular, and let $C = \{x \in \mathbb{R}^n : f^1(x) = ... = f^k(x) = 0\}.$ consider the problem

 $(P)\min_{x\in C}f(x)$

Then if $\bar{x} \in C$ is a solution of (P) and f is differentiable at \bar{x} , then there exists some reals $\lambda_1, ..., \lambda_k$ such that:

$$\nabla f_{\bar{x}} = \sum_{i=1}^{k} \lambda_i \nabla f_{\bar{x}}^i,$$

The coefficients λ_i are called Lagrange multipliers.

Lagrange multipliers

Consider $f^1, ..., f^k$ some C^1 functions from \mathbb{R}^n to \mathbb{R} , where $k \le n$. Assume the set of constraints is regular, and let $C = \{x \in \mathbb{R}^n : f^1(x) = ... = f^k(x) = 0\}.$ consider the problem

 $(P)\max_{x\in C}f(x)$

Then if $\bar{x} \in C$ is a solution of (P) and f is differentiable at \bar{x} , then there exists some reals $\lambda_1, ..., \lambda_k$ such that:

$$\nabla f_{\bar{x}} = \sum_{i=1}^{k} \lambda_i \nabla f_{\bar{x}}^i,$$

The coefficients λ_i are called Lagrange multipliers.

Sometimes, some author write the necessary first order conditions $\nabla \mathcal{L}(\bar{x}, \lambda_1, ..., \lambda_k) = 0$ where

$$\mathcal{L}(\bar{x},\lambda_1,...,\lambda_k) = f(\bar{x}) - \lambda_1 f^1(\bar{x}) - \dots - \lambda_k f^k(\bar{x})$$

is called the Lagrangian function.

You try to solve this sytem (with n + k unknown) to find **candidates** to be solution of the optimization problem.

(4 伊 ト 4 臣 ト 4 臣 ト

Example 1: Minimize $2x^2 + y^2$ under the constraint x + y = 1.

(P)
$$\max_{x_1^2 + x_2^2 + \dots + x_n^2 = 1} x_1 x_2 x_3 \dots x_n$$

▲ 伊 ▶ ▲ 三 ▶

Geometric interpretation.

For a general reference on Lagrange Multipliers, see also Section 3.3. in Further MATHEMATICS FOR Economic Analysis.

- For constraints defined by inequalities and equalities, we can find similar lagrange multipliers (KKT theorem below), but the conditions are more complex.
- Again, the only difficulty is to be able to write the Normal cone, which, (again), requires Regularity conditions (see below).

Intuition when we have inequalities through an example

Consider

$$C = \{(x, y) \in \mathbf{R}^2 : g(x, y) = x^2 + y^2 - 1 \le 0\}.$$

Then for every $(\bar{x}, \bar{y}) \in C$,

$$N_C(\bar{x},\bar{y}) = \{\mu \nabla g_{(\bar{x},\bar{y})}, \mu \ge 0\}$$

and

$$T_C(\bar{x},\bar{y}) = \{h \in \mathbf{R}^2 : \nabla g_{(\bar{x},\bar{y})} \cdot h \le 0\}.$$

A⊒ ► < ∃ ►

Difference with equality ?

KKT (Karush, Kuhn and Tucker) Theorem

Consider $f^1, ..., f^k, g^1, ..., g^m$ some C^1 functions from \mathbb{R}^n to \mathbb{R} , where $k \le n$. Assume the set of constraints satisfies **regularity (also called qualification constraints)** constraints we will see after.

Let $C = \{x \in \mathbf{R}^n : f^1(x) = ... = f^k(x) = 0, g^1(x) \le 0, ..., ...g^m(x) \le 0\}.$ consider the problem

$$(P)\min_{x\in C}f(x)$$

Then if $x^* \in C$ is a solution of (P) and f is differentiable at x^* , then there exists some reals $\lambda_1, ..., \lambda_k, \mu_1, ..., \mu_m$ such that: $(i) \nabla f_{\bar{x}} + \sum_{i=1}^k \lambda_i \nabla f_{\bar{x}}^i + \sum_{j=1}^m \mu_j \nabla g_{\bar{x}}^j = 0,$ $(ii) \forall j = 1, ..., m, \mu_j \ge 0$ (Positivity of multiplicators associated to inequalities) $(iii) \forall j = 1, ..., m, [\mu_j = 0 \text{ or } g^j(\bar{x}) = 0].$ (Each inequality constraint is binded or the associated multiplicator is null) $(iv) \forall i = 1, ..., k, f^i(\bar{x}) = 0.$ (Equality constraints satisfied!) $(v) \forall j = 1, ..., m, g^j(\bar{x}) \le 0.$ (Inequality constraints satisfied!)

イロト イ理ト イヨト イヨト

3

KKT (Karush, Kuhn and Tucker) Theorem

Consider $f^1, ..., f^k, g^1, ..., g^m$ some C^1 functions from \mathbb{R}^n to \mathbb{R} , where $k \le n$. Assume the set of constraints satisfies **regularity (also called qualification constraints) constraints** we will see after. Let $C = \{x \in \mathbb{R}^n : f^1(x) = ... = f^k(x) = 0, g^1(x) \le 0, ..., ..., g^m(x) \le 0\}$.

consider the problem

$$(P)\max_{x\in C}f(x)$$

Then if $x^* \in C$ is a solution of (P) and f is differentiable at x^* , then there exists some reals $\lambda_1, ..., \lambda_k, \mu_1, ..., \mu_m$ such that: (i) $\nabla f_{\bar{x}} - \sum_{i=1}^k \lambda_i \nabla f_{\bar{x}}^i - \sum_{j=1}^m \mu_j \nabla g_{\bar{x}}^j = 0$, (ii) $\forall j = 1, ..., m, \mu_j \ge 0$ (iii) $\forall j = 1, ..., m, \mu_j .g^j(\bar{x}) = 0$. (iv) $\forall i = 1, ..., k, f^i(\bar{x}) = 0$. (v) $\forall j = 1, ..., m, g^j(\bar{x}) \le 0$.

ヘロト 人間 ト 人造 ト 人造 トー

Intuitively, regularity conditions are conditions on the constraints so that we have a nice formula for the normal cone, which allows to have the "simple" KKT condition.

Condition 1 A first possible condition that is enough to get KKT theorem is **Slater's condition**

Slater's condition

Consider $f^1, ..., f^k, g^1, ..., g^m$ some C^1 functions from \mathbb{R}^n to \mathbb{R} , where $k \le n$. Slater's conditions are true if: (i) All g^j are convex. (ii) All f^i are affine. (iii) There exists \tilde{x} feasible point (i.e. it satisfies the constraints) such that for every j such that g^j is not affine, we have $g^j(\tilde{x}) < 0$.

イロト イポト イヨト イヨト

A second possible condition for which KKT theorem is true are the following **regularity's conditions**

Regularity (or qualification) conditions for system of equalities together with inequalities

The set of constraints defined by $f^1 = ... = f^k = 0, g^1 \le 0, ..., g^m \le 0$ is regular if (1) $k + m \le n$, and (2) for every $\bar{x} \in \mathbf{R}^n$ such that $f^1(\bar{x}) = ... = f^k(\bar{x}) = 0, g^1(\bar{x}) \le 0, ..., g^m(\bar{x}) \le 0$, the $n \times (k + m)$ matrix whose columns are $\nabla f_{\bar{x}}^1, ..., \nabla f_{\bar{x}}^k, \nabla g_{\bar{x}}^1, ..., \nabla g_{\bar{x}}^m$, has a rank m + k.

イロト 不得 トイヨト イヨト

Example of use of KKT.

$$(P)\min_{x+y\leq 3,-2x+y\leq 2}x^2 - 4x + y^2 - 6y$$