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Abstract
We re-estimate the world technology frontier non-parametrically using a dataset covering
OECD country-level data and US state-level data on GDP per worker and the stocks of
physical capital, unskilled labour and skilled labour. The auxiliary use of US state-level
data significantly reduces the upward bias in cross-country estimates of technical effi-
ciency, and so does allowing for imperfect substitutability between skilled and unskilled
labour. We then use our adjusted estimate of the world technology frontier in a series of
decompositions of productivity differences and sources of economic growth in the OECD
in 1970–2000, including also ‘appropriate technology vs. efficiency’ decompositions.

I. Introduction
Is it possible to use production factors more efficiently than in the US? Studies based
on aggregate cross-country data provide, almost unanimously, the negative answer: since
World War II, the US level of per-worker productivity has always been high enough to
guarantee that the US was one of the countries spanning the world technology frontier
(WTF).1 Consequently, all post-war improvements in US productivity have been identi-
fied as either due to factor accumulation or technological progress at the frontier.We claim,
however, that since the US is a huge country with substantial internal heterogeneity, we
can learn more about the evolution of US productivity if we cease considering it as a single
data point, as habitually done in earlier studies. US state-level data show that it is possible

ÅI am grateful to Aleksandra Iwulska and Łukasz Marć for their help with the data and to Mateusz Zawisza for
performing the bootstraps. The article has benefitted considerably from the useful comments and suggestions of the
Editor Jonathan Temple, as well as Maciej Bukowski, Andrzej Cieślik, Jacek Osiewalski, Małgorzata Pawłowska
and Artur Prȩdki. Most of this research has been done at the Institute for Structural Research, Warsaw, Poland. The
working paper version of this text was circulated under the title: ‘Productivity Differences Across OECD Countries
and US States, 1970–2000: The World Technology Frontier Revisited’. All errors are my responsibility.
JEL Classification numbers: E23, O11, O14, O33, O47.
1This is one of the conclusions of non-parametric studies by Kumar and Russell (2002), Henderson and Russell

(2005), Jerzmanowski (2007) and Badunenko, Henderson and Zelenyuk (2008). In Caselli and Coleman (2006) as
well as Badunenko, Henderson and Russell (2009), the US is found to fall behind the frontier, albeit very slightly.
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to produce more efficiently than the US does on average. Even more interestingly,thanks
to the generally high productivity across US states, disaggregating the single US data point
into its constituent states should also lead to significant improvements in the precision of
estimates of the entire WTF. Hence, this study will combine information from US states
with country-level data to provide new estimates of the WTF.
The contribution of this study to the literature is threefold. First and foremost, as

announced just above, we shall use US state-level data to revisit the economic debate
on the shape of the WTF as well as on the sources of economic growth and cross-
country productivity differences. The most important insight here is that appending the US
sub-national dataset to the international one leads to a marked increase in the precision of
non-parametric [data envelopment analysis (DEA)-based]WTF estimates, especially in the
rangeof factor endowments observed across theUS.Furthermore, thanks to amore accurate
approximation of the WTF, the reliability of earlier growth and development accounting
exercises can be substantially improved, too. These accomplishments are complementary
to the ones obtained thanks to known DEAbootstrap techniques (Simar andWilson, 1998,
2000; Kneip, Simar and Wilson, 2008): the advantage of our approach is that we add new
valid data points to the dataset considered, carrying genuine additional information.
The second novelty of the current study with respect to the established literature is

that we allow for imperfect substitutability between skilled and unskilled labour.2 This
leads to a further refinement of results presented in earlier studies. As far as we know, this
decomposition has never been used before in non-parametric analyses of the kind adopted
here.
The third contribution of the current study is to propose a novel decomposition of coun-

tries’ productivity growth rates, indicating the extent to which the observed productivity
changes represent shifts of the WTF, or movements along the WTF.
As far as the territorial coverage of the current study is concerned, we focus only on

highly developed OECD countries located in Europe and North America (plus Australia
and Japan), and set aside developing and transition economies as well as small open econ-
omies such as theAsian Tigers. This will reduce precision in the estimation of theWTF in
the region of low capital and/or human capital endowments, where numerous developing
countries are located. Such an approach does not compromise the precision of efficiency
estimates in the range relevant to our study, though, under the rather innocuous assumption
that non-OECD countries do not operate at the same factor ratios as OECD countries or,
if they do, they are less efficient than at least one OECD country. In consequence, rather
than attempting to identify the wholeWTF, we aim at obtaining its best possible estimates
in the range associated with factor ratios observed in the OECD countries (or US states).
At the same time, this approach also makes our results less vulnerable to poor data quality
(see the discussion about Sierra Leone spanning the WTF in Kumar and Russell, 2002).3
The time period considered is 1970–2000, and technologies from all earlier years are

allowed to span the WTF in the given year alongside current ones (cf. Henderson and
Russell, 2005). Indeed, it turns out that even some technologies used in 1970 remain effi-

2See Caselli and Coleman (2006) and Pandey (2008).
3We also use bootstrapping techniques to adjust for the inherent bias in efficiency estimates, thus somewhat neu-

tralizing the impact of outlying observations (cf. Simar andWilson, 1998, 2000; Kneip et al., 2008; Badunenko et al.,
2009).
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cient in 2000 despite substantial technological progress between these years, primarily
because they strongly rely on unskilled labour which has been gradually disappearing in
OECD countries over the period considered.
Accordingly, we also find that technological progress over these years has been strongly

non-neutral, with the highest increases in frontier productivity observed in the range of
technologies with high physical capital and skilled labour intensities. Our findings also
imply that the non-parametrically constructedWTF departs systematically from the Cobb–
Douglas functional specification.
The principal novelty of this study – that is, to use a decomposition of the US into its 50

constituent states in estimation of theWTF – has a number of interesting features. First, US
states are large enough to be directly comparable toOECDcountries in terms of population.
The most populous state, California, has a population exceeding 35 million which is more
than twice the size of the Netherlands, 16 million; the least populous state, Wyoming, has
around 0.5 million inhabitants which makes it comparable with Luxembourg or Cyprus in
terms of size. Second, a substantial number of US states are expected to span theWTF once
US country-level data are disaggregated: if it is already the US as a whole – whose per-
worker productivity is a weighted average of state-level productivities – which spans the
cross-country estimate of the WTF, one can naturally expect the ‘countries and US states’
estimate of theWTF to be spanned by, inter alia, some above-average performing states. In
effect, the WTF estimates based on country-level data only will be downward biased, and
the estimates of countries’ technical efficiency will be upward biased (i.e. towards unity).
Third, the US state-level data are arguably of high quality and are relatively easy to obtain.
It must be noted that the state-wise decomposition procedure which we apply to the

US here could also be carried forward to other OECD countries such as France, Germany,
Japan or the UK, or to lower levels of aggregation, such as counties, townships, or even
sectoral categories within the economy such as the Statistical Classification of Economic
Activities in the European Community (NACE) sections, etc.4 This procedure could
even be extended to the level of individual people or firms. One crucial advantage of
our approach is, however, that by sticking to macro-scale territorial entities, we remain
within the standard ‘productivity of nations’ framework.
Another remark is that by going beyond the usual cross-country dataset, the current

article provides the WTF literature with a complementary service to articles preoccupied
with computing bias-corrected frontier estimates (cf. Simar andWilson, 1998, 2000; Kneip
et al., 2008; Badunenko et al., 2009; Enflo and Hjertstrand, 2009). The complementarity
stems from the fact that instead of applying sophisticated bootstrapping techniques on
country-level-only data to assess the magnitude of bias in those estimates, we use a more
direct, data-drivenmethod for correcting the bias. Both approaches identify diverse sources
of potential bias. To prove this, we have compared the results of both approaches and then
‘merged’ them by computing bootstrap-based bias-corrected frontier estimates using the
extended dataset constructed in the current study.
The remainder of the article is structured as follows. In section II we describe themetho-

dology. In section III we present the sources and construction of our data. Section IV

4Enflo and Hjertstrand (2009) study the sources of regional productivity convergence among NUTS1-2 regions in
Germany, France, Italy, Spain and Ireland.
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presents our main estimate of the WTF and draws a few implications. In section V we use
these results to decompose the differences in productivity across nations into differences
in technical efficiency and the accumulated factors of production. An auxiliary deriva-
tion of factor-dependent total factor productivity (TFP) allows us to address the question
of the ‘appropriateness’ of technology used by each country. Section VI is devoted to
decomposing country-level 1970–2000 productivity growth into (i) changes in technical
efficiency, (ii) technological progress shifting the WTF, and (iii) factor accumulation.
Section VII discusses the robustness of our results. Section VIII concludes. A few corol-
laries and discussions are included in the Appendix.

II. Methodology
Data envelopment analysis

In this study, the WTF, or equivalently the best-practice production function, will be esti-
mated non-parametrically, that is, constructed as a convex hull of production techniques
(input–output configurations) used in the territorial units (countries/states) present in the
data. To this end, we will use the deterministic data envelopment analysis (DEA) method
introduced to the context of macroeconomics by Färe et al. (1994). We will thus follow
the lines of Kumar and Russell (2002), Henderson and Russell (2005), Jerzmanowski
(2007) and Badunenko et al. (2008). Also in line with these contributions, we shall use the
output-oriented variant of the DEA and assume constant returns to scale.
The idea behind the use of (output-oriented, constant-returns-to-scale) DEA is to

envelop all data points (consisting of a scalar-positive output yj and a vector of n pos-
itive inputs, xj) in the smallest possible convex cone and to infer the production function
as a fragment of the boundary of this cone for which output is maximized given inputs.5
For each observation j, the DEA method then provides a decomposition of output yj into
a product of the maximum attainable output given inputs y*j ≡ f (xj) and the Shephard
distance function Ej ∈ (0, 1], measuring (vertical) distance to the frontier:

yj =Ejy*j . (1)

For each unit j=1, 2, . . . , I in the sample, both the Shephard distance function Ej and
the frontier output y*j are computed from the solution to a linear programming problem
consisting in maximizing the Debreu–Farrell technical inefficiency index �j given a series
of feasibility constraints (cf. Fried, Lovell and Schmidt, 1993):

max
{�j ,�1,...,�I}

�j

s.t.�jyj≤
I∑
i=1

�iyi,

I∑
i=1

�ix1i≤ x1j,

5The vector of inputs xj could in principle be of any length n∈N, but if one distinguishes too many types of inputs
then (i) the DEA could run into numerical problems due to the ‘curse of dimensionality’ (cf. Färe et al., 1994), and
(ii) the efficiency levels could be overestimated due to too small a sample size.
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I∑
i=1

�ix2i≤ x2j,

...
I∑
i=1

�ixni≤ xnj,

�i≥0, i=1, 2, . . . , I .

(2)

The output-oriented Shephard distance measure Ej (which we shall also refer to as the
technical efficiency score) is computed as the reciprocal of the maximized Debreu–Farrell
technical inefficiency index �j (i.e. Ej =1/�j). It is thus the inverse of the maximal pro-
portional amount by which output yj could be expanded while remaining technologically
feasible, given input quantities and the available technology. For example, if yj could be
expandedmaximally by 50%, then y*j =1.5yj, and soEj =1/1.5=2/3.Agiven observation
j is said to span the frontier if and only if Ej =1.
Since the data contain a finite number of observations, one for each territorial unit and

each year, by construction the DEA-based production function will be piecewise linear
and its vertices will be the actually observed efficient input–output configurations (i.e. the
ones withEj =1, non-dominated by any linear combination of other observed input–output
configurations).

Advantages and limitations of the approach

The DEA is a deterministic, data-driven approach to deriving the production function
from observed input–output pairs. Its unquestionable strength lies in the fact that it does
not require any particular functional form of the aggregate production function (provided
that it has constant returns to scale and satisfies the free-disposal property), and provides
testable predictions on its shape instead.6 Even though by construction, the predicted
shape of the production function will be piecewise linear for any finite data sample, with
reasonably large data samples, certain parametric forms could be tested formally against
the DEA-based non-parametric benchmark, such as the constant elasticity of substitution
(CES) or the Cobb–Douglas.
There are important limitations to the DEA approach as well. First, its deterministic

character makes it silent on the precision of estimates of the aggregate production function
andon thepredicted efficiency levels if inputs andoutputs are subject to stochastic variation.
Second, the DEA is a biased estimator of the actual technological frontier. Certainly,

even the most efficient units in the sample could possibly operate with some extra effi-
ciency: they are themselves aggregates of smaller economic units and must therefore have
some internal heterogeneity. Taking account of that, the frontier could easily be shifted
upwards; the Shephard distance measure is nevertheless normalized to 100% for the most
efficient units in the sample. A bootstrap method due to Simar and Wilson (1998, 2000)
6For example, it has been argued that the usual assumption of a Cobb–Douglas production function may lead to

marked biases within growth accounting or levels accounting exercises leading to overestimation of the role of TFP,
cf. Caselli (2005) and Jerzmanowski (2007).
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as well as Kneip et al. (2008) is helpful in this respect: it provides a way to adjust for
the bias as well as to compute confidence intervals for the actual efficiency levels and the
technological frontier.
Third, the DEA constructs the production function based on the efficient data points.

This makes it naturally sensitive to outliers and measurement error. On the one hand,
outliers characterized by obvious errors are easily spotted. Systematic mismeasurement
associated with some units could be left unnoticed, however, if these units fall short of the
frontier.

Implications for TFP

The non-parametric DEA approach taken here can be easily compared to somewhat more
standard growth and development accounting exercises (e.g. Klenow andRodriguez-Clare,
1997; Hall and Jones, 1999; Caselli, 2005) which rest upon the Cobb–Douglas production
function assumption.
The reasoning is as follows. Generically, all functions f (xi), where xi ∈ Rn, could be

rewritten as

f (xi)≡A(xi) · x�1
1i . . . . . . x�n

ni ,
n∑

k=1
�k =1, (3)

where the residual term of the above identity, A(xi), captures (factor-dependent) ‘total
factor productivity’ based on the Cobb–Douglas specification (referred to as CDTFP here-
after). Let us then apply this reparametrization to our function f (xi)= y*i , constructed with
DEA.
Since by construction, f (xi) cannot be precisely Cobb–Douglas with constant returns

to scale, A(xi) will necessarily be a non-trivial function of inputs. Hence, even though
equation (3) allows one to view any production function through the lens of the Cobb–
Douglas specification, the factor-dependent character of CDTFP indicates that such a view
will be incomplete unless A(xi) is found to be approximately constant. As announced in
the Introduction, this is not going to be the case in the current study.
Using the identities (1) and (3), we can decompose each country’s output yi into

(i) its efficiency score (Shephard distance function) Ei, (ii) the CDTFP level specific to the
country’s configuration of inputs (the ‘appropriate technology’ factor, cf. Basu and Weil,
1998), and (iii) the Cobb–Douglas bundle of factor endowments:

yi=Ei ·A(xi) · x�1
1i . . . . . . x�n

ni . (4)

This is the ‘appropriate technology vs. efficiency’ decomposition (cf. Jerzmanowski,
2007). If the actual production function were Cobb–Douglas, then from the above equation
we would immediately obtain a TFP term identically equal to a constant A>0, and ‘appro-
priateness of technology’ would have no role to play. However, in the current study the
aggregate production function cannot be precisely Cobb–Douglas and hence the ‘appro-
priate technology’ factor A(xi) will necessarily co-vary with factor endowments, thereby
pointing at the potential CDTFP gains accruing from certain directed changes in the input
mix. Results presented in the following sections will indicate that the empirically observed
departures of the function f (xi) from theCobb–Douglas benchmark are actually quite large.
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A large strand of contemporary macroeconomic literature aims at quantifying and
understanding TFP differences, with TFP computed as the (Solow) residual from the
Cobb–Douglas production function (cf. Caselli, 2005). As argued above, this approach
might lead to results that are artefacts of this particular functional form. On the other
hand, even articles relaxing the Cobb–Douglas assumption and dealing with different
functional forms such as the CES instead (cf. Caselli and Coleman, 2006; León-Ledesma,
McAdam and Willman, 2010a,b) might encounter function misspecification problems.
The current contribution avoids this problem thanks to the flexibility of the DEA ap-
proach which does not require any parametric assumptions for the estimated production
function.
When interpreting the ‘appropriate technology vs. efficiency’decomposition, it must be

remembered that the ‘appropriate technology’ (CDTFP) term A(xi) may capture either the
meaningful economic phenomenon of optimal technology choice given available inputs
(cf. Basu and Weil, 1998; Jones, 2005; Growiec, 2008), or the systematic error associated
with production function misspecification. Distinguishing empirically between these two
options is not possible unless the dataset is extended beyond the information on input and
output quantities. We leave this for further research.

Implications for the direction of technical change

The DEA approach can also help draw important implications for the direction of
technical change (cf. León-Ledesma et al., 2010a,b), once the best-practice production
function is derived for (at least) two moments in time, allowing for intertemporal compar-
isons.
The procedure is the following. Having computed the ‘appropriate technology’ factor

as the residual from the non-parametrically estimated frontier production function and its
Cobb–Douglas counterpart for the current and the previous moment in time, An(xn) and
As(xs), respectively, one analyses the ratio of the two as a function of inputs. This helps
identify the factor mixes for which the technology frontier has been shifted most, and the
regions for which it remained virtually unchanged.

III. Data
The WTF, spanned by some of the world’s most developed regions, will be estimated
here using a dataset including both OECD country-level data and US state-level data.
Our original dataset covered 21 OECD countries: Australia, Austria, Belgium, Canada,
Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, Luxembourg, the
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, UK, US, as well as 50 US
states plus the District of Columbia. The dataset which is actually used is reduced to 20
countries and 40 US states. The reasons for excluding a few territorial units from our study
are the following.
First, we had to drop Luxembourg and theDCbecause of the strong indication that these

entities’ productivity might be significantly overestimated because of workers commuting
from outside of the territory (such as Belgium and France for Luxembourg, or Virginia and

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2012
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Maryland for DC).7 We have also removed Germany in the period before its unification
from our sample.
Furthermore, since the DEA method is extremely sensitive to outliers, we have also

decided to exclude the US states with the largest long-term average mining shares in state
GDP.8 There is an indication that productivity of these states might be overestimated since
their GDP encompasses substantial resource rents which are not captured in the estimated
production function. These states are Alaska, Colorado, Louisiana, Nevada, New Mexico,
Utah, West Virginia and Wyoming.9 We have also dropped Delaware and New Hamp-
shire because they are small, open, specialized economies with comparatively unusual tax
systems.10 It is important to drop these outlying observations because they carry informa-
tion which is not included in the estimated production function and thus introduce ‘noise’
rather than ‘signal’.
The time span of our analysis is 1970–2000, and the estimations are run in 5-year inter-

vals. The crucial bottleneck here is the availability of schooling variables which are only
measured at 5-year frequency. Most other data were available annually and for a longer
period.
The frontier production function is constructed here with the DEAmethod taking phys-

ical capital K , unskilled labour LU, and skilled labour LS as inputs. We shall thus decom-
pose the output (GDP) of each country i in each year t into the efficiency score (Shephard
distance function) and the maximum attainable output given inputs:

yit =Eitf (Kit ,LU
it ,LS

it). (5)

Unskilled and skilled labour are measured in ‘no-schooling equivalents’, indicating
that each worker’s labour input is weighted by her educational attainment. Following
Caselli and Coleman (2006), we have allowed unskilled and skilled labour to be imper-
fectly substitutable. This requires us to split the overall level of human capital per worker
into ‘human capital within unskilled labour’ and ‘within skilled labour’.11
The data we are using are set in per worker terms. This means that we abstract from

the issues of labour market participation which may result in additional per capita produc-
tivity differences, and of the variation in hours worked per worker which means that our
analysis convolutes productivity differences with labour-leisure choices of the employees:
7Admittedly, this caveat applies to some other EU countries and US states as well. The larger is the country or

state, however, and the more likely is commuting to be bi-directional, the less important this problem becomes for
our aggregate results.
8Needless to say, the sensitivity of the DEA method to outliers cannot justify arbitrary omissions of meaningful

data. The primary objective in the current data preparation procedure is to keep as many units as possible in the
sample, removing only those which are outliers for objectively explainable reasons, such as measurement error or
the presence of certain ‘accounting’ facts in the data, unrelated to actual productivity. Clearly, removing too many
US states would result in reducing the value added of this study as compared to the existing literature, as well as in
lowering the precision of DEA-based frontier estimates.
9The sparsely populated oil-producing Alaska is probably the most remarkable among these states. With its min-

ing share in GDP peaking at 50% in 1981, the state turned out to span the WTF any time it entered the estimation
procedure, subsequently lowering the efficiency factor inmost other US states by asmuch as 10–30 percentage points.
10In particular, Delaware is known as a within-US ‘tax haven’ and a major center of credit card issuers. When

included in the sample, both Delaware and New Hampshire tended to span the technology frontier at almost all years
1970–2000. Also, the number of frontier observations increased markedly after these states had been dropped. We
consider this fact to be an indication that they indeed were outliers in our sample.
11Empirical evidence of imperfect substitutability between unskilled and skilled labour is provided by Pandey

(2008).
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ceteris paribus, an increase in hours worked per worker will be reflected by increases in
‘productivity’as wemeasure it even though technology as such is unchanged. It is however
difficult to find reliable and comparable data on hours worked per capita both across OECD
countries and US states which would date back at least until 1970.12
For international data on GDP and GDP per worker, we use the Penn World Table 6.2

(Heston, Summens and Alen, 2006), available for 1960–2003. For state-level GDP and
GDP per worker, we use data from the Bureau of Economic Analysis (BEA), Regional
Accounts, available for 1963–2007. The unit of measurement is the Purchasing Power
Parity (PPP) converted US dollar under constant prices as of year 2000. The BEA data on
GDP per worker have been proportionally adjusted for the sake of internal coherence with
the aggregate US data from Penn World Table 6.2.13
The physical capital series has been constructed using the perpetual inventory method

described, among others, by Caselli (2005).We have taken country-level investment shares
as well as government shares from PennWorld Table 6.2. There are two polar standpoints
as for the role of government in capital accumulation: one is that government spending is
all consumption, and the other one is that it is all investment.We have taken an intermediate
stance here, assuming that the government invests the same share of its GDP share as the
private economy does. Under this assumption, the overall (private and public) investment
share is s/ (1− g) where s is the private investment share and g is the government share.
Furthermore, following Caselli (2005), we assumed an annual depreciation rate of 6%.
For state-level government shares, we compiled a dataset from primary sources at the US
Census Bureau. Since the period of available data is 1992–2006 only, we extrapolated gov-
ernment shares backward in time using state-level averages and the long-run trend from the
overall US economy.14 Unfortunately, there are no data on state-level investment shares
apart from those computed by Turner, Tamura and Mulholland (2008) which are however
not publicly available. Knowing that this introduces substantial error but not being able to
obtain better proxies, we have imputed that state-level private investment shares are equal
to the US countrywide private investment share.
Country-level human capital data have been taken from de la Fuente and Doménech

(2006) – D-D hereafter. The raw variables are shares of population aged 25 or above
having completed primary, some secondary, secondary, some tertiary, tertiary or post-
graduate education. The considered dataset is of 5-year frequency only and it ends in
1995. Among all possible education attainment databases, the D-D dataset has been given
priority due to our trust in its superior quality. The original D-D series has been extra-
polated forward to the year 2000 using Cohen and Soto (2007) schooling data as a predic-
tor for the trends. Neither Barro and Lee (2001) nor Cohen and Soto (2007) data could be
used directly for this purpose because neither of them is (even roughly) in agreement with
the D-D dataset – nor with each other – in the period where all datasets offer data points.

12For example, the well-known EU KLEMS dataset contains international data on hours worked, but it does not
provide data on US states.
13As a side effect, our adjustment procedure helps solve the problem of the discontinuity between 1996 and 1997

in BEA data on state-level GDP, arising due to a change in measurement methodology.
14Approximate state-level goverment shares can also be constructed using BEA data on state-level subsidies and

taxes on production and imports. Compared to the approach taken in the current study, this alternative idea has both
advantages (e.g. longer time span of the BEAdataset) and disadvantages (e.g. only partial coverage of the government
sector). We leave it for further research.
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The US state-level human capital data have been taken from the National Priorities
Database. Here, the variables are shares of population aged 25 or above having completed
less than high school, high school, some college, college, or having obtained theAssociate,
Bachelor or Masters degree (the last category covering above-Masters education as well).
These data are available for 1995–2006 only. We have extrapolated the observed trends in
the educational composition of the populations backwards using US country-wide trends
documented in D-D and state-level differences in the period when the data were available.
The aggregate state-level quantities of human capital have been, on the other hand, taken
from Turner et al. (2007). At the international level, cumulative years of schooling at each
level of education have been taken from D-D and supplemented with data from country-
specific web resources wherever necessary. The US state-level education attainment data
have also been adjusted for coherence with D-D data.
From the raw educational attainment data we have constructed the human capital aggre-

gates using the Mincerian exponential formula with a concave exponent, following Hall
and Jones (1999), Bils and Klenow (2000) and Caselli (2005):

LU =
∑
i∈SU

�ie�(si), LS =
∑
i∈SS

�ie�(si), (6)

where SU is the set of groups of people who completed less than 12 years of education (less
than elementary, elementary and less than secondary), SS is the set of groups of people
who completed 12 years of education or more (secondary, less than college, college or
more), �i captures the share of ith education group in total working-age population of the
given country, si represents years of schooling in ith education group (cf. de la Fuente and
Doménech, 2006) and �(s) is a concave piecewise linear function:

�(s)=
{0.134s s<4,
0.134 ·4+0.101(s−4) s∈ [4, 8),
0.134 ·4+0.101 ·4+0.068(s−8) s≥8.

(7)

Assuming perfect substitutability between unskilled labour LU and skilled labour LS,
the overall human capital index is computed asH =LU +LS. We however allow these two
types of labour to be imperfectly substitutable, and enter the production function separately.
The perfect substitution casewhere only total human capitalmatters is an interesting special
case of our generalized formulation; the data do not support this assumption, however.15
Special attention should be paid to the arbitrarily chosen cutoff point of 12 years of

schooling, delineating unskilled from skilled labour in the current study. It is secondary
education which is usually completed after 12 years of schooling (13 in some countries).
We have thus assumed that everyone who has not completed high school is counted as
unskilled, and the remainder as skilled. This cutoff point seems adequate for OECD econ-
omies in our sample – which are usually technologically advanced and highly capitalized
– though it might be set too high if developing economies were to be considered as well
(cf. Caselli and Coleman, 2006). Another measurement problem which may potentially

15Temple (2001) discusses an interesting case where H =LU +h · Ls with h≥ 1. Even though it is a naturally
interpretable intermediate case between aggregating human capital according to H =Lu +Ls and assuming that Lu

and Ls enter the production function separately, we do not take it into account here because it retains the assumption
of perfect substitutability between unskilled and skilled labour.
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appear, but which we do not consider a major obstacle here given our sample choice, is that
schooling quality at different grades varies across countries and states (as it can be seen in
the results of international Programme for International Student Assessment (PISA) tests,
cf. Hanushek and Woessmann, 2010). This pertains both to the split between skilled and
unskilled population and the estimates of aggregate human capital. Controlling for this
heterogeneity is left for further research.

IV. The world technology frontier revisited
Let us now turn to our principal results. We shall first demonstrate the value added of
using US state-level data in WTF estimation. Next we will show why it is also impor-
tant to allow for imperfect substitutability between unskilled and skilled labour. Finally,
we will provide some evidence for non-neutrality of technical change in the period
1970–2000 as well as departures of the WTF from the Cobb–Douglas functional
specification.

The bias without US states

The auxiliary use of US state-level data increases the precision of WTF estimates in two
ways: not only is estimation error reduced in this process, but the magnitude of the bias is
also revealed.Accounting for the heterogeneity acrossUS states uncovers that theUS states
are able to producemuchmore efficiently than the aggregate (averaged) datawould suggest.
The results presented inTable 1 and visualized in Figure 1 indicate further that enlarging

the dataset by adding US state-level data not only helps alleviate part of the bias inherent
in DEA estimates, but is also clearly complementary to computing bootstrap-based bias-
corrected efficiency estimates (cf. Badunenko et al., 2009). Both of these methods provide
sizeable downward corrections to the estimated Shephard distance measures; using both
methods simultaneously lowers the estimates even further.
Figure 2 provides a convincing graphical illustration that WTF estimates are generally

much lower if only country-level data are used in the estimation procedure. This figure
views (factor-dependent) CDTFP as a function of the input ratio K/H (i.e. K

LU +LS ), whether
the WTF is constructed with or without US state-level data.16 Applying the ‘appropriate
technology vs. efficiency’ decomposition (4), CDTFP is computed as:17

At(Kit ,LU
it ,LS

it)=
yit

EitK�
it (LU

it +LS
it)1−�

, �= 1
3
. (8)

We see that thanks to the auxiliary use of US state-level data, WTF estimates are
improved and their downward bias is reduced: many countries see their technical

16Please note that theWTF itself is a function of three variables, non-decreasing and concave in its whole domain.
In Figure 2, and following Jerzmanowski (2007), only its projection on the K/H axis is presented. It should not be a
surprise that Figure 2 is different from, for example, figures presented in Kumar and Russell (2002): the WTF must
be a non-decreasing function of K , Lu and Ls, but it need not be a monotonic function of K/H .
17Perfect substitutability between skilled and unskilled labour is imposed in the denominator, because in the related

literature, the Cobb–Douglas function is habitually specified with human capital as a homogeneous factor of pro-
duction. Imperfect substitutability is still allowed in the computation of efficiency scores Eit , though. Hence, the
assumption of imperfect substitutability between skilled and unskilled labour does have an impact on CDTFP.
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TABLE 1

Efficiency levels (Shephard distance measures) in 2000 estimated with and without the use of
US state-level data, with and without the Simar and Wilson (1998, 2000) bootstrap

No US states With US states

DEA Bootstrap 95% CI DEA Bootstrap 95% CI
Australia 0.7823 0.7340 0.7028 0.7768 0.7006 0.6838 0.6727 0.6960
Austria 0.8917 0.8641 0.8300 0.8880 0.7581 0.7304 0.7031 0.7546
Belgium 0.9416 0.9105 0.8833 0.9355 0.8529 0.8310 0.8087 0.8489
Canada 1.0000 0.7271 0.7251 0.9921 0.7045 0.6792 0.6599 0.7006
Denmark 0.8220 0.7858 0.7531 0.8168 0.7367 0.7158 0.6980 0.7329
Finland 0.7253 0.7025 0.6814 0.7207 0.6647 0.6503 0.6349 0.6624
France 0.8522 0.8214 0.7895 0.8468 0.7407 0.7183 0.6966 0.7374
Germany 0.7605 0.7012 0.6506 0.7570 0.6202 0.5934 0.5673 0.6184
Greece 0.6416 0.6205 0.5948 0.6394 0.5764 0.5645 0.5548 0.5733
Ireland 1.0000 0.9093 0.8827 0.9915 1.0000 0.9680 0.9559 0.9919
Italy 0.9002 0.8795 0.8587 0.8956 0.8439 0.8227 0.8030 0.8398
Japan 0.6785 0.6294 0.5996 0.6726 0.6336 0.5471 0.5283 0.5716
The Netherlands 0.8649 0.8351 0.8041 0.8593 0.7424 0.7182 0.6954 0.7380
Norway 1.0000 0.9301 0.8958 0.9928 0.9222 0.8890 0.8639 0.9190
Portugal 0.9789 0.9265 0.8801 0.9735 0.9360 0.8881 0.8486 0.9292
Spain 0.8222 0.7933 0.7738 0.8167 0.8125 0.8022 0.7909 0.8105
Sweden 0.7644 0.6869 0.6497 0.7583 0.6582 0.6362 0.6217 0.6531
Switzerland 0.8139 0.7664 0.7193 0.8083 0.6578 0.6199 0.5931 0.6543
UK 0.8610 0.8125 0.7793 0.8546 0.7710 0.7573 0.7472 0.7664
USA 1.0000 0.7251 0.7287 0.9908 0.8946 0.8535 0.8219 0.8859

Notes: DEA, data envelopment analysis; CI, confidence intervals. None of the 95%CI contains the respective DEA
point efficiency estimate because of its upward bias.
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Figure 1. Efficiency levels (Shephard distance measures) in 2000: data-driven bias correction vs. boot-
strap-based bias correction

efficiency (Shephard distance measures) lowered and their potential output increased
because of this step. The average magnitude of the bias uncovered by our procedure is
equal to 0.094, which stands on equal footing with the average magnitude of this bias,
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Figure 2. The world technology frontier in 2000: countries-only data vs. the dataset with both countries and
US states

Notes: ‘Total factor productivity’ refers to CDTFP A(K ,LU,LS) defined in equation (4). Asterisks denote
technologies historically used in OECD countries in 1970–2000.

equal to 0.083, identified with the Simar and Wilson bootstrap procedure by Badunenko
et al. (2009), or 0.067 which is the replica of their results computed for the current
data sample. Most interestingly, if one appends the US state-level dataset to the cross-
country one and then uses the bootstrap procedure too, then the total bias identified in such
a procedure rises to 0.122. Both bias-correction mechanisms are thus complementary to
one another.
The main corollary from this analysis is that the downward bias in WTF estimates

from using country-level data only can be quite substantial, going up to 25% of esti-
mated CDTFP, 30% of estimated technical efficiency and 32% of estimated bias-corrected
technical efficiency, although the effect varies across countries, and may be small for
some.
The differences among countries regarding the magnitude of bias in their efficiency

estimates are indeed large. The maximum observed difference is 30 percentage points in
the case of Canada, and the minimum is zero in the case of Ireland which is fully efficient
in 2000 irrespective of whether US states are included in the sample or not. Apart from
that, relatively poor countries such as Portugal, Spain or Greece record relatively small
differences, up to 7 pp., whereas relatively rich (and highly capitalized) countries such as
Germany or Austria see differences of 14 pp. or more. One potential explanation of this
discrepancy is that the inclusion of US state-level data in our dataset might have increased
the precision of WTF estimates to a much larger extent in some parts of the frontier than
in other parts. In particular, upon inspection of the dataset, it should be expected that
the increase should be most pronounced for high levels of physical capital and skilled
labour.
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The impact of our ‘US-state data-driven’bias correction method on estimated technical
efficiency scores is different from the bootstrap one. Bootstrap corrections tend to lower
estimated efficiencies rather uniformly, with the exceptions of the US and Canada where
visibly larger adjustments up to 27 pp. are obtained. Data-driven corrections proposed here
affect the estimated efficiencies much more unevenly, with the smallest changes present
in Ireland as well as countries with the least similarity in factor endowments to the leading
US states: Spain, Portugal, Japan, Finland and Greece, and the largest change obtained for
Canada. Bootstrap corrections imposed on US-state data-driven corrected estimates are
again very even, with Japan being the only exception.

The bias from aggregating human capital

Let us nowaddress the question, howmuch precision inWTFestimation is gained by allow-
ing skilled and unskilled labour to be imperfectly substitutable. If the frontier estimated
with aggregate human capital data approximately overlapped with the frontier estimated
with skilled and unskilled labour separately, then there would be no substantial gain from
making this distinction. On the other hand, the further away these two estimates are from
each other, the stronger is the indication of limited substitutability between both types of
labour, and the larger is the bias accruing from estimating theWTF with aggregate human
capital data only.

TABLE 2

Estimated efficiency scores (Shephard distance measures) and CDTFP levels.
Homogeneous vs. heterogeneous human capital. DEA results and bias-corrected estimates

Technical efficiency CDTFP

LU ,LS Bootstrap H Bootstrap LU ,LS Bootstrap H Bootstrap
Australia 0.7006 0.6838 0.6858 0.6738 4.7991 4.9166 4.9020 4.9892
Austria 0.7581 0.7304 0.6890 0.6414 4.4581 4.6272 4.9048 5.2688
Belgium 0.8529 0.8310 0.7013 0.6504 3.9441 4.0479 4.7964 5.1721
Canada 0.7045 0.6792 0.6979 0.6873 4.8575 5.0388 4.9039 4.9794
Denmark 0.7367 0.7158 0.6684 0.6408 4.7406 4.8787 5.2251 5.4500
Finland 0.6647 0.6503 0.5723 0.5476 4.4468 4.5452 5.1653 5.3982
France 0.7407 0.7183 0.6802 0.6432 4.7347 4.8823 5.1563 5.4531
Germany 0.6202 0.5934 0.6202 0.5901 4.6729 4.8841 4.6729 4.9115
Greece 0.5764 0.5645 0.5621 0.5561 4.2429 4.3323 4.3510 4.3973
Ireland 1.0000 0.9680 0.9344 0.9238 4.5667 4.7176 4.8876 4.9433
Italy 0.8439 0.8227 0.6623 0.6448 3.9234 4.0247 4.9996 5.1350
Japan 0.5744 0.5471 0.5402 0.5023 4.9082 5.1534 5.2190 5.6125
The Netherlands 0.7424 0.7182 0.6968 0.6668 4.5480 4.7010 4.8453 5.0634
Norway 0.9222 0.8890 0.8069 0.7470 4.4271 4.5924 5.0600 5.4656
Portugal 0.9360 0.8881 0.7213 0.6459 3.6743 3.8726 4.7684 5.3246
Spain 0.8125 0.8022 0.6545 0.6433 4.0115 4.0633 4.9802 5.0669
Sweden 0.6582 0.6362 0.6332 0.6132 5.0094 5.1830 5.2073 5.3777
Switzerland 0.6578 0.6199 0.6207 0.5594 4.7740 5.0656 5.0597 5.6138
UK 0.7710 0.7573 0.7557 0.7459 4.8258 4.9129 4.9232 4.9882
USA 0.8946 0.8535 0.8868 0.8613 5.0570 5.3007 5.1016 5.2524
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In Table 2 we have compared the estimates of technical efficiency obtained with the
use of disaggregated unskilled and skilled labour variables to their counterparts computed
under the assumption of a homogeneous human capital stock, with perfect substitutability
(H =LU +LS). These results have also been corrected for a potential bias due to sampling
error, using the Simar and Wilson (1998, 2000) bootstrap method.
The (LU,LS) efficiency estimates are, by construction, higher or equal than the simpler

H -only estimates. Consequently, (LU,LS) CDTFP estimates must be lower or equal than
their H -only counterparts, indicating that aggregating heterogeneous human capital into
a homogeneous stock leads, by definition, to an overestimation of maximum potential
productivity. The same inequality must hold, by definition, for original estimates and their
bias-corrected counterparts.
We see that the difference between both approaches turns out to be very large in

some countries, which emphasizes the economic importance of imperfect substitutability
between skilled and unskilled labour. The same regularity is visible in bias-corrected
estimates, too. Most importantly, however, the magnitude of this bias is very uneven
across countries: for Germany, there is no difference between both DEA estimates (and
essentially no difference between both bias-corrected estimates), whereas in the extreme
cases of Italy and Portugal, the efficiency factor increases by 18–21 percentage points
when human capital is disaggregated, and CDTFP decreases by 22–23%. This is because
a relatively large fraction of the Italian and Portuguese workforce is unskilled (has com-
pleted less than high school) but the aggregate human capital measures are nevertheless
arguably high there, because there are also reasonably large shares of university graduates –
implying a heavily unbalanced workforce. Estimates of the Italian or Portuguese (as well
as Spanish or Belgian) potential productivity which do not take into account the large dis-
persions in their human capital distributions are therefore likely to be particularly strongly
upward biased.

Evidence for non-neutral technical change

CDTFP has been depicted as a function of the K/H ratio for the year 1970 and 2000
in Figure 3. These frontiers have been estimated with both country-level and US state-
level data, covering either the year 1970 only, or the whole 1970–2000 period,
respectively.
It is instructive to see how the WTF evolved during the 30 years between 1970 and

2000. On the one hand, technological progress has shifted the WTF in its (almost) whole
domain; on the other hand, two additional results must be noted: (i) technical change has
been strongest in the area where the K/H ratio is the largest; and (ii) continued physical
capital accumulation extended the WTF into the range of larger K/H ratios, not observed
in 1970. For lower K/H ratios, technical change was less pronounced, and for the lowest
ones, recorded in Portugal and Spain in 1970, there has not been any technical change at
all, at least in our data.
Finally, the finding that our empirically constructed measures of CDTFP are robustly

factor-dependent (so that, in particular, the curves depicted in Figure 3 are not flat)
implies that the true underlyingWTF production function departs from the Cobb–Douglas
benchmark.
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Figure 3. The direction of technical change, 1970–2000

Notes: ‘Total factor productivity’ refers to CDTFP A(K ,LU,LS) defined in equation (4). Asterisks denote
technologies that would be efficient in 2000 given factor combinations historically observed inOECDcountries
or US states in 1970–2000.

V. Decomposing the distance between OECD countries and the US
Development accounting

The non-parametric production frontier approach taken here is very useful for the purposes
of development accounting: based on equation (1), the ratio of GDP per worker in any two
countries (here, between each particular OECD country and the US in the year 2000) can
be relatively straightforwardly decomposed into a product of (i) the efficiency ratio, and
(ii) differences in potential output attributed to differences in the endowment of each
separate factor of production.
The latter group of factors cannot be determined uniquely, though. The reason is that

when we assess the impact on output of differences in one factor holding other factors
constant, we can hold them constant at different levels: either at US levels, or country
levels, or a mixture of the two. For two factors of production (say, physical capital K and
human capital H ), the situation is relatively simple. In such a case, the best idea would be
to decompose the ratio of GDP per worker between country C and USA (denoted as U )
according to the ‘Fisher-ideal’ decomposition (cf. Henderson and Russell, 2005):

yC(KC ,HC)
yU (KU ,HU )

= EC
EU

· y
*(KC ,HC)
y*(KU ,HU )

= EC
EU

·
√
y*(KC ,HC)
y*(KU ,HC)

· y
*(KC ,HU )
y*(KU ,HU )︸ ︷︷ ︸

Kdifference

·
√
y*(KC ,HC)
y*(KC ,HU )

· y
*(KU ,HC)
y*(KU ,HU )︸ ︷︷ ︸

Hdifference

. (9)

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2012



The world technology frontier 793

With three factors of production which we have in our analysis, the situation gets more
complex: there is no single ‘other factor’which should be fixed at a C or U level but there
are two ‘other factors’which may be fixed at (C,C), (C,U ), (U ,C) or (U ,U ) levels. After
a fair amount of algebra, the ‘Fisher-ideal’decomposition for such a case is found to satisfy
the following:

yC(KC ,LU
C ,LS

C)
yU (KU ,LU

U ,LS
U )

= EC
EU

· y
*(KC ,LU

C ,LS
C)

y*(KU ,LU
U ,LS

U )

= EC
EU

·K diff ·LU diff ·LS diff (10)

where

K diff= 6

√(
y*(KC ,LU

C ,LS
C)

y*(KU ,LU
C ,LS

C)

)2 y*(KC ,LU
C ,LS

U )
y*(KU ,LU

C ,LS
U )
y*(KC ,LU

U ,LS
C)

y*(KU ,LU
U ,LS

C)

(
y*(KC ,LU

U ,LS
U )

y*(KU ,LU
U ,LS

U )

)2

,
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√(
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C ,LS
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U ,LS
U )
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(
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√(
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)2

.

Please note that in each of the fractions indicated above, the numerator and denomina-
tor differ by a single variable only, being the variable whose contribution to the total GDP
ratio we are about to measure.
The current development accounting exercise can be done for any given year in exactly

the same way; to obtain maximum available precision, we have chosen to do this exercise
for the year 2000. The results of our numerical computation of decomposition (10) are
presented in Table 3. ‘H diff’ is the total impact of human capital differences, being the
product of LU diff and LS diff.

Efficiency vs. ‘appropriate technology’

Another advantage of the non-parametric frontier estimation method taken here is that it
allows one to decompose the GDP ratio into the efficiency differential, the factor
endowments differential, and the ‘appropriate technology’ ratio capturing the differences
in maximum attainable production given factor endowments. Referring to equation (4) and
adding the assumption of perfect substitutability between skilled and unskilled labour to
attain comparability to the established literature, the ‘efficiency vs. appropriate technology’
decomposition can be written as:

yC(KC ,LU
C ,LS

C)
yU (KU ,LU

U ,LS
U )

= EC
EU︸︷︷︸

efficiency

· A(KC ,L
U
C ,LS

C)
A(KU ,LU

U ,LS
U )︸ ︷︷ ︸

appropriate tech.

· K
�
C

K�
U︸︷︷︸

Kdiff

· (L
U
C +LS

C)1−�

(LU
U +LS

U )1−�︸ ︷︷ ︸
Hdiff

, (11)

where �=1/3.
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TABLE 3

Decomposition of the distance between a given OECD country and the US in 2000

GDP ratio Efficiency K diff Lu diff Ls diff Hdiff
Australia 0.7544 0.7831 0.9789 1.0373 0.9489 0.9842
Austria 0.8712 0.8474 1.0766 1.0397 0.9185 0.9550
Belgium 0.8926 0.9534 1.0643 1.0903 0.8069 0.8797
Canada 0.7426 0.7875 0.9431 0.9958 1.0041 0.9999
Denmark 0.7521 0.8234 1.0172 1.0872 0.8259 0.8979
Finland 0.6737 0.7430 1.0269 1.1019 0.8014 0.8830
France 0.8242 0.8280 1.0510 1.0477 0.9040 0.9471
Germany 0.7605 0.6933 1.0812 1.0047 1.0097 1.0145
Greece 0.4781 0.6443 0.7487 1.2338 0.8033 0.9911
Ireland 0.8811 1.1178 0.8559 1.1948 0.7708 0.9210
Italy 0.7581 0.9433 1.0091 1.2124 0.6569 0.7964
Japan 0.6643 0.6421 1.0756 1.0346 0.9298 0.9619
The Netherlands 0.8451 0.8298 1.0553 1.0338 0.9335 0.9651
Norway 0.9528 1.0308 1.0679 1.0939 0.7912 0.8655
Portugal 0.5069 1.0456 0.8483 1.9419 0.2943 0.5714
Spain 0.6613 0.9082 0.9234 1.2555 0.6281 0.7885
Sweden 0.6939 0.7358 0.9942 1.0599 0.8950 0.9485
Switzerland 0.8096 0.7353 1.1074 1.0091 0.9853 0.9942
UK 0.7338 0.8618 0.8657 1.1020 0.8925 0.9836

Notes: For each country, the product of contributions of efficiency, physical capital K , unskilled labour Lu, and
skilled labour LS is equal to theGDPratio. The product of Lu and Ls differentials is the total human capital differential
(‘H diff’).

Please note the different definitions of the ‘K diff’ and ‘H diff’ terms in equations (10)
and (11). In the former equation, they refer to the fraction of the cross-country productivity
ratio attributable to differences in quantities of respective production inputs. In the latter
one, they refer to the same fraction, albeit computed under the counterfactual assumption
that the production function is Cobb–Douglas. This implies that in the typical case, factor
contributions are better quantified in equation (10), whereas equation (11) can single out
the ‘appropriate technology’(CDTFP) terms only at the cost of compromising the precision
of estimates of factor contributions. This cost is inherent in all ‘appropriate technology vs.
efficiency’decompositions which view the non-parametrically estimatedWTF through the
lens of the Cobb–Douglas production function structure.
The results of this exercise are presented in Table 4, from which we learn that the

contributions attributed directly to factor endowments in the ‘appropriate technology vs.
efficiency’ decomposition are much smaller than they were in the decomposition based on
our non-parametric estimates (K diff and H diff are now markedly closer to unity), and
a significant fraction of the productivity differential which was previously attributable to
factor endowments is now shifted to the ‘appropriate technology’ (CDTFP) ratio. Indeed,
for countries like Belgium or Italy, ‘inappropriateness of technology’ explains most of the
productivity differential. There are also important counterexamples, however: Japan and
Sweden could produce almost as much as the US given their factor endowments (their
CDTFP is very close to the US one) but they do not because of markedly lower technical
efficiency.
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TABLE 4

Decomposition of the distance between a given OECD country and the US in 2000: efficiency vs.
‘appropriate technology’

GDP ratio Efficiency Techn. K diff H diff
Australia 0.7544 0.7831 0.9490 0.9857 1.0299
Austria 0.8712 0.8474 0.8816 1.0654 1.0947
Belgium 0.8926 0.9534 0.7799 1.0691 1.1229
Canada 0.7426 0.7875 0.9605 0.9665 1.0157
Denmark 0.7521 0.8234 0.9374 1.0148 0.9601
Finland 0.6737 0.7430 0.8793 1.0255 1.0055
France 0.8242 0.8280 0.9363 1.0411 1.0212
Germany 0.7605 0.6933 0.9241 1.0478 1.1328
Greece 0.4781 0.6443 0.8390 0.8520 1.0381
Ireland 0.8811 1.1178 0.9031 0.9022 0.9675
Italy 0.7581 0.9433 0.7758 1.0086 1.0270
Japan 0.6643 0.6421 0.9706 1.0612 1.0046
The Netherlands 0.8451 0.8298 0.8994 1.0417 1.0871
Norway 0.9528 1.0308 0.8754 1.0965 0.9628
Portugal 0.5069 1.0463 0.7266 0.8562 0.7788
Spain 0.6613 0.9082 0.7933 0.9366 0.9801
Sweden 0.6939 0.7358 0.9906 0.9957 0.9562
Switzerland 0.8096 0.7353 0.9440 1.1019 1.0584
UK 0.7338 0.8618 0.9543 0.9166 0.9736

Notes: For each country, the product of contributions of efficiency, appropriate technology, physical
capital K and human capital H is equal to the GDP ratio.

VI. Decomposing GDP growth
Growth accounting

Analogously to the development accounting exercise described above, we will now con-
duct a growth accounting exercise aimed at decomposing the total 1970–2000 increase
in GDP per worker into the impacts of (i) changes in efficiency relative to the WTF,
(ii) technological progress at the WTF, and (iii) factor accumulation.
As compared to development accounting, there is one additional factor which ought

to be disentangled here: technological progress at the frontier, which pushes the WTF
forward so that potential productivity is increased. Formally, with three factors of produc-
tion, K ,LU,LS, the ‘Fisher-ideal’ (cf. Henderson and Russell, 2005) decomposition of the
2000/1970 productivity ratio is the following (denoting s=1970,n=2000):
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. (12)

The decomposition of GDP growth defined in equation (12) singles out the dynamic
changes in efficiency, shifts in the technology frontier given factor endowments and factor
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accumulation holding the technological frontier fixed. Furthermore, each of the two factors
making up the ‘factor accumulation’ part should be further decomposed following equa-
tion (10) so that the contribution of each particular factor’s accumulation to productivity
growth is properly accounted for.
Theproduct of the ‘efficiency change’and ‘technological progress’factors is also known

as the (output-oriented)Malmquist productivity index in theDEAliterature (cf. Fried et al.,
1993). It measures, for each country and time period, the total change in productivity which
resulted from anything but factor accumulation. In otherwords, theMalmquist productivity
index captures the total productivity improvement under technologies actually used in the
given country, whereas our ‘technological progress’ index measures the total productivity
improvement under frontier technology, given the country’s factor endowments.
Table 5 presents the results of the current growth accounting exercise for OECD coun-

tries. Once again, the WTF has been estimated here with the use of US state-level data as
well, but the decompositions of state-level productivity growth are not presented. The num-
bers included in Table 5 (and in all further growth accounting exercises) are 2000/1970
ratios of respective variables, computed according to the definitions described in equa-
tion (12), and then transformed into average annual growth rates (in %) by applying the
transform x �→ ( 30

√
x−1) ·100%.

The remarkable growth experience of Ireland whose GDPper worker has almost tripled
during the considered 30 years, turns out to be mostly due to rapid capital accumulation
and the ability to draw from the pool of worldwide technological change. The same factors
have also been crucial for Japan in the considered period, but the overall Japanese perfor-
mance was somewhat less striking than the Irish one due to a simultaneous marked decline
in technical efficiency.18 An important group of countries encompasses Italy, the Nether-
lands, Finland and Spain which have all obtained remarkable gains in productivity due
to improvements in the level of schooling. The positive impact of technological progress
has been felt most strongly in Switzerland and the USA while it was least pronounced in
Portugal and Spain which were initially too undercapitalized and undereducated to take
full advantage of the incoming developments.

Shifts of the WTF vs. movements along the WTF

Using the auxiliary Cobb–Douglas production function structure inherent in all ‘appropri-
ate technology vs. efficiency’ decompositions, the 2000/1970 productivity ratio can also
be decomposed into contributions attributable to (i) efficiency changes (i.e. changes in
the distance to the WTF), (ii) technological progress shifting the WTF, (iii) changes in
factor-specific CDTFP given a certain WTF (i.e. movements along the frontier), and (iv)
factor accumulation.
To our knowledge, this decomposition has not been considered in the literature yet. Its

crux lies with the fact that CDTFP is dependent not only on factor endowments, but also on
time, and that it may increase asymmetrically thanks to new technological developments.
Formally, the ‘Fisher-ideal’ decomposition, taking full account of technological change,

18The Japanese technical efficiency in 1970 could have been sharply overestimated, however, due to data scarcity
and a rather unusual (as compared to other units in the sample) factor mix observed in Japan in that year.
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TABLE 5

Decomposition of average annual growth rates in the 1970–2000 period

Growth (%) Efficiency (%) Techn (%) K diff (%) Lu diff (%) Ls diff (%) H diff (%)
Australia 1.34 −0.47 0.86 0.39 −0.21 0.78 0.56
Austria 2.21 0.09 0.93 0.63 −0.03 0.58 0.54
Belgium 1.96 −0.09 0.74 0.44 −0.03 0.90 0.86
Canada 1.23 −0.37 1.05 2.22 −3.56 2.00 −1.64
Denmark 1.29 −0.17 0.78 0.28 −0.08 0.48 0.40
Finland 1.98 −0.42 0.67 0.22 −0.69 2.21 1.51
France 1.89 −0.48 0.85 0.53 −0.87 1.87 0.98
Greece 1.31 −1.00 0.36 1.00 −0.17 1.13 0.95
Ireland 3.62 0.43 0.34 2.80 −0.96 1.01 0.04
Italy 1.78 −0.33 0.50 0.17 −0.22 1.65 1.43
Japan 2.33 −1.51 0.78 3.10 −2.25 2.31 0.00
The Netherlands 1.07 −0.99 0.69 0.08 −2.33 3.71 1.29
Norway 2.31 0.66 0.69 0.16 −0.52 1.32 0.79
Portugal 2.17 −0.22 0.15 1.82 −1.38 1.82 0.41
Spain 1.95 −0.69 0.26 0.84 −0.42 1.97 1.54
Sweden 1.06 −0.66 0.82 0.14 −2.08 2.90 0.77
Switzerland 0.62 −1.11 1.28 0.14 −0.13 0.45 0.32
UK 1.91 0.01 0.56 0.66 −0.40 1.06 0.65
USA 1.68 −0.04 1.15 1.45 −1.42 0.55 −0.88
Notes: For each country, the product of proportional contributions of efficiency change, technological progress

at the world technology frontier, physical capital accumulation K , unskilled labour accumulation Lu and skilled
labour accumulation Ls is equal to the total proportional GDP increase in 1970–2000. The proportional contribution
of human capital H is the product of contributions of Lu and Ls. The values expressed here are annualized growth
rates of these contributions.

is obtained from the following formula:
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, (13)

where we denoted xi= (Ki,LU
i ,LS

i ), i=n, s for simplicity.
The novelty in the decomposition summarized in equation (13) is that we are able

to disentangle three characteristics of technological change here: efficiency, shifts of
the WTF and movements along the WTF. In previous contributions such as Kumar and
Russell (2002) or Jerzmanowski (2007), the last two factors were lumped together. We
believe however that they should be separated, because they describe two conceptually
different phenomena – of (presumably R&D-driven) technological change at the frontier
and of getting access to better (already known) technologies applicable to the country’s
new factor mix.
The results of this decomposition, presented in the form of average annual growth rate

contributions, are presented in Table 6. It is clear from this table that shifts of the WTF
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TABLE 6

Decomposition of productivity growth in the 1970–2000 period. Efficiency changes,
shifts of the world technology frontier (WTF) and movements along the WTF

Growth (%) Efficiency (%) WTF shift (%) Along WTF (%) K diff (%) H diff (%)
Australia 1.34 −0.23 0.95 −0.33 0.52 0.41
Austria 2.21 0.08 1.14 −0.32 0.89 0.41
Belgium 1.96 −0.10 1.19 −0.43 0.80 0.48
Canada 1.23 −0.34 0.82 −0.21 0.60 0.35
Denmark 1.29 −0.26 1.02 −0.14 0.53 0.13
Finland 1.98 −0.05 0.95 −0.37 0.64 0.81
France 1.89 −0.16 1.08 −0.39 0.84 0.51
Greece 1.31 −0.65 0.36 0.15 0.66 0.78
Ireland 3.62 0.20 0.41 1.31 1.18 0.49
Italy 1.78 −0.03 0.95 −0.45 0.56 0.75
Japan 2.33 −1.42 0.85 0.51 1.57 0.84
The Netherlands 1.07 −0.56 1.33 −0.51 0.28 0.53
Norway 2.31 0.75 1.17 −0.26 0.62 0.00
Portugal 2.17 −1.08 0.19 1.48 1.22 0.36
Spain 1.95 −0.99 0.56 0.43 1.04 0.91
Sweden 1.06 −0.37 0.98 −0.25 0.36 0.34
Switzerland 0.62 −1.21 1.47 −0.47 0.45 0.40
UK 1.91 0.35 0.52 0.02 0.61 0.38
USA 1.68 −0.05 0.94 −0.10 0.68 0.21

Notes: For each country, the product of proportional contributions of efficiency change, technological progress at
the WTF, movement along the WTF, physical capital accumulation K and human capital accumulation H is equal
to the total proportional GDP increase in 1970–2000. The values expressed here are annualized growth rates of these
contributions.

due to technological progress have been the primary contribution to GDP growth in all
considered OECD countries but Portugal (and to a lesser extent, Greece and Ireland). For a
few interesting cases, movements along the frontier have constituted an important contri-
bution as well: most notably, Ireland and Portugal, and to a lesser extent, Spain, Japan and
Greece. Along-the-frontier movements are highly correlated with capital accumulation:
both factors are strongest in the same group of countries, consisting of Japan, Portugal,
Ireland and Spain.
One feature of these results is that the contributions ofWTF shifts andmovements along

the WTF are strongly negatively correlated. Indeed, the raw ex post correlation between
these two contributions (transformed into annualized growth rates) is −0.81. A negative
interpretation of this fact could be that there is really just a single factor ‘technical change’
that matters, and decomposing it further adds very little new insight. In particular, this
might be the case if the Cobb–Douglas specification severely misrepresents the true pro-
duction function and the ‘appropriate technology vs. efficiency’ decomposition captures
primarily this discrepancy, not the endogeneous technology choice within economies.
Nevertheless, we would rather advocate a positive interpretation instead, which seems

very plausible empirically: since all the factor definitions put forward in equation (13)
are interpretable in terms of the ‘appropriate technology vs. efficiency’ decomposition (4)
– these factors indeed measure (i) shifts in the frontier CDTFP holding factor endow-
ments constant, and (ii) changes in CDTFP due to factor accumulation, holding the WTF
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constant – arguably, we might have actually uncovered a more general real-world regu-
larity here. In particular, it could be the case that, as suggested by the above-mentioned
strong negative correlation between the ‘WTF shift’ and the ‘movement along WTF’ fac-
tors, CDTFP in a country can grow either due to the worldwide technical change increasing
CDTFP at the frontier or due to movements along the frontier, but not due to both simul-
taneously. This interpretation is corroborated by the three following findings:

(i) The factor-dependent CDTFP level, characterizing theWTF, depends positively on
the amount of available physical capital (confirming previous findings of Kumar
and Russell, 2002; Henderson and Russell, 2005, etc.).Accumulating physical cap-
ital is therefore associated with moving along the WTF – from low values where
frontier TFP is also low, to high values where frontier TFP is high. In our current
sample, the ex post correlation between the capital accumulation factor and the
‘movement along WTF’ factor is +0.74.

(ii) Once the differences in technical efficiency are filtered away, there appears a clear
real convergence pattern: countries which were relatively undercapitalized initially
were accumulating capital faster (in percentage terms). This implies large techno-
logical benefits due to the movements along the WTF in these countries, but not in
countries which were highly capitalized initially.As a result, the ex post correlation
between the capital accumulation factor and the aggregate ‘technical change factor’
(WTF shift × movement along WTF) is +0.71.

(iii) Not only is CDTFP higher in the range of high capital levels, but it is also growing
faster over time in that range. Therefore, countries which had an abundance of pro-
duction factors in the beginning,weremore able to reap the benefits of technological
progress at the WTF than countries which lacked them (cf. Atkinson and Stiglitz,
1969; Basu and Weil, 1998; Kumar and Russell, 2002). On the other hand, due to
the real convergence mechanism described above, these countries would accumu-
late capital slower (in percentage terms) than the catching-up countries, and thus
gain less from capital deepening. The correlation between the capital accumulation
factor and the ‘WTF shift’ factor is −0.51.

Summarizing, we view the strong negative correlation between the ‘WTF shift’ and
‘movement along WTF’ factors as an outcome of an interplay of real convergence, the
fact that CDTFP is increasing in the country’s capital endowment and that technological
progress at the frontier is realized mostly for high capital levels.
Hence, one may conjecture that countries could actually grow thanks to both shifts of

the WTF and movements along the WTF, but this would require at least one of the three
above regularities to be violated. We do not see such departures in our data, but they can
potentially be found for different sets of countries (including less developed economies)
or for different periods of time.

VII. Robustness
The strength of the DEAmethod is that it does not require any a priori assumptions on the
shape of the world’s best-practice production function but helps construct it as a piecewise
linear function from the efficient observations present in the data. Its weakness is, however,
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that it would yield only a rough estimate of the true production function if the sample is
small or dominated by a few outlying observations.19
We addressed this issue in the following way. First, by appending US state-level data to

a cross-country dataset, and allowing earlier technologies to span the technology frontier
at later dates as well (cf. Henderson and Russell, 2005), we have largely alleviated the
small sample size problem. This applies especially to the final year 2000 for which we
carry out our development accounting analyses. Second, as far as outliers are concerned,
an (inverse) indicator of their presence is the number of frontier observations: the more
of them, the ‘smoother’ is the estimated frontier production function, and the less pro-
nounced is the potential outlier problem. In the estimates reported above, there are 38
frontier observations in 2000. Before dropping New Hampshire, there were only 29 of
them. Before dropping Colorado, Nevada, Utah on top of that, there were again 29. Before
dropping Delaware on top of that, there were 25. Before droppingAlaska, Louisiana, New
Mexico,West Virginia, Wyoming on top of that, theWTF was spanned almost exclusively
byAlaska, at all periods of time, subsequently lowering the efficiency factor in most other
US states by as much as 10–30 percentage points.
The chief reason to drop several states from the current analysis is the extent of their

mining activity: resource rents are part of their state GDP but are not accounted for in the
estimated production function. Another important reason to drop a few ‘suspicious’ US
states from our dataset is their extent of economic specialization. One has to keep in mind
that even though US states may be assumed to be local open economies, characterized by
their own input mixes and productivity, they are also constituent parts of the entire US
which is a large system of free trade and free flows in capital and labour.20 Hence, some
states might have obtained some extra productivity thanks to specializing in more profit-
able sectors of the economy, leaving the less profitable but necessary activities such as
farming to other states, whose productivity was thereby impaired. Hence, excluding such
strongly specialized states from the sample is beneficial for the quality of our ‘macro-level’
(i.e. aggregate, not sectoral) WTF estimates.
While the shape of the estimated WTF depends critically on the few efficient observa-

tions, potentially outliers, the results of the associated growth and development accounting
exercises are more robust to this problem. This was confirmed by comparing the results
across different samples of US states, described above. In particular, upon dropping Colo-
rado,Delaware, Nevada,NewHampshire andUtah from the sample, none of the qualitative
results of our development and growth accounting exercises was affected. Quantitatively,
there have been a few visible changes, of course – most importantly, efficiency levels
rose markedly in some countries/states as the aforementioned US states were dropped –

19Given this limitation, an important alternative to the DEA method has been proposed in the literature: the sto-
chastic frontier approach (see e.g. Koop, Osiewalski and Steel, 1999, 2000), which sacrifices some flexibility in the
functional form – usually a parametric translog production function is assumed there – for more robustness to outliers
and the possibility to compute standard errors of all estimates. The last advantage vanishes, however, when the DEA
method is augmented with a bootstrap procedure.
20Needless to say, all economies in our sample are actually open economies, engaging in international trade and

specializing in the production of selected goods and services. Moreover, we have recently observed large increases
in the level of economic integration among countries of the European Union, so that the specialization argument
might now be applied to European cross-country data with substantial strength as well. There has not been much
integration across countries in earlier periods of our study, such as the 1970s and 1980s, though. In contrast, high
levels of integration have undoubtedly been present in the US already in the 1970s.
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but these level changes affected our sample largely symmetrically, leaving the ratios and
growth rate contributions relatively little affected. An analogous conclusion on robustness
was also reached by Jerzmanowski (2007).
Finally, we have assessed the magnitude of bias in our estimates by applying the Simar

and Wilson (1998, 2000) bootstrap. The results were discussed in section IV.

VIII. Conclusion
The current study has revisited the findings of the literature on the WTF. Thanks to the
use of a database consisting of both cross-country and US state-level data, we were able to
estimate theWTFwithmarkedly higher accuracy than in the previous literature: theUS had
been typically found to span the frontier there, but assuming it to be a single data point con-
ceals substantial technological heterogeneity within the US. By relaxing this assumption,
we have not only improved the precision of the previousWTF estimates, but also identified
the magnitude of upward bias in earlier estimates of countries’ technical efficiency.
Our results indicate that the WTF is spanned by a number of US states; the US as a

whole falls markedly behind the frontier spanned by its most efficient states. This means
that previous estimates of the WTF have been downward biased. Furthermore, the source
of bias identified here thanks to the use of (highly relevant) US state-level data along-
side international data is decidedly different from the sampling one identified by bootstrap
procedures (cf. Simar and Wilson, 1998, 2000). Both these biases might be addressed
simultaneously, leading to different results than in the case where only one of them is
taken into account.
Our further contribution to the non-parametric cross-country productivity literature is

that following Caselli and Coleman (2006), we have split the hitherto homogeneous human
capital input into human capital-adjusted stocks of unskilled and skilled labourwhichmight
not be perfectly substitutable. This allowed us to obtain further increases in the precision
of WTF estimates.
Based on our dataset, which extends the ones used in earlier literature in the two

aforementioned ways, we find that technological progress over the period 1970–2000 has
been decidedly non-neutral, faster in the range of more capital-intensive technologies. Our
results also imply that the WTF (the world’s best practice technology) exhibits substantial
departures from the Cobb–Douglas production function specification.
Our next step has been to plug our adjusted WTF estimate into a series of develop-

ment and growth accounting exercises. First, we have used the DEAmethod to decompose
countries’ productivity into (i) technical efficiency, and (ii) frontier productivity (potential
GDP per worker attainable if the factors were used at 100% efficiency). We have then
used this distinction to decompose differences in GDP levels across countries and time.
Furthermore, an auxiliary use of the Cobb–Douglas production function structure, pres-
ent in the ‘appropriate technology vs. efficiency’ decompositions, enabled us to back out
the factor-dependent residual TFP (CDTFP) and therefore to provide a calculation of the
extent to which the observed productivity differences were due to differences in efficiency,
and the extent to which they were due to differences in ‘appropriateness of technology’
(Basu and Weil, 1998). When used in growth accounting, this last decomposition enabled
us to split the observed productivity improvements into factors attributable to (i) changes
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in technical efficiency, (ii) shifts of the WTF, and (iii) movements along the WTF. This
last distinction is novel to the literature.
What remains on our research agenda is to extend the current investigation to other data-

sets, preferably including developing economies as well. This would help further increase
the precision of WTF estimates and all growth and development accounting exercises
based on them. Another idea which looks promising would be to draw some conclusions
on the shape of the aggregate production functions, based on our non-parametric estimates.
In particular, one could try to identify the empirical patterns behind factor-dependent TFP,
partial elasticities and elasticities of substitution, once the assumption of their constancy
(implied by the Cobb–Douglas specification) is relaxed. Yet another idea would be to look
for an empirical test able to identify the extent to which the ‘appropriate technology’ term
indeed captures endogeneous technology choice, and to which it just mirrors production
function misspecification.

Final Manuscript Received: October 2011
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Appendix A: Efficient technologies in 2000
The WTF in 2000, estimated with 1970–2000 data, is spanned by the 38 efficient tech-
nologies summarized in Table A1. It might be surprising that old (but not new) tech-
nologies from such low-output locations as Portugal, Spain or Nebraska, are still efficient
in 2000. This is due to the fact that Portugal and Spain in 1970–1980 relied heavily on
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TABLEA1

Efficient technologies in 2000 and their bias-corrected
efficiency scores

Efficient unit Bootstrap 95% CI
Florida 1970 0.8124 0.7915 0.9911
Georgia 1970 0.7263 0.7109 0.9908
Minnesota 1970 0.7335 0.7160 0.9923
North Carolina 1970 0.7344 0.7175 0.9896
Nebraska 1970 0.7287 0.7184 0.9890
South Dakota 1970 0.7423 0.7215 0.9925
Vermont 1970 0.7367 0.7135 0.9908
Washington 1970 0.8273 0.7806 0.9928
Japan 1970 0.7321 0.7176 0.9920
Netherlands 1970 0.8641 0.8272 0.9895
Portugal 1970 0.7340 0.7186 0.9928
Spain 1970 0.8130 0.7807 0.9904
Idaho 1975 0.7350 0.7175 0.9910
Nebraska 1975 0.7266 0.7167 0.9932
Portugal 1975 0.7359 0.7195 0.9902
Spain 1975 0.8538 0.8186 0.9925
Arizona 1980 0.9162 0.8709 0.9928
Minnesota 1980 0.7299 0.7166 0.9891
Texas 1980 0.9259 0.9036 0.9932
Vermont 1980 0.7295 0.7199 0.9924
Washington 1980 0.7253 0.7125 0.9898
Portugal 1980 0.8172 0.7592 0.9919
Arizona 1985 0.8875 0.8534 0.9920
Minnesota 1985 0.8721 0.8104 0.9911
Vermont 1985 0.7385 0.7210 0.9930
Washington 1990 0.7330 0.7197 0.9920
Arizona 1995 0.9246 0.9004 0.9906
Idaho 1995 0.9122 0.8450 0.9928
Minnesota 1995 0.7329 0.7180 0.9927
Washington 1995 0.7371 0.7170 0.9915
Arizona 2000 0.9439 0.9277 0.9921
Connecticut 2000 0.8537 0.8221 0.9928
Georgia 2000 0.9521 0.9322 0.9919
Minnesota 2000 0.7867 0.7590 0.9929
North Carolina 2000 0.8156 0.7990 0.9908
New Jersey 2000 0.8558 0.8309 0.9914
Washington 2000 0.7285 0.7178 0.9901
Ireland 2000 0.9680 0.9559 0.9919

Notes: CI, confidence intervals. None of the 95% CI contains
the respectiveDEApoint efficiency estimate because of its upward
bias. OECD countries are indicated in bold.

unskilled labour for production, at the same time being relatively undercapitalized and
undereducated. In fact, no country was able to use unskilled labour so efficiently later –
they all produced more but this was mostly due to larger factor inputs. Similarly, Nebraska
in 1970–75 was relatively undercapitalized (at least for US standards) but produced a
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reasonably high output nevertheless.21 The old Nebraskan technology is thus still efficient,
but useful only for sufficiently low capital–labour ratios.
On the other hand, the bootstrap exercise performed on these data suggests that some

of the aforementioned findings might have been heavily affected by DEA estimation bias.
Indeed, most of the bias-corrected efficiency scores visible in TableA1 are far below unity,
and confidence intervals associated with their estimates are relatively wide. This applies
particularly to the 1970–85 technologies identified as still efficient in 2000.

Appendix B: Changes in technical efficiency across time
It is also interesting to trace the evolution of technical efficiency (Shephard distance mea-
sures) Eit across the years 1970–2000. This can be seen in Table B1. An analogue of
Table B1 with bootstrap bias-corrected efficiency scores is available from the author upon
request.
We see that for each country, there is substantial temporal variability in this variable

which could be explained by the arrivals of new frontier technologies (mostly in the US),
affecting the relative ranking of each country’s technology in an non-uniform way. Some
trends are clearly visible, though: technical efficiency in Canada, France, Greece, Italy,
Japan, the Netherlands, Spain and Sweden has fallen until 2000 by 10% or more from
what it once used to be, indicating that losses in technical efficiency might have been the
primary force behind weaker growth performance of these countries as compared to the

TABLE B1

Changes in technical efficiency (Shephard distance measures) Eit across time

1970 1975 1980 1985 1990 1995 2000

Australia 0.8080 0.7696 0.7298 0.7289 0.6814 0.7014 0.7006
Austria 0.7377 0.7719 0.7917 0.8008 0.7910 0.7497 0.7581
Belgium 0.8774 0.8766 0.9002 0.8763 0.9120 0.8693 0.8529
Canada 0.7885 0.7977 0.7236 0.7146 0.6685 0.6652 0.7045
Denmark 0.7762 0.7220 0.7020 0.7273 0.6988 0.7271 0.7367
Finland 0.7541 0.7340 0.6978 0.7028 0.7103 0.5913 0.6647
France 0.8564 0.8087 0.8118 0.8257 0.8395 0.7619 0.7407
Germany n/a n/a n/a n/a 0.6256 0.6237 0.6202
Greece 0.7801 0.7509 0.7572 0.6756 0.6451 0.5786 0.5764
Ireland 0.8805 0.7733 0.7391 0.6753 0.7503 0.8190 1.0000
Italy 0.9307 0.9033 1.0000 0.9734 0.9801 0.9066 0.8439
Japan 1.0000 0.6467 0.6301 0.6551 0.7068 0.6512 0.6336
The Netherlands 1.0000 1.0000 0.9749 0.8541 0.7977 0.7498 0.7424
Norway 0.7574 0.8207 0.8656 0.9025 0.8474 0.8651 0.9222
Portugal 1.0000 1.0000 1.0000 0.8361 0.9973 0.9249 0.9360
Spain 1.0000 1.0000 0.9580 0.8763 0.9371 0.8238 0.8125
Sweden 0.8027 0.7981 0.7324 0.7239 0.7271 0.6518 0.6582
Switzerland 0.9187 0.8816 0.9532 0.8752 0.8101 0.7122 0.6578
UK 0.7679 0.7408 0.6857 0.7034 0.7573 0.7459 0.7710
USA 0.9045 0.9096 0.8876 0.9082 0.8654 0.8932 0.8946

21Temporarily high corn and soy prices in 1975 might have had an impact on this result as well, though.
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US. In Ireland, on the other hand, technical efficiency was declining until its minimum in
1985 but quickly increased again since that year, and Ireland eventually came to span the
WTF in 2000.
On the other hand, some European countries, as well as Japan, might have lost some

technical efficiency as wemeasure it (i.e. relative to certain US states) in the last considered
decade, 1990–2000, due to the surge in ICT investment observed in the 1990s, culminating
in the ‘internet bubble’which burst in the US in 2000/01, which was much less pronounced
in European countries such as Germany, France, Italy (Timmer, Ypma and van Ark 2003)
and Japan. That is to say, GDP per worker in the US might have actually been temporarily
overshooting the fundamentals in 2000. Thus, the decline in technical efficiency between
1990 and 2000 in several countries might have been a transitory phenomenon. More recent
data are required to verify this conjecture, though.
In Table B1 we report countries’efficiency levels only but we refer to theWTF spanned

by individual US states as well. One caveat when reading this table is that the precision
of estimation of WTF is progressively increasing when we move from 1970 to 2000. For
this reason, for example, the sudden drop of efficiency in Japan between 1970 and 1975
might not be ameaningful phenomenon but an artefact of Japanese efficiency being sharply
overestimated in 1970 (due to data scarcity).

Appendix C: A comment on computing cross-country productivity distribu-
tions
Most macroeconomic contributions based on the non-parametric DEA method (e.g.
Kumar andRussell, 2002;Henderson andRussell, 2005) have also emphasized themethod’s
implications for the evolution of the cross-country distribution of productivity. In line with
earlier findings due to Quah (1996, 1997), they showed that in the post-war period, this dis-
tribution has evolved froma uni-modal to a visibly bi-modal distribution, thereby providing
support for Quah’s ‘twin peaks’(or ‘club convergence’) hypothesis. They also decomposed
this evolution into components attributable to factor accumulation, technological progress
at the frontier and changes in technical efficiency.
There is one crucial problem with these analyses, though: their basic unit of observa-

tion is a country. Although this approach might be justified on many grounds (political,
sociological, cultural, etc.), one worry will always remain – namely that countries are very
uneven in terms of their size, internal heterogeneity and the degree of economic special-
ization. Why should Luxembourg, the Netherlands, UK, USA and China be treated on
par if their sizes are so vastly different? Analogously, why should for example the US be
weighted as one [observation], while the European Union as 27 [observations] if these two
entities are comparable in terms of their economic size? Finally, why should an (artifi-
cial) splitting of the US into its 50 constituent states shift the productivity distribution so
strongly to the right, as it would in these analyses?
These considerations bring us to the conclusion that, while it is absolutely legitimate

to do cross-country investigations on the determinants of productivity (e.g. institutions are
likely to vary much more across countries than within countries and they are a likely cause
for differences in technical efficiency), the concept of a cross-country productivity distri-
bution is heavily data-driven. Split a country into a thousand entities and they will swamp
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the distribution. Another misguided application of this idea would be to try to estimate the
productivity distribution within our sample consisting of 70 ‘countries’, among them 50
US states. Of course, we do not do that. Instead, our aim is to use state-level data to recover
more precise information about best-practice technologies.
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