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Balanced (exponential) growth cannot be generalized to a concept which would not
require knife-edge conditions to be imposed on dynamic models. Already the assumption
that a solution to a dynamical system (i.e. time path of an economy) satisfies a given func-
tional regularity (e.g. quasi-arithmetic, logistic, etc.) imposes at least one knife-edge
assumption on the considered model. Furthermore, it is always possible to find divergent
and qualitative changes in dynamic behavior of the model – strong enough to invalidate
its long-run predictions – if a certain parameter is infinitesimally manipulated.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

One of the aspects present in the debate on sources and limitations of long-run growth is the prevalence of knife-edge
conditions in certain classes of growth models. According to Uzawa (1961), technical change must be purely labor-augment-
ing in neoclassical growth models if balanced growth is to be obtained. Much more recently, the fact that endogenous growth
models rely on linear differential equations for the existence of a balanced growth path (BGP) has sparked the ‘‘linearity cri-
tique” (cf. Jones, 2005a), according to which there is no a priori reason to believe that in a given equation of form:
_X ¼ aX/; ð1Þ
the parameter / would be exactly equal to 1, guaranteeing the existence of a BGP.1 Indeed, sufficiently small deviations from
/ ¼ 1 will never be rejected on purely statistical premises, no matter what type of real-world data is used in the empirical work.
But it is the exact linearity of (1), or purely labor-augmenting technical change in the case of neoclassical growth models, which
is conducive to balanced (exponential) growth.
. All rights reserved.
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ide range of economic variables for X under the knife-edge restriction that / ¼ 1. If X is replaced with
is human capital H, we get the Uzawa–Lucas setup, and if it is total factor productivity A, then a Romer-
wth model follows. Another option would be to replace X with labor force L and obtain the usual linear

edback mechanism which would transform population growth into per capita output growth. See the
elaboration of this issue.
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This argument was further developed by Li (2000), Christiaans (2004), and Growiec (2007), eventually indicating that in
fact, a generalized version of the linearity critique holds for any growth model which is capable of generating exponential
growth: it is the assumption of exponential growth itself which gives rise to knife-edge requirements. In the current paper,
we provide a significant generalization of this result: we demonstrate that knife-edge conditions are necessary if any type of
(sufficiently smooth) pre-determined growth regularity is going to be derived. We also add a further amplification of this
finding by proving that even infinitesimal departures from the benchmark parametrization of a given growth model – if suf-
ficiently smartly designed – could result in qualitatively different, divergent dynamics of the model, thereby ruining the pre-
defined long-run growth regularity.

Let us clarify the conceptual base from the beginning. Throughout the paper, we shall use the following definition (cf.
Growiec, 2007).

Definition 1. A knife-edge condition is a condition imposed on parameter values such that the set of values satisfying this
condition has an empty interior in the space of all possible values. Parameter values that are requested to satisfy a particular
knife-edge condition would also be referred to as non-typical.

There are, in principle, two ways of dealing with the problem of knife-edge assumptions in growth models. First, one may
stick to the BGP requirement and try to find growth-driving knife-edge conditions of form which is most plausible empir-
ically. This path has been followed, among others, by Jones (2003) who judged that a linear equation of population growth
is the most plausible one and proceeded to build a semi-endogenous growth model with endogenous fertility.2 A similar ap-
proach has been taken by Connolly and Peretto (2003). Furthermore, recent empirical evidence shows that it could also be plau-
sible that, even more so than in the population equation, the crucial knife-edge condition should be placed in the knowledge
production function, following the Schumpeterian formulation (Ha and Howitt, 2007; Madsen, 2008). In the light of these re-
sults, Schumpeterian R&D-based growth models provide an accurate representation of the growth process, and the knife-edge
assumptions they make are (at least approximately) empirically relevant.

The apparent second way of dealing with knife-edge assumptions in growth models is to generalize the concept of expo-
nential growth to allow more general and flexible forms of temporal evolution of variables. Perhaps the most prominent idea
in this field is the concept of regular (quasi-arithmetic, less-than-exponential) growth. This idea, put forward by Mitra (1983)
and developed by Asheim et al. (2007) and Groth et al. (in press), will be discussed in more detail in the following sections.

Given this background literature, one might be tempted to think that generalizing exponential growth could help get rid
of knife-edge assumptions. This is, however, not the case: such step can only change the type of knife-edge assumptions im-
posed on the model, but not remove them completely. Of course, this alone could be a significant development since the new
restrictions may be markedly more plausible empirically.3 Extending the concept of exponential growth cannot eliminate the
need for knife-edge assumptions, however, no matter how many consecutive generalizations are applied.

The primary objective of this paper is to show that balanced (exponential) growth cannot be generalized to a concept
which would not require knife-edge conditions to be imposed on growth models. Indeed, making the assumption that a solu-
tion to a dynamical system (i.e. the time path of the economy) satisfies a given (non-trivial and sufficiently smooth) func-
tional regularity necessarily imposes at least one knife-edge assumption on the considered model. It is true both for
models set up in continuous and in discrete time, and most importantly, it is true regardless of the type of regularity we
would like to impose. What matters is that the presumed functional form must be given in advance.

The second substantive result of this paper is a proof that it is always possible to extend the formulation of a given model in
a way that infinite divergence in results appears over the long run if a certain parameter is infinitesimally manipulated. Fur-
thermore, if the given model predicts unbounded growth, qualitative changes in dynamic behavior of the model in response to
infinitesimal shifts in that parameter are also necessarily observed and infinite divergence follows already in finite time.

One well-known example of such unstable and bifurcative behavior is the one of Eq. (1): if / > 1;X diverges to infinity in
finite time (no matter how tiny the difference between / and 1 is); if / < 1, however, then growth is less-than-exponential
and growth rates gradually fall down to 0.4 Only for / ¼ 1 can balanced growth be sustained. In the light of our results, how-
ever, exponential growth is not special at all in giving rise to so enormous changes in the dynamic behavior of the model
when a certain parameter is infinitesimally manipulated. This in fact happens for all possible functional forms of the consid-
ered model, as long as it predicts unbounded growth. Moreover, these changes are generically qualitative, giving rise to
bifurcations in the modes of dynamic behavior.

All relevant theorems will be proven in Section 2. In Section 3 we will refer to regular, less-than-exponential growth as an
important application of the theorems. We will also generalize that concept, proposing a specification which nests regular
growth as a special case. We will then show how to extend this procedure ad infinitum, allowing ever larger classes of func-
tions but never getting rid of knife-edge assumptions. We will also discuss the important cases of logistic growth as well as
2 Solow (2003) casts doubt on the Jones’ (2003) bon-mot: ‘‘it is a biological fact of nature that people reproduce in proportion to their number”. He writes: ‘‘I
am doubtful about this, for two reasons. The first is that birth rates can and probably do depend on population size, and that is a nonlinearity. Fertility is surely a
social phenomenon in rich societies. (. . .) Furthermore, there are various environmental and social factors that lead to logistic curves”. Indeed, population
growth for animal species in isolation is best modeled by logistic equations; are people really so different?

3 Generalizing exponential growth may also help eliminate some of the required knife-edge conditions if the original formulation featured multiple ones.
4 The equation _X ¼ aX/ with / < 1 gives rise to regular (quasi-arithmetic) growth as discussed, e.g. by Groth et al. (in press). As we shall see shortly, regular

growth is subject to such bifurcative behavior as well.
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more-than-exponential growth. Section 4 concludes with a discussion of our results and their methodological consequences
for modeling long-run growth.

2. The theorems

This section is devoted to proving the principal results of this paper. We shall first show that if a given dynamic model is
supposed to satisfy a pre-defined growth regularity, it must contain at least one knife-edge condition. Then, we will show
why such knife-edge conditions should always be associated with instabilities and bifurcations once manipulations in model
parameters are allowed, even if these manipulations were arbitrarily small.

2.1. The inevitability of knife-edge conditions in growth models

Let us consider a very general form of a continuous-time model of economic growth. Its dynamics are ruled by a system of
autonomous differential equations of order m:
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FðX; _X; . . . ;XðmÞÞ ¼ 0; Xð0Þ; _Xð0Þ; . . . ;Xðm�1Þð0Þ given: ð2Þ
By X ¼ ðX1;X2; . . . ;XnÞ we denote a vector of n state variables. Each ith variable Xi is assumed to be at least m times contin-
uously differentiable with respect to time. By _X ¼ Xð1Þ we denote a vector of Xi’s first order time derivatives, by XðpÞ a vector of
their pth time derivatives, and by bX ¼ _X=X a vector of their growth rates.5 It is assumed that all Xi’s are strictly positive; m and
n are arbitrary positive integers. It is also assumed that F 2 C1ðRðmþ1Þn;RnÞ. We shall concentrate on autonomous differential
equations only, since it is natural for economists to look for general laws that are valid irrespective of time. We assume that
all solutions to (2) are well-defined for all t P 0.

A further remark is that in (2), we ignore control (choice, decision) variables. Although these are vital ingredients of eco-
nomic models which include optimization – as most contemporary growth models do – they can be ruled out from present
considerations, since we are interested in the long-run dynamics only.

We shall also pose another function, G 2 C1ðRðmþ1Þn;RnÞ, capturing the pre-defined growth regularity. Precisely, the condi-
tion GðX; _X; . . . ;XðmÞÞ ¼ 0 is the particular regularity imposed on the solution fXðtÞg1t¼0 to the model (2). We shall assume that
G is locally Lipschitz continuous for all arguments ðX; _X; . . . ;XðmÞÞ satisfying the equality GðX; _X; . . . ;XðmÞÞ ¼ 0.

Throughout the analysis, we will use the standard supremum norm on C1ðRðmþ1Þn;RnÞ, defined as kFkC1ðRðmþ1Þn ;RnÞ ¼
kFk1 þ kDFk1 ¼ supX2Rðmþ1ÞnkFðXÞk þ supX2Rðmþ1ÞnkDFðXÞk. The vector norm kFðXÞk could in principle be any norm defined on
Rn; analogously, kDFðXÞk could be any matrix norm defined on the space of n� ðmþ 1Þn matrices of real numbers.

Under the above assumptions, the following theorem holds.

Theorem 1 (The inevitability of knife-edge conditions in growth models). The set F of functions F 2 C1ðRðmþ1Þn;RnÞ such that
GðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞ ¼ 0 for some solution fXðtÞg1t¼0 to FðX; _X; . . . ;XðmÞÞ ¼ 0 has an empty interior in C1ðRðmþ1Þn;RnÞ.
Proof. Let fXðtÞg1t¼0 solve the system of differential equations: GðX; _X; . . . ;XðmÞÞ ¼ 0. Since G is locally Lipschitz continuous at
XðtÞ; _XðtÞ; . . . ;XðmÞðtÞ, we know that such a time path exists and is locally unique. Since it is locally unique for all t P 0, it is
also globally unique.

Since this time path fXðtÞg1t¼0 is also a particular solution of the considered growth model, we obtain:
UðtÞ � FðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞ ¼ 0; 8t P 0: ð3Þ
To show that the set of functions F satisfying (3) has an empty interior, consider a family of functions Fe such that
FeðX; _X; . . . ;XðmÞÞ ¼ FðX; _X; . . . ;XðmÞÞ þ ee1 for e > 0. Of course, kFe � FkC1ðRðmþ1Þn ;RnÞ ¼ e! 0 as e! 0. On the other hand, for
all e > 0,
UeðtÞ � FeðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞ ¼ ee1–0; 8t P 0: ð4Þ
Thus, Fe R F for all e > 0 so F has an empty interior. h

When put in plain English, Theorem 1 states that if one requires the solution of her model to satisfy a pre-defined
functional regularity, then one must impose some knife-edge restriction on her model, regardless of the type of regularity.6
vided that X > 0, the vector bX is also a vector of their first order log-time derivatives. The definition of bX which we consider here is, however, more
since it applies to negative arguments as well.
argument is not completely general. Please note that the Proof of Theorem 1 requires the regularity G 2 C1ðRðmþ1Þn;RnÞ to be locally Lipschitz

ous for all arguments ðX; _X; . . . ;XðmÞÞ satisfying the equality GðX; _X; . . . ;XðmÞÞ ¼ 0. This restriction is automatically satisfied for almost all growth models
ed in the literature because of the ubiquity of smooth functional forms (e.g. Cobb–Douglas, CES, etc.) and interior initial conditions of form Xð0Þ > 0. A
exception could nevertheless be found in Hakenes and Irmen (2007) who analyze the dynamics of technological knowledge, extending its temporal
n to infinity both forward and backward in time. They find that if technological knowledge follows the regular (quasi-arithmetic) growth pattern then it
gin from 0 at �1 and then spontaneously take-off towards positive values at some finite point in time, but the timing of this take-off is indeterminate.

eterminacy appears because the function GðX; _XÞ ¼ aX/ � _X is not Lipschitz continuous at (0,0). Hakenes and Irmen’s (2007) case is thus illustrative for
l Lipschitz continuity restriction because Theorem 1 requires this condition to guarantee local uniqueness of the solution to GðX; _X; . . . ;XðmÞÞ ¼ 0, and in
ample, neither of these properties is present.
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The parameter values and functional forms assumed in the model must be non-typical for the pre-defined growth regularity to
hold.

Please note that the restriction that F and G are both functions of X’s up to their mth derivatives is not restrictive: if F
would take as arguments p derivatives of X, and G would take r, one could simply define m ¼maxfp; rg and the same proof
would follow.

Theorem 1 is a vast generalization of the main result presented in Growiec (2007), i.e. that modeling exponential growth
necessarily requires imposing knife-edge conditions on growth models. Indeed, one of the possible growth regularities cap-

tured by this theorem is that of exponential growth, i.e. GðX; _X; €XÞ ¼ _bX ¼ €X
X �

_X
X

� �2
¼ 0. Hence, from Theorem 1 it follows that

if a model is supposed to deliver exponential (balanced) growth, it must contain at least one knife-edge condition. With this
paper we are able to go much further, however, and prove that even a substantial generalization of the notion of presumed
growth regularity cannot change the fundamental fact that knife-edge conditions are necessary in growth models.

2.2. Instability and bifurcations

One of the aspects of the debate on knife-edge conditions in growth economics is their relation to bifurcations and insta-
bilities. As is apparent in a number of specific examples discussed in the literature (e.g. Li, 2000; Jones, 2001, 2003, 2005a), in
the long run (that is, as t !1), even smallest deviations in values of certain (appropriately chosen) exogenous parameters
may give rise to qualitatively different modes of dynamic behavior of the model, completely ruining the presupposed growth
regularities. This finding was used in this literature to indicate how fragile the dynamics of certain classes of models are, and
on which particular parametric assumptions these models hinge for the ability to generate balanced growth. Divergent
dynamics and bifurcations appear not only in the models discussed in these contributions, however; neither is their occu-
rence limited to models of balanced growth. In this subsection we will actually prove, thereby significantly amplifying The-
orem 1, that in fact all models which are built in order to replicate a pre-defined long-run growth regularity, give rise to
bifurcations with respect to certain parameters.

Let us first discuss the following complementary theorem: in the long run, even tiniest changes in parameter values might
be infinitely magnified. This does not imply qualitative differences in the model behavior yet, but signifies that those differ-
ences are quantitatively divergent. Thus, it strongly indicates the fragility of maintaining any presupposed growth regularity
over the long run if model parameters are subject to (even arbitrarily small) disturbances.

Theorem 2 (Divergence). Let fXðtÞg1t¼0 be a time path of a dynamic model economy summarized by (2). Assume that either there
exists i ¼ 1;2; . . . ;n such that XiðtÞ ! 1 or there exists i ¼ 1;2; . . . ; n such that XiðtÞ ! Xi. Under these assumptions, there exists a
more general class of functions F/ðX; _X; . . . ;XðmÞÞ; F/ 2 C1ðRðmþ1Þn;RnÞ, such that F/ ¼ F for / ¼ 0, but for all /–0,
Please
conom
sup
tP0
kF/ðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞ � FðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞk ¼ sup

tP0
kF/ðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞk ¼ þ1: ð5Þ
Proof. In case XiðtÞ ! 1 with t !1 for some i ¼ 1;2; . . . ;n, it suffices to take
F/ðX; _X; . . . ;XðmÞÞ ¼ FðX; _X; . . . ;XðmÞÞ þ /X:
Clearly, F/ ¼ F for / ¼ 0, but for all /–0, suptP0kF/ðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞk ¼ suptP0/kXk ¼ þ1.
If, however, there exists a finite-valued vector eX > 0 such that XiðtÞ 6 eXi for all t P 0 and i ¼ 1;2; . . . n, and

9ði ¼ 1;2; . . . ;nÞXiðtÞ ! Xi then one can use
F/ðX; _X; . . . ;XðmÞÞ ¼ FðX; _X; . . . ;XðmÞÞ þ /

jXp � Xj
;

where p ¼ arg mini¼1;2;...;nXi among those variables which converge to steady-state values. Then F/ ¼ F for / ¼ 0 but for all
/–0; suptP0kF/ðXðtÞ; _XðtÞ; . . . ;XðmÞðtÞÞk ¼ suptP0/k 1

jXp�Xj
k ¼ þ1. h

It follows that in the long run, no matter how tiny /–0 is, it is sufficiently large to generate infinite divergence of the
manipulated model from the benchmark model with / ¼ 0, as long as the benchmark model implies unbounded growth
or convergence to a steady state.

Theorem 2 does not imply qualitative changes in the behavior of variables because infinite divergence predicted by this
theorem could also be generated with quantitative differences only, e.g. by two cases of exponential growth, albeit with dif-
ferent growth rates.

The changes in model dynamics following infinitesimal manipulations in values of certain parameters are indeed quali-
tative, though. In fact, all knife-edge assumptions in growth models should be associated with certain bifurcations. We find
that if the original model, specified as (2), is able to generate unbounded growth – that is, to have kXðtÞk ! 1 as t !1
which makes at least one economic variable grow unboundedly – then by infinitesimal manipulations, one can turn her
model either into (i) a model which implies convergence to a bounded set or (ii) a model which generates explosive growth
rendering infinite levels of variables in finite time. This finding is stated formally as the following theorem:
cite this article in press as: Growiec, J. Knife-edge conditions in the modeling of long-run growth regularities. Journal of Macroe-
ics (2010), doi:10.1016/j.jmacro.2010.05.002

http://dx.doi.org/10.1016/j.jmacro.2010.05.002


J. Growiec / Journal of Macroeconomics xxx (2010) xxx–xxx 5

ARTICLE IN PRESS
Theorem 3 (Bifurcations). Let fXðtÞg1t¼0 be a time path of a dynamic model economy summarized by (2). Assume further that
there exists i ¼ 1;2; . . . ;n such that XiðtÞ ! 1. Under these assumptions, there exists a more general class of functions
F/ðX; _X; . . . ;XðmÞÞ; F/ 2 C1ðRðmþ1Þn;RnÞ such that F/ ¼ F for / ¼ 0, such that there exists a solution to the equality
F/ðX; _X; . . . ;XðmÞÞ ¼ 0 in the time domain t 2 ½0; T/Þ with T/ > 0 and possibly T/ ¼ þ1 – which we denote fX/ðtÞgT/

t¼0 – and
finally, such that for all /–0:
Please
conom
9ð0 < T/ < þ1Þ 9ði ¼ 1;2; . . . ; nÞ lim
t!T/

X/;iðtÞ ¼ þ1 for / > 0;

9ðX/ 2 RnÞ 8ðt > 0Þ 0 < X/ðtÞ < X/ for / < 0:
Proof. It is sufficient to consider the case m ¼ 1 because for m > 1, one could use the theorem fundamental to ordinary dif-
ferential equations (cf. Arnold, 1975), substitute Yi ¼ XðiÞ for all i ¼ 1;2; . . . ;m� 1, arrange these variables in a common vec-
tor YR � ½X;Y1; . . . ;Ym�1�0 and write the resultant system of equations:
_X ¼ Y1;

_Y1 ¼ Y2;

..

.

FðX; Y1; . . . ;Ym�1; _Ym�1Þ ¼ 0;
as FRðYR; _YRÞ ¼ 0. Thus, sticking to the original notation, we can consider the simplest case of FðX; _XÞ ¼ 0 with Xð0Þ given
without any loss of generality.

Now, using the Implicit Function Theorem and the assumptions that (i) a solution fXðtÞg1t¼0 to FðX; _XÞ ¼ 0 exists and (ii) F
is continuously differentiable, we find that an explicit form _X ¼ UðXÞ exists almost everywhere. Let us denote the (dense) set
of points where such form exists as A � Rn

þ.
We will now posit a function F/ðX; _XÞ such that for all X 2 A, the equality F/ðX; _XÞ ¼ 0 is equivalent to:
_X ¼ UðXÞ þ /Xw; w > 1;
and such that F/ ¼ F for all X R A. The solution to F/ðX; _XÞ ¼ 0 will be denoted as fX/ðtÞg.
Clearly, F/ ¼ F if / ¼ 0.
If / > 0 then for all i ¼ 1;2; . . . ;n, it holds that 0 < UiðXÞ < /Xw

i provided that Xi is sufficiently large (otherwise the
benchmark model would imply either explosive dynamics or bounded dynamics, neither of which is allowed). Let us pick p
such that p ¼ arg maxi¼1;2;...;nX/;i. From the model specification we are sure that this double inequality will hold for some
coordinate of X/ at some time t0 > 0. Then from t0 on, we have that
X/;pðtÞ > ð1� wÞ/t þ X/;pð0Þ1�w
� � 1

1�w
; ð6Þ
where the right-hand side of (6) is the solution to the differential equation _X/;p ¼ /Xw
/;p. Since w > 1, from the RHS we find

that X/;p will reach infinity at or before Tmax;/ ¼ X/;pð0Þ1�w

/ðw�1Þ . In conclusion, 9ð0 < T/ < Tmax;/Þlimt!T/
XpðtÞ ¼ þ1 for all / > 0.

If / < 0 then for all i ¼ 1;2; . . . ;n; _X/;i < 0 for X/;i sufficiently large (otherwise the original model would imply explosive
dynamics which is not allowed). Since also X/;i > 0 for all i by definition, it follows that for all i;X/;i must be confined to a
bounded interval in Rþ. h

Intuitively speaking, the idea behind Theorem 3 is to construct two ‘‘/-variations” of the benchmark model which nev-
ertheless give rise to qualitatively different modes of dynamic behavior. The benchmark model is the one with / ¼ 0 which
gives rise to the pre-defined growth regularity. The first type of variation has / > 0 and implies explosive growth yielding
infinite X’s in finite (arbitrarily short) time. The second type of variation has / < 0 and implies convergence to a bounded
set – possibly (but not necessarily) a steady state.

Please note that Theorem 3 does not apply to models whose benchmark formulations already imply bounded dynamics
such as convergence of all variables to a steady state. Its main focus is instead with models which are able to predict un-
bounded growth in at least one variable, for example GDP per capita, aggregate physical or human capital, or the stock of
technological knowledge. As an indication of relevance of the theorem, please note that it is exactly the unbounded growth
property which makes us see a given dynamic model of an economy as a long-run growth model.

Let us now present one typical application of Theorem 3: the case of any growth pattern summarized by _X ¼ QðXÞ, imply-
ing that XðtÞ ! 1 as t !1. Provided that we have ruled out explosions to infinity in finite time (that is, finite-time singu-
larities, cf. Johansen and Sornette (2001)), adding a quadratic term as in _X ¼ QðXÞ þ /X2 will then for sure guarantee that (i)
there will be convergence to a bounded set instead of unbounded growth whenever / < 0, and that (ii) there will be a finite-
time explosion whenever / > 0. We are thus observing a bifurcation around / ¼ 0.

Examples like this can be easily multiplied: for example, in Section 3.1 we will present an interesting bifurcation appear-
ing in the case of regular (quasi-arithmetic) growth. It turns out that exponential growth generated by linear differential
equations is thus not special at all in giving rise to spectacular explosions or growth decays if a smallest, but sufficiently
cite this article in press as: Growiec, J. Knife-edge conditions in the modeling of long-run growth regularities. Journal of Macroe-
ics (2010), doi:10.1016/j.jmacro.2010.05.002
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smartly designed, nonlinearity is added (cf. Jones, 2005a). In fact, the same result follows for models capturing any other pre-
defined (sufficiently smooth) growth regularity.

One important note is due here. As is apparent, above Theorems 1–3 have been stated in continuous time – so one could
ask the natural question: do all these properties hold in discrete time as well? The answer is generally positive, albeit with
one reservation. Whereas Theorems 1 and 2 may be directly replicated in discrete time, as elaborated in Appendix A, this is
not true with Theorem 3 which cannot be rewritten in discrete time because divergence to infinity in finite time is not well-
defined in discrete time. Apart from this limitation, however, the message of Theorem 3 goes through: it is true both in con-
tinuous and in discrete time that if the original model is able to generate unbounded growth, then by infinitesimal manip-
ulations, one can turn her model into a model which implies convergence to a bounded set.

3. Applications of the theorems

All special cases included below can be summarized in short corollaries to Theorem 1: obviously, the knife-edge character
of each particular type of growth regularity follows directly from that theorem. We feel, however, that since the economic
role of each of this examples is potentially large, they should be elaborated in more detail.

We shall first limit the scope of our analysis to a case of a single state variable. This restriction will be relaxed afterwards.

3.1. Regular growth

Regular (quasi-arithmetic) growth is defined (e.g. Asheim et al., 2007; Groth et al., in press) as a time path of the economy,
such that a variable x satisfies the following differential equation7:
7 Thr
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^̂x ¼ �bx̂; 8t P 0: ð7Þ
The parameter b P 0 is called the damping coefficient since it indicates the rate of damping in the growth process. The above
specification nests as special cases: (i) exponential growth (in the limit case of no damping, b ¼ 0), (ii) arithmetic growth
ðb ¼ 1Þ as well as (iii) stagnation, x � const ðb ¼ þ1Þ.

Simple calculus shows that the solution to (7) is given by
xðtÞ ¼ xð0Þð1þ x̂ð0ÞbtÞ1=b: ð8Þ
The concept of regular growth is certainly an important concept worth further investigation and development: apart from
the notable field of environmental and resource economics (e.g. Mitra, 1983; Asheim et al., 2007) and the recent contribution
of Groth et al. (in press), very little has been said yet about economies which exhibit less-than-exponential growth.

To see that, despite the claims present in some works, the requirement of regular growth imposes knife-edge restrictions
on the presumed model, it is enough to apply Theorem 1 to Gðx; _x; €xÞ ¼ ^̂xþ bx̂ ¼ €x

_xþ ðb� 1Þ _x
x.

Alternatively, one could also use the function uR : Rþ ! Rþ defined as
uRðxÞ ¼ c1 exp c2xb
� �

; c1; c2 > 0: ð9Þ
The function uR is continuously differentiable, strictly increasing, and such that uRðxÞ ! 1 when x!1.
The trick inherent in using uR is that when y ¼ uRðxÞ, then x follows regular growth with a coefficient b if and only if y

grows exponentially at a rate g ¼ c2xð0Þbbx̂ð0Þ. uR is thus a smooth transformation of regular growth paths into exponential
growth paths. The smoothness of uR implies that the knife-edge character of exponential growth in y is automatically inher-
ited by regular growth in x. Any model which gives rise to regular growth with a coefficient b must involve at least one knife-
edge condition.

Furthermore, in the case of regular (quasi-arithmetic) growth with _x ¼ ax1�b; b > 0, we observe an interesting bifurcative
property, predicted by Theorem 3. Obviously, in this example it is obtained that xðtÞ ! 1 as t !1, but if one adds constant-
rate depreciation to this picture, so that _x ¼ ax1�b þ /x with / < 0, she gets that xðtÞ converges to a finite steady state. This
result holds for all / < 0. On the other hand, if / > 0 we get a case where growth ceases to be quasi-arithmetic but becomes
instead exponential in the limit; in result, dynamics à la Jones and Manuelli (1990) follow. Clearly, the depreciation rate of
factor x, denoted as ð�/Þ, or equivalently, the constant-returns-to-scale production rate /, is a source of bifurcation here:
the dynamic behavior of xðtÞ is qualitatively different in the case / ¼ 0 compared to the cases where / > 0 or / < 0.

It must also be noted that b does not have to be fixed a priori for our results to hold. In fact, the regular growth pattern has
the knife-edge property regardless of whether we know b beforehand or this parameter is free. To see this, differentiate (7)
sidewise and obtain
^̂
x̂ ¼ ^̂x: ð10Þ
This is, of course, an equality restriction of form Gðx; _x; €x; xð3ÞÞ ¼ 0. The only difference between (7) and (10) is that (10) is
formulated at the level of third instead of second derivatives.
oughout the remainder of the paper, we will use the notation ^̂x ¼ _̂x
x̂ ¼

€x
_x�

_x
x.
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Fig. 1. Generalized regular growth. Time paths of variables satisfying (11). We assumed xð0Þ ¼ x̂ð0Þ ¼ 1 in all cases. Left panel: case b ¼ 0:5 (more-than-
arithmetic growth). Right panel: case b ¼ 4 (less-than-arithmetic growth). Please note that xðtÞ is bounded from above if / < 1.
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Eq. (10) indicates the way in which regular growth may be generalized. In the following subsection, we shall replace the
factor of unity multiplying ^̂x on the right-hand side of (10), with an arbitrary parameter / > 0 and demonstrate that such a
growth regularity has the same knife-edge property despite nesting (10) as its special case.

3.2. Generalized regular growth

The concept of regular growth can be easily generalized to allow one more degree of freedom and yet to give rise to
equally smooth a growth pattern. The proposed generalization consists in allowing the parameter / > 0 in
8 In t
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^̂x ¼ �bx̂/; ð11Þ
to deviate from unity. Obviously, the special case / ¼ 1 brings us back to regular growth. Furthermore, if b is not known a
priori, Eq. (11) can be expressed more generally, at the level of third derivatives, as
^̂
x̂ ¼ /^̂x; ð12Þ
thereby generalizing Eq. (10). Solving (11) for the explicit time path xðtÞ, we obtain:
xðtÞ ¼ xð0Þ exp
ðb/t þ x̂ð0Þ�/Þ

/�1
/

bð/� 1Þ � x̂ð0Þ1�/

bð/� 1Þ

 !
: ð13Þ
Generalized regular growth has been illustrated graphically in Fig. 1.
Two qualitatively different cases of dynamic behavior of x are found here. If / P 1 then xðtÞ ! 1 as t !1. If / < 1, how-

ever, then xðtÞ is uniformly bounded from above, converging from below to the finite value of �x:
8ð/ 2 ð0;1ÞÞ lim
t!1

xðtÞ ¼ �x ¼ xð0Þ exp
x̂ð0Þ1�/

bð1� /Þ

 !
: ð14Þ
It must be pointed out that if / < 1 then xðtÞ is bounded regardless of the value of b. Hence, the condition / ¼ 1 assumed in
the regular growth case sets up a bifurcation in the sense that it delineates two cases of qualitatively different behavior of
xðtÞ (the cases of / < 1 and / > 1). This is precisely the bifurcation property of regular growth announced above.

Eq. (11) imposes a growth regularity of form Gðx; _x; €xÞ ¼ ^̂xþ bx̂/ ¼ 0. It thus places a knife-edge condition on the class of
models capable of capturing this regularity (Theorem 1).

To see the correspondence between generalized regular growth and exponential growth, one could use the function
uG : Rþ ! Rþ (case / > 1) or uG : ð0; xð0Þ expðx̂ð0Þ

1�/

bð1�/ÞÞÞ ! Rþ (case / < 1), given by the uniform formula:
uGðxÞ ¼ c1 exp c2ðlnðx=CÞÞ
/

/�1

� �
; c1; c2 > 0; ð15Þ
where C ¼ xð0Þ expð� x̂ð0Þ1�/

ð/�1ÞbÞ. The function uG is a continuously differentiable and strictly increasing bijection.8 It is easily
found that x grows according to generalized regular growth with parameters ðb;/Þ if and only if y ¼ uGðxÞ grows exponentially
at a rate
he case / < 1, this finding follows from the fact that xðtÞ < �x for all t P 0 (see Eq. (14)).
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g ¼ c2b/
bð/� 1Þ

C

� � /
1�/

: ð16Þ
The smoothness of the transformation uG implies that the knife-edge character of exponential growth in y is inherited by
generalized regular growth in x. The knife-edge property of exponential or regular growth is thus shared by generalized reg-
ular growth as well, even though the current specification is markedly more general.

3.3. Nested specifications

By construction, generalized regular growth nests regular growth which in turn nests exponential and arithmetic growth
as special cases. How come that all these growth regularities require knife-edge conditions despite the obvious relation of
inclusion?

The crucial reason for this outcome is that relaxing a particular knife-edge restriction is always a partial solution: it is not
about eradicating restrictions but about pushing them ‘‘one level deeper”. In the cases discussed above, this clearly applied to
consecutive derivatives of the imposed growth regularities: for exponential growth, the second log-derivative9 must be 0
(Growiec, 2007); for regular growth, the third log-derivative must be equal to the second log-derivative (Eq. (10)); for general-
ized regular growth, the fourth log-derivative must be equal to the third log-derivative, etc. It is easy to invent further gener-
alizations in this manner, involving fifth, sixth, seventh derivatives, etc. so forth ad infinitum. It must be noted, however, that
despite introducing an additional degree of freedom at each consecutive level of extra generality, some knife-edge condition
must still be imposed on the mapping F in order for the model to deliver a solution which would replicate the imposed
regularity.

One intuition for this result is the following. By generalizing the imposed growth regularity, we capture one more dimen-
sion of the parameter space. The whole parameter space is, however, infinite dimensional, so its entirety cannot be covered
by any iterative procedure of this sort.

3.4. Logistic growth

Set aside exponential growth and stagnation, the logistic growth pattern would probably be the one most often men-
tioned in the literature. The concept comes from natural sciences where the simple logistic law is a very accurate tool for
describing growth of natural populations as it incorporates both proportional multiplication when the population is small
and the limiting impact of the finite environmental carrying capacity when the population is large (Smith, 1974). In econom-
ics, logistic laws have been used relatively rarely; the few notable exceptions include Brida et al. (2006) as well as Brida and
Accinelli (2007) who incorporate logistic population laws in the Solow and the Ramsey growth models, respectively.

Furthermore, in the important class of growth models dealing with the Demographic Transition and the transition from
the Malthusian stagnation regime to the modern balanced growth regime, population dynamics could be arguably well
approximated by logistic-type curves provided that we assume population to stabilize asymptotically (see e.g. Jones, 2001).

The logistic law is characterized by
_x ¼ AxðB� xÞ; A;B > 0; with xð0Þ 2 ð0; BÞ: ð17Þ
It is easily solved as:
xðtÞ ¼ B

1þ Ce�At ; with C ¼ B
xð0Þ � 1: ð18Þ
As it was indicated above for the case of generalized regular growth with / < 1, also here is the variable xðtÞ bounded from
above: limt!1xðtÞ ¼ B. The parameter B is thus straightforwardly interpreted as the environmental carrying capacity (or the
level of satiation).

The knife-edge character of logistic growth follows by application of Theorem 1 to (17). There exists, however, also an
intriguing mutual correspondence between logistic and exponential growth paths. Following the lines of examples presented
above, let us now define a function uL : ð0;BÞ ! Rþ as:
uLðxÞ ¼ c1
x

B� x

� �g=A
: ð19Þ
uL is continuously differentiable, strictly increasing, and such that uðxÞ ! 1 when x! B�. It is obtained that x follows lo-
gistic growth with coefficients A and B if and only if y ¼ uLðxÞ grows exponentially at a rate g. The smoothness of uL implies
that the knife-edge character of exponential growth in y is directly inherited by logistic growth in x. Hence, perhaps a little
surprisingly, logistic growth is also subject to the critique of knife-edge conditions.
all that dubbing bX a ‘‘log-derivative” is only a convention used for simplicity. The exact definition of what we call the ‘‘log-derivative” here is bX ¼ _X=X
pplies to both positive and negative arguments. The exact log-derivative d ln X

dt is equal to bX wherever it exists; it is, however, well-defined for positive
nts only.
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3.5. Double exponential growth

It is sometimes counterfactually presumed by economists that if the growth rate of some variable falls down to 0 with
time, the variable itself must converge to a finite constant.10 The concept of regular growth is a perfect counterexample to such
an assertion. Analogously, there also exists a fallacious belief that, under continuous time, if the growth rate of a variable ex-
plodes to infinity, the variable itself must reach infinity in finite time (there will be a finite-time singularity).11 This belief comes
as an extrapolation of the often discussed functional specification (1) with / > 1, being the standard quantification of increasing
returns to scale. This result is usually referred to as puzzling, cognitively unattractive, and having empirically implausible impli-
cations (see Solow, 1994). Historical time series of several demographic and economic variables observed over last two centu-
ries can be fitted by functions leading to a finite-time singularity with astonishingly good accuracy, though (Johansen and
Sornette, 2001).12

Growth can nevertheless be faster than exponential and yet not lead to finite-time singularities. One example of such a
growth regularity, predicting the growth rate to diverge to infinity, is the pattern of double exponential growth, summarized
by the differential equation:
10 For
enough

11 For
Then th

12 Cur
place at

13 ‘‘Gr
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Uzawa
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_x ¼ gx ln x; g > 0; xð0Þ > 1: ð20Þ
Straightforward integration yields:
xðtÞ ¼ xð0Þe
gt
; ð21Þ
which is, of course, well-defined for all t P 0, and thus no finite-time singularity occurs.
By Theorem 1, the growth regularity imposed by (20) gives rise to knife-edge requirements. This could also be illustrated

with the use of the logarithmic function uM : ð1;þ1Þ ! Rþ : uMðxÞ ¼ ln x. Obviously, uM is continuously differentiable,
strictly increasing, and such that uðxÞ ! 1 when x!1. Hence, it is obtained that x follows double exponential growth
(with x̂ðtÞ ¼ g ln xð0Þegt !1 as t !1) if and only if y ¼ uMðxÞ grows exponentially at a rate g. The smoothness of uM implies
that the knife-edge character of exponential growth in y is directly inherited by double exponential growth in x.

As a side remark, we note that by replacing ln x in uM by lnðln xÞ; lnðlnðln xÞÞ, etc. we can easily generate triple, quadruple,
etc. exponential growth paths generating ever faster growth without implying finite-time singularities, and thus being an
attractive compromise between the functional forms estimated by Johansen and Sornette (2001) and the common intuition
on economic plausibility.

3.6. Multiple variables

The above examples have been, for the sake of clarity, presented in the simplest case of a single variable xðtÞ. There is,
however, no difficulty at all to extend these results to n variables by putting all x’s in an n-dimensional vector XðtÞ and apply-
ing all required transformations uz, where z 2 fR;G; L;Mg, to the particular coefficients of the vector, XiðtÞ. As long as we im-
pose particular growth patterns on each variable separately and thus rule out inter-equation restrictions, the properties of
Y ¼ uðXÞ are inherited directly from the properties of each separate coefficient Yi ¼ uzi

ðXiÞ. It is also straightforward to allow
different variables Xi to follow different growth regularities, as long as all these regularities are well-defined a priori.

For multi-dimensional regularities with inter-equation restrictions, the method of specifying smooth transformations
ui; i ¼ 1;2; . . . ;n which we used above does not work but the knife-edge character of each growth regularity still follows
by the virtue of Theorem 1.
4. Discussion

In the history of modeling growth regularities, the first notice that balanced growth requires models to rely on restrictive
assumptions is probably due to Uzawa (1961).13 His steady-state growth theorem14 indicates that for a simple neoclassical
model to deliver balanced growth, the production function must be Cobb–Douglas or technical change must be purely labor-
augmenting. The obvious knife-edge character of both requirements was recently supplemented by theoretical arguments
why technical change could be endogenously purely labor-augmenting in equilibrium (Acemoglu, 2003; Jones, 2005b). These
example, in the context of the Jones (1995) model with constant population, Young (1998) wrote: ‘‘if (. . .) intertemporal spillovers (. . .) are not large
to allow for constant growth, the development of the economy grinds to a halt”. This error has been spotted and corrected by Groth et al. (in press).
example, Solow (1994) wrote incorrectly: ‘‘Let (. . .) dK=dt ¼ sf ðKÞ. (. . .) If f ðKÞ=K increases with K , the rate of growth of K gets faster as K gets larger.
e time path for this growth model has the property that the stock of capital becomes infinite in finite time”.
iously, Johansen and Sornette’s (2001) estimations uniformly indicate that if no transition to a new dynamic regime occurs, the singularity will take

2052� 10 years.
owth on the knife-edge” is also a well-known property of the Harrod–Domar growth model (Harrod, 1939; Domar, 1946) which laid the first
ions for modern economic growth theory. Knife-edge conditions (taken in the form of constant marginal returns to physical capital) were not in the

f those two important early contributions, though.
Uzawa’s steady-state growth theorem has been recently proved again by Schlicht (2006) who completed the proof by markedly simpler means than

(1961) did in his original contribution. A discussion of the theorem and both proofs has been provided by Jones and Scrimgeour (2008).
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works do not solve the Uzawa’s fundamental problem of highly restrictive knife-edge conditions, though (cf. Jones, 2005a; Gro-
wiec, 2008).15

Another milestone in the development of this line of discussion is the linearity critique of endogenous growth models
(Jones, 2005a). The crux of this argument is that if the vital growth-driving linearity (a knife-edge assumption) is relaxed,
exponential growth ceases to be obtained unless exponential population growth is additionally assumed.16 Exponential pop-
ulation growth is, however, just another knife-edge assumption. Otherwise, growth rates gradually fall to 0 with time.

The linearity critique has been extended to allow for cross-equation parameter restrictions in multi-sector growth models
by Li (2000) and Christiaans (2004). Recently, a general argument that balanced (exponential) growth requires knife-edge
conditions to be imposed on growth models has been formulated and proved by Growiec (2007).

One type of conclusion one could draw from this literature is that in order to get rid of knife-edge conditions, one should
generalize the very restrictive concept of balanced (exponential) growth. We have, however, shown in the current paper that
this idea is, in fact, misguided: whatever number of generalizations of balanced growth (e.g. regular growth, generalized reg-
ular growth; logistic growth, generalized logistic growth, etc.) is allowed, there will always remain some knife-edge assump-
tion necessary to obtain the particular growth regularity, irrespective of whether the model has been stated in continuous or
discrete time. Even more worryingly, there will always remain some exogenous parameter which could not be altered, even
by tiniest amounts, under the threat of blowing the model up, both qualitatively and quantitatively.

In the end of the day, it turns out that the problem of knife-edge conditions in growth models is, in principle, methodo-
logical. This paper has shown that whatever type of long-run growth regularity is to be reproduced by the model (it may be
arbitrarily general, allowing an arbitrary number of free parameters), one has to impose some specific knife-edge restrictions
on the assumed parameter values and/or functional forms in the model. Thus, if the model is constructed by ‘‘reverse engi-
neering”, i.e. designed to fit empirically observed macro-scale regularities, knife-edge conditions – which are by Theorems 2
and 3 so restrictive that even slightest deviations from them would overturn both qualitative and quantitative features of the
model – are inevitable. In other words: if we start out with some empirical growth regularity which we would like to be
reproduced as an equilibrium outcome of some model, that model would have to be non-typical, i.e. so specific that a slight-
est deviation from the required functional form, if sufficiently smartly designed, would completely ruin its predictions.

We can think of three possible interpretations for this result, which might be used as interesting starting points for fur-
ther discussion. These interpretations are as follows:

1. The long run with t !1 is irrelevant to growth economics; onlyfinite timespans should be analyzed instead. It seems that this
approach is favored by Temple (2003) who proposes not to over-emphasize long-run properties of growth models:
‘‘restrictive assumptions are useful precisely because they allow us to abstract from matters not directly relevant to
the problem at hand, and to carry out experiments holding certain variables constant. (. . .) [U]sing models for this pur-
pose casts a rather different light on the role of knife-edge assumptions.” (p. 500) For Temple (2003), exponential growth
(or any other presupposed growth pattern) is an assumption of convenience rather than a potentially significant result.
One fact favoring this interpretation is that for t bounded, Theorem 2 does not hold and deviations from the required
growth regularity may be kept within ‘‘reasonable” bounds when model parameters are manipulated. These bounds
are strongly and non-linearly dependent on the timespan in question, though, becoming the less reasonable the longer
is the considered time perspective. Most worryingly, by increasing the exogenous parameter w > 1 in the proof of The-
orem 3, we can construct ‘‘/-deviations” from the benchmark model able to blow the model up to infinity not only in
finite time, but also in an arbitrarily short interval of time.

2. The concept of knife-edge conditions is of little use as means of criticizing economic models. Knife-edge conditions are inev-
itable in modeling empirically observed phenomena and so are qualitative changes in dynamic behavior of the model if
some parameters are manipulated; this should not be questioned. Hence, the associated ‘‘instability” result should be
ignored with the hope that the type of distortions (that is, arbitrarily small shifts in the values of model’s exogenous
parameters) mentioned in Theorems 2 and 3 will never occur in reality. Some other criterion such as the relation of inclu-
sion could be used instead for discriminating among economic models: inclusion makes it clear which functional form is
more restrictive than the other. The downside of using inclusion as a means of discriminating between models is that a
vast multiplicity of modeling assumptions are not nested and thus cannot be compared. This could possibly open up the
possibility to use Bayesian testing procedures to discriminate between non-nested models using real-world data.

3. All dynamic models designed to reproduce empirically observed macro-scale regularities are methodologically flawed, because
infinitesimal deviations in parameter settings will always be able to change their predictions strongly enough to invali-
date them. This interpretation suggests that the only way to avoid this methodological problem would be to gather
micro-level rather than macro-level data, plug these findings directly into the model’s low-level mechanisms, and deal
with cumbersome aggregation procedures in order to obtain meaningful and robust predictions at the macro scale.17
15 The objective of Acemoglu (2003) and Jones (2005b) was, of course, not to get rid of knife-edge assumptions but to provide sound economic explanations
why purely labor-augmenting technical change could indeed be an equilibrium outcome.

16 For an additional critique of the plausibility of the Jones’ growth-driving differential equation, see also Hakenes and Irmen (2007).
17 This interpretation provides an argument in favor of the agent-based modeling (ABM) methodology which has, however, rarely been used in

macroeconomics yet (see the remarkable exception due to Axtell (1999), though).
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The current article does not provide any formal means for discriminating between the three above interpretations of the
main results contained herein. While t !1 might not be a reasonable time perspective, there remains significant uncer-
tainty if the qualitative and quantitative divergence results presented in Theorems 2 and 3 will manifest themselves in 5
or in 555 years. In the first case, one could probably conclude that her model is methodologically flawed while in the other
case it is probably not. Similarly, while the concept of knife-edge conditions might be too general to discriminate between
candidate explanations of a certain economic phenomenon, at the same time it might be useful as means of assessment
where the fundamental ‘‘growth engine” of a model is located and what type of distortions (shifts in parameter values) could
be most threatening for the sustainment of the current growth regime.

Finally, one should ask oneself one important question: could it be that we are living in a world where none of the dis-
tortions to the growth mechanism mentioned in Theorems 1–3 can ever appear? In such case, the methodological issues dis-
cussed above would be void. But are we able to construct an empirical test able to assess whether such distortions have
indeed ever appeared, given the long-standing problem of model uncertainty? For now, this question remains open.
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Appendix A. Discrete-time versions of Theorems 1 and 2

Results analogous to Theorems 1 and 2 hold also for models set up in discrete time. Let us now consider a very general
form of a discrete-time model of economic growth. Its dynamics are ruled by a system of autonomous difference equations of
order m:
Please
conom
FðXt;Xt�1; . . . ;Xt�mÞ ¼ 0; X�mþ1;X�mþ2; . . . ;X0 given: ð22Þ
This time, we do not even have to impose any particular restriction on the class of functions F and G (the pre-defined growth
regularity). The space of all mappings F : Rðmþ1Þn ! Rn is thus going to be considered our ‘‘parameter space” and denoted by
P. We shall endow the space P with the usual supremum metric but without ruling out functions that are divergent with
respect to this metric. We shall assume that all solutions to (22) are well defined for all t ¼ 0;1;2; . . ..

Theorem 4 (Discrete-time version of Theorem 1). The set F of functions F : Rðmþ1Þn ! Rn such that GðXt ;Xt�1; . . . ;Xt�mÞ ¼ 0
for some solution fXtgt¼0;1;2;... to FðXt ;Xt�1; . . . ;Xt�mÞ ¼ 0 has an empty interior in P.
Proof. Let fXtgt¼0;1;2;... solve the system of difference equations: GðXt ;Xt�1; . . . ;Xt�mÞ ¼ 0. Since this time path fXtgt¼0;1;2;... is
also a particular solution of the considered growth model, we obtain:
UðtÞ � FðXt;Xt�1; . . . ;Xt�mÞ ¼ 0; 8t ¼ 0;1;2; . . . ð23Þ
To show that the set of functions F � P satisfying (23) has an empty interior, consider a family of functions Fe 2 P such
that FeðY0;Y1; . . . ;YmÞ � FðY0;Y1; . . . ;YmÞ þ ee1 for e > 0. Of course, kFe � FkC1ðRðmþ1Þn ;RnÞ ¼ e! 0 as e! 0. On the other hand,
for all e > 0,
UeðtÞ � FeðXt ;Xt�1; . . . ;Xt�mÞ ¼ ee1–0; 8t ¼ 0;1;2; . . . ð24Þ
Thus, Fe R F for all e > 0 so F has an empty interior. h
Theorem 5 (Discrete-time version of Theorem 2). Let fXtgt¼0;1;2;... be a time path of a dynamic model economy summarized by
(22). Assume that either there exists i ¼ 1;2; . . . ;n such that Xi;t !1 as t !1 or there exists i ¼ 1;2; . . . ;n such that Xi;t ! Xi as
t !1. Under these assumptions, there exists a more general class of functions F/ðX; _X; . . . ;XðmÞÞ; F/ 2 P, such that F/ ¼ F for
/ ¼ 0, but for all /–0,
sup
t2f0;1;2;...g

kF/ðXt;Xt�1; . . . ;Xt�mÞ � FðXt ;Xt�1; . . . ;Xt�mÞk ¼ sup
t2f0;1;2;...g

kF/ðXt;Xt�1; . . . ;Xt�mÞk ¼ þ1: ð25Þ
Proof. In case Xi;t !1 with t !1 for some i ¼ 1;2; . . . ;n, it suffices to take
F/ðXt ;Xt�1; . . . ;Xt�mÞ ¼ FðXt ;Xt�1; . . . ;Xt�mÞ þ /Xt :
Clearly, F/ ¼ F for / ¼ 0, but for all /–0,
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conom
sup
t2f0;1;2;...g

kF/ðXt;Xt�1; . . . ;Xt�mÞk ¼ sup
t2f0;1;2;...g

/kXtk ¼ þ1:
If, however, there exists a finite-valued vector eX > 0 such that Xi;t 6
eXi for all t ¼ 0;1;2; . . . and i ¼ 1;2; . . . n, and

9ði ¼ 1;2; . . . ;nÞXi;t ! Xi then one can use
F/ðXt ;Xt�1; . . . ;Xt�mÞ ¼ FðXt ;Xt�1; . . . ;Xt�mÞ þ
/

jXp � Xj
;

where p ¼ arg mini¼1;2;...;nXi among those variables which converge to steady-state values. Then F/ ¼ F for / ¼ 0 but for all
/–0; supt2f0;1;2;...gkF/ðXt ;Xt�1; . . . ;Xt�mÞk ¼ supt2f0;1;2;...g/k 1

jXp�Xj
k ¼ þ1. h
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