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a b s t r a c t

This paper analyzes the properties of a two-dimensional problem of factor-specific technology choice
subject to a technology menu — understood as the choice of the degree of factor augmentation by a
producing firm or the choice of quality of goods demanded by a consumer. The considered general setup
encompasses the benchmark cases of Cobb–Douglas, CES and Leontief (minimum) functions. It is shown
that the technology menu and the global function (envelope of local functions) are dual objects, in a well-
defined generalized sense of duality. In the optimum, partial elasticities of (i) the local function, (ii) the
technology menu and (iii) the global function are all equal and there exists a clear-cut, economically
interpretable relationship between their curvatures. In particular, the elasticity of substitution of the
global function is always above that of the local function. The paper also invokes Bergson’s theorem to
comment on the consequences of assuming homogeneity or homotheticity, with a particular focus on
technology menus constructed as level curves of idea (unit factor productivity) distributions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The current paper deals with decision problems faced by firms
which contemplate not just about the demand for production
factors – such as capital and labor – but also about the degree of
their technological augmentation (see e.g. Atkinson and Stiglitz,
1969; Basu and Weil, 1998; Acemoglu, 2003; Jones, 2005; Caselli
and Coleman, 2006). Consider, for example, a firm owner planning
to set up a new plant. She may build a traditional manufacture
where production is labor-intensive, or a highly automated plant
where all routine work is carried out by robots. Imagine that both
factory designs require capital and labor inputs to be fed into the
production process in essentially fixed, though vastly different pro-
portions (Jones, 2005). Which of the available technologies should
she choose? Logically, the higher is the market wage relative to
the capital rental rate, the more inclined will she be to choose
an automated plant — a technology which runs at higher capital–
labor ratios, and thus is (under gross complementarity) both labor-
augmenting and labor-saving. A similar problem is faced by a
corporation which chooses between setting up web-based cus-
tomer support service and a telephone-based one (León-Ledesma
and Satchi, 2018): the former one embodies labor-saving technolo-
gies allowing the firm to employ less labor relative to capital, so it is
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more likely to be chosen if wage costs are relatively higher. By the
same token, a declining trend in the price of computers relative
to other equipment should induce firms to gradually re-organize
production to be more ICT-intensive, and increasing oil prices — to
adopt oil-saving production techniques, such as replacing diesel
engines with electric ones.

Mathematically equivalent problems are also faced by con-
sumers who are allowed to decide both about the quantity and
quality of the demanded goods.1 Consider, for example, a person
who is about to buy a TV set and a piano. Next she will decide
how much time to spend on watching TV and playing the piano.
Both leisure activities provide utility and – in contrast to the pre-
vious examples – are substitutable, not complementary. Assume
that an offer comes along, however, that the person could earn
some money by playing the piano in public. This makes the time
spent on TV viewing relatively more expensive. In such a scenario,
compared to the initial one, she should be relativelymorewilling to
spendmore hours playing the piano, and in consequence— shewill
be wore willing to buy a better, more expensive piano rather than
a higher quality TV set: a ‘‘piano-augmenting’’ technology choice.
Under gross substitutability, however, this choice is accompanied

1 Alternative interpretations of the factor-specific technology choice problem
include also workers (or managers) who allocate their limited endowments of
time/effort across two alternative tasks, and consumers who decide over their
demand for two goods characteristics (Lancaster, 1966) and are also allowed to
choose their attitudes towards these characteristics optimally from a behavior
menu (Matveenko, 2016). The last interpretation suggests that the considered
problemmay also be viewed as a special case ofmulti-attribute utility theory (Dyer,
2005), as long as the consumer is allowed to optimize over theweights of attributes.
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by increasing, not decreasing share of utility accruing to the aug-
mented quantity: playing the piano.

The purpose of this paper is to provide a detailed treatment
of a static, two-dimensional problem of optimal factor-specific
technology choice, where the decision maker faces a menu of local
technologies which depend on the quantity of the two factors and
their respective quality (i.e., unit productivity). The menu features
a trade-off insofar as choosing higher quality of one factor comes
at the cost of reducing the quality of the other one. The decision
maker is allowed to select her preferred technology, in order to
maximize total output/profit/utility, for all configurations of factor
quantities. The global function is then constructed as an envelope
of local functions, as in Fig. 1. We concentrate on the technology
choice problem only, setting the determination of factor demand
and market equilibrium aside (see Appendix for discussion).

This paper has been motivated primarily by the earlier contri-
butions to the theory of economic growth and factor-augmenting
technical change (e.g., Basu and Weil, 1998; Acemoglu, 2003;
Jones, 2005; Caselli and Coleman, 2006) but its appeal is much
broader. The class of problems which we solve here can be applied
potentially both in micro- and macroeconomics, and they can be
viewed both as producer and consumer problems. Factor-specific
technology choice problems could be useful, in particular, for ad-
dressing issues related to natural resources,2 human capital and
capital–skill complementarity,3 industrial organization, interna-
tional trade, labormarkets, sectoral change, consumption patterns,
social welfare, and so on. Unfortunately, the associated applied
literature has remained rather scarce thus far because of the lack
of direct empirical measures of firms’ technology choices and the
difficulty of their indirect identification from the data. In particular,
in the dynamic setup the problem consists in delineating changes
in technology choices (movements along a given technologymenu)
from factor-augmenting technological progress (shifts of the tech-
nologymenu),Witajewski-Baltvilks (2015) and León-Ledesma and
Satchi (2018).

Solutions to some specific cases of the factor-specific technol-
ogy choice problem are well known. First, when the technology
menu has the Cobb–Douglas form (which may arise, among other
cases, if factor-specific ideas are independently Pareto-distributed;
Jones, 2005) or if the local function is of such form (Growiec,
2008a), then the global function must also be of the Cobb–Douglas
type. Second, combining a local function of a CES or a minimum
(Leontief) form with a CES technology menu yields a global CES
function (Growiec, 2008b;Matveenko, 2010; Growiec, 2013; León-
Ledesma and Satchi, 2018).4 Third, detailed treatment of the prop-
erties of factor-specific technology choice problems with a min-
imum (Leontief) local function, including their intriguing dual-
ity properties, has been provided by Rubinov and Glover (1998),
Matveenko (1997, 2010) and Matveenko and Matveenko (2015).5
The minimum function is however an extreme case, which may
be viewed as both instructive and problematic. Fourth, several
important results for the general factor-specific technology choice
problem with an implicitly specified technology menu have been
provided in section 2.3 of León-Ledesma and Satchi (2018).

2 Factor-specific technology choice problems arise naturally when studying the
substitutability between exhaustible resources and accumulable physical capital (or
renewable resources, cf. Dasgupta and Heal, 1979; Bretschger and Smulders, 2012)
aswell as human capital (or quality-adjusted labor, cf. Smulders anddeNooij, 2003).
3 The choice of degree of factor augmentation becomes an important issue once

one acknowledges that skilled and unskilled labor are imperfectly substitutable
(e.g., Caselli and Coleman, 2006; Witajewski-Baltvilks, 2015) and potentially com-
plementary to capital (Krusell et al., 2000; Duffy et al., 2004).
4 The implications of factor-specific technology choice in the CES case have been

also studied by Nakamura and Nakamura (2008) and Nakamura (2009).
5 See also the book by Rubinov (2000).

Notwithstanding these results, the literature thus far has not
devised a general theoretical framework allowing for a systematic
treatment of the factor-specific technology choice problem in its
generality. This paper fills this gap. Its contribution to the literature
is four-fold.

First, we solve the generally specified static, two-dimensional
problemof factor-specific technology choice.We find that a unique
optimal factor-specific technology choice exists for any homoth-
etic local function F and technology menu G. Plugging this choice
into the local function F leads to a unique homogeneous (constant
returns to scale) global functionΦ , whichmay then be transformed
to a homothetic form by an arbitrary monotone transformation.
We also find that (i) the shape of the global function Φ depends
non-trivially both on F and G unless one of them is of the Cobb–
Douglas form, and (ii) the global function Φ offers more substitu-
tion possibilities (i.e., has less curvature) than the local function
F unless the optimal technology choice is independent of factor
endowments,whichhappens only if F is Cobb–Douglas orG follows
a maximum function.

Second, we construct and solve the dual problem (in a well-
defined generalized sense of duality) where, for every technology,
the decisionmaker maximizes output/profit/utility subject to a re-
quirement of producing a predefined quantitywith the global tech-
nology Φ . Then, by plugging these optimal factor choices into the
local function F , we obtain the technology menu G as an envelope.
The results are fully analogous to the results of the primal problem.

Third, we exploit the duality property to find that in the opti-
mum, partial elasticities of all three objects – the local function
F , the technology menu G and the global function Φ – are all
equal. We then identify a clear-cut, economically interpretable
relationship between their curvatures, giving rise to interesting
qualitative implications on concavity/convexity and gross com-
plementarity/substitutability along the three functions. In par-
ticular, we find that when factors are gross complements along
the local function (the typical case under the production function
interpretation), then either the technologies are gross substitutes
along the technology menu but the factors are gross complements
along the global function, or vice versa, the technologies are gross
complements along the technology menu and the factors are gross
substitutes along the global function.

Fourth, we observe that the assumption of homotheticitywhich
we make throughout the analysis, while shared by bulk of the
associated literature, does not come without costs. The key limi-
tation is Bergson’s theorem (Bergson{Burk}, 1936): every homo-
thetic function that is also additively separable (either directly or
after a monotone transformation) must be either of the Cobb–
Douglas or CES functional form. We apply this theorem, in par-
ticular, to probabilistic frameworks where the technology menu
G is viewed as a level curve of a joint distribution of ideas (unit
factor productivities), with the marginal idea distributions being
either independent (Jones, 2005; Growiec, 2008b) or dependent
following a certain copula (Growiec, 2008a). We show that such
construction of the technology menu places a restriction on the
considered class of functions G, often reducing them to the Cobb–
Douglas or CES form. To demonstrate this, we adapt Bergson’s
theorem (Bergson{Burk}, 1936) to the case of copulas.

The closest related work is by León-Ledesma and Satchi (2018)
who, among other objectives, address the general factor-specific
technology choice problem (1). Thus there is some overlap of
analytical results between both papers (as clearly indicated in
the text below). There are also major differences, though. The
current paper provides additional results for the primal problem
(1), defines and solves the dual problem (2), and draws additional
insights from duality (Theorems 4–5). Additional symmetries are
uncovered by using an explicit, rather than implicit specification
of the technology menu. Finally, it also extends the framework
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Fig. 1. Construction of the global function from local functions by incorporating the optimal factor-specific technology choices.

to the case of homothetic functions and explains the key role of
Bergson’s theorem in the prevalence of Cobb–Douglas and CES
functions, and Pareto and Weibull distributions, in the associated
literature. León-Ledesma and Satchi (2018), in contrast, embed the
factor-specific technology choice problem in a dynamic general
equilibrium model allowing to differentiate between the short-
run and long-run elasticity of substitution. Their model is then
calibrated, estimated and taken to the data. It is the first framework
allowing to reconcile gross complementarity of factors in the short
run, a general form of factor-augmenting technical change, and
long-run balanced growth, cleverly circumventing the Steady State
Growth Theorem (Uzawa, 1961).

The paper is structured as follows. Section 2 presents the setup
of the considered problem. In Section 3 we derive the optimal
technology choice. In Section 4 we plug it into the local production
function and thus build the envelope. Section 5 discusses the
most instructive special cases known from the literature. Section 6
presents the similarities and differences between the homoge-
neous and the homothetic case. Section 7 studies the link between
the technology menu and distributions of ideas. Section 8 con-
cludes. A discussion of the relationships between our setup and
the problem of output/utility maximization subject to a budget
constraint, as well as the literature on factor-augmenting technical
change, can be found in Appendix.

2. The primal and dual optimization problem

For the clarity of exposition, we shall first consider the case
where the local function F , the technology menu G and the global
function Φ are homogeneous. A generalization to the homothetic
case is delegated to Section 6.

2.1. The primal problem

In the primal problem, the decision maker (the output- or
profit-maximizing firm, the utility-maximizing consumer) max-
imizes a local function F (BK , AL) with respect to the technol-
ogy pair (B, A) taken from a level curve of the technology menu
G(B, A), taking K > 0 and L > 0 as given.6 The global function

6 We denote the quantities K and L so that they are easily recognized as ‘‘capital’’
and ‘‘labor’’, in line with the production function interpretation of the discussed

Φ(K , L) is obtained as an envelope, by plugging the optimal choices
(B∗(K , L), A∗(K , L)) into the local function. Formally, we write:

Φ(K , L) = max
(B,A)∈ΩG

F (BK , AL) s.t.

ΩG = {(B, A) ∈ R2
+

: G(B, A) = 1}. (1)

In the basic treatment of the static problem (1), it is assumed
that the local function F : R2

+
→ R+ is increasing, twice

continuously differentiable and homogeneous (constant-returns-
to-scale, CRS). Homogeneity permits to rewrite F in its intensive
form, F (BK , AL) = F

( BK
AL , 1

)
AL = f (bk)AL, where b = B/A and

k = K/L. The local function F is interpreted as the local (short-
run, exogenous-technology) production function faced by a firm or
utility function of a consumer. Each of its arguments is a product
of a quantity (K or L) and its quality multiplier, i.e., unit factor
productivity (B or A, respectively). Finally, while mathematically
this is not necessary, economic interpretation of the local function
implies that in typical applications, it should be concave in each of
its arguments.

Symmetrically, we also assume that the technology menu G :

R2
+

→ R+ is increasing, twice continuously differentiable and
homogeneous. Analogously, we rewrite G in its intensive form,
G(B, A) = G

( B
A , 1

)
A = g(b)A. The technology menu G is a function

which maps factor-specific quality levels to a scalar, interpreted
as an overall ‘‘technology level’’ of the economy as faced by the
decision maker. Under the production function interpretation, we
say that the larger is the value of G, themore can be produced from
given inputs; under the utility function interpretation, the value of
G scales total utility attainable from the given endowment of goods.

2.2. The dual problem

In the dual problem, the decision maker maximizes a local
function F (BK , AL) with respect to the quantities (K , L), subject to
maintaining a predefined level of output/utility given by the global
functionΦ(K , L), and taking the factor-specific technologies B > 0

framework. However, this is done only to keep the discussion close to the associated
literature. In fact, the theory can be applied just as well to utility maximization
problems, where K and L are understood as quantities of two goods demanded by
a consumer, as well as to production functions with any other pair of inputs.
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and A > 0 as given. The technology menu G(B, A) is obtained as an
envelope, by plugging the optimal choices (K ∗(B, A), L∗(B, A)) into
the local function. Formally, we write:

G(B, A) = max
(K ,L)∈ΩΦ

F (BK , AL) s.t.

ΩΦ = {(K , L) ∈ R2
+

: Φ(K , L) = 1}. (2)

In the basic treatment of the static problem (2), it is assumed that –
alike the local function F – the global function Φ : R2

+
→ R+

is increasing, twice continuously differentiable and homogeneous.
Due to homogeneity, we may rewrite Φ in its intensive form,
Φ(K , L) = Φ

( K
L , 1

)
L = φ(k)L.

The difference between the local function F and the global func-
tionΦ is that the former maps the quantities of inputs into output
keeping factor-specific technologies fixed, whereas the latter al-
lows them to be chosen optimally. Under the production function
interpretation, it is therefore natural to think of the local function
as a short-run production function, and of the global function –
as a long-run one (León-Ledesma and Satchi, 2018). Analogously,
under the utility function interpretation the local function is a
short-run utility function which takes attitudes towards goods
characteristics as given, whereas the global function is a long-
run utility function which also accounts for endogenous behavior
formation (Matveenko, 2016). Again, economic interpretation of
the global function implies that in typical applications, it should
be concave in each of its arguments.

2.3. Homotheticity, additive separability and Bergson’s theorem

Homotheticity of the considered functions has profound conse-
quences. Importantly, ever since (Bergson{Burk}, 1936) we know
that every homothetic and additively separable function must be
either of the Cobb–Douglas or of the CES form. In the symbols of
our current study, Bergson’s theorem can be stated as follows:

Theorem 1 (Bergson{Burk}, 1936). Let Fh : R2
+

→ R be a
homothetic functionwhich can bewritten as additively separable after
a monotone transformation:

∃(fh : R+ → R, F : R2
+

→ R+) Fh(x, y) = fh(F (x, y)), (3)

∃(fs : R+ → R, Dx,Dy : R+ → R) Fh(x, y) = fs(Dx(x)
+Dy(y)), (4)

where fh, fs,Dx,Dy are monotone differentiable functions and F is an
increasing, twice differentiable homogeneous function. Then either

Dx(x) = α ln x + cx, Dy(y) = β ln y + cy

⇒ F (x, y) = c · x
α

α+β y
β
α+β , (5)

where α, β, cx, cy are arbitrary constants and c = exp
(

cx+cy
α+β

)
, or

Dx(x) = αxρ + cx, Dy(y) = βyρ + cy

⇒ F (x, y) = (αxρ + βyρ)
1
ρ , (6)

where α, β, cx, cy are arbitrary constants and ρ ̸= 0.

Proof. See Bergson{Burk} (1936) or Rader (1972), Theorem 8,
page 212. ■

Bergson’s theorem is the fundamental analytical cause why
studies aiming at generalizing the CES framework must either
give up homotheticity (e.g., Zhelobodko et al., 2012) or additive
separability (e.g., Revankar, 1971; Growiec and Mućk, 2016 and
this paper). It follows that in all the non-CES cases covered by the
current study, the functions F ,G andΦ cannot be written down as
additively separable after any monotone transformation, a prop-
erty shared among others by isoelastic elasticity of substitution
(IEES) functions defined in Growiec and Mućk (2016).

2.4. Discussions and clarifications

Let us clarify a few important concepts before we present our
main results.

Generalized duality. Problems (1) and (2) are dual to one another,
although not in the standard, linear sense of duality (Diewert,
1993). Instead they are dual when taking the local function F as
a (typically non-linear) linking function. This generalized form of
duality (‘‘F-duality’’) encompasses linear duality as a special case
(after a switch from maximization to minimization in the dual
problem). At the same time, it also generalizes idempotent duality,
where the linking function is a minimum function (Rubinov and
Glover, 1998; Matveenko and Matveenko, 2015).7 The latter case
can be viewed as a limiting case of F-duality.

Partial elasticities. Partial elasticities of homogeneous functions
F , G andΦ with respect to their first arguments are defined as:

πF (bk) =
∂F
∂(BK )

(BK , AL)
BK

F (BK , AL)
=

f ′(bk)bk
f (bk)

> 0, (7)

πG(b) =
∂G
∂B

(B, A)
B

G(B, A)
=

g ′(b)b
g(b)

> 0, (8)

πΦ (k) =
∂Φ

∂K
(K , L)

K

Φ̃(K , L)
=
φ′(k)k
φ(k)

> 0. (9)

Homogeneity implies that π ∈ [0, 1] for all three functions and
that partial elasticities with respect to their second arguments are
equal to 1 − π . It is also useful to define the relative elasticitiesΠ ,
strictly increasing in π , as

ΠF (bk) =
πF (bk)

1 − πF (bk)
> 0, ΠG(b) =

πG(b)
1 − πG(b)

> 0,

ΠΦ (bk) =
πΦ (k)

1 − πΦ (k)
> 0.

(10)

If one also assumed that factormarketswere perfectly competitive,
partial elasticitiesπ and 1−π would also be equal to the respective
factors’ shares of output.

Curvature. We define the curvature of homogeneous functions F ,
G andΦ as:

θF (bk) = −
f ′′(bk)bk
f ′(bk)

, θG(bk) = −
g ′′(b)b
g ′(b)

,

θΦ (k) = −
φ′′(k)k
φ′(k)

.

(11)

Hence, our measure of curvature is the Arrow–Pratt coefficient
of relative risk aversion, also called the relative love of variety
(Zhelobodko et al., 2012). The curvature θ (x) is positively linked to
the partial elasticity 1 − π (x) and inversely linked to the elasticity
of substitution σ (x), as in

θ (x) =
1 − π (x)
σ (x)

. (12)

As compared to the elasticity of substitution, the curvature θ (x) is
relatively better suited to the simultaneous analysis of concave as
well as convex functions: the curvature is always positive (θ (x) > 0
for all x) for concave functions, always negative (θ (x) < 0 for all x)
for convex functions, and the curvature of linear functions is zero.8

Normalization. We carry out our analysis in normalized units.
Production functionnormalizationhas been shown to be crucial for

7 The term ‘‘idempotent duality’’ belongs to the realm of tropical mathematics.
I am grateful to Matveenko and Matveenko (2015) for acquainting me with this
notion. Iwas however deeply disappointedwhen I learned that tropicalmathematics
has nothing to do with polar coordinates.
8 See Matveenko and Matveenko (2014) for a more detailed discussion of the

relationship between θ (x) and σ (x).
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obtaining clean identification of the role of each parameter of the
CES function (de La Grandville, 1989; Klump and de La Grandville,
2000; Klump et al., 2012). Its usefulness has also been demon-
strated beyond the CES class (Growiec and Mućk, 2016) as well as
for factor-specific technology choice problems (Growiec, 2013).

To maintain normalization while economizing on notation, we
assume that K , L, B, A, k and b are already given in normalized
units9:

K =
K̃

K̃0
, L =

L̃

L̃0
, B =

B̃

B̃0
, A =

Ã

Ã0
,

k =
k̃

k̃0
, b =

b̃

b̃0
.

(13)

Output is normalized in the same way as the inputs. We posit that
G̃(B̃0, Ã0) = G0 ⇐⇒ G(1, 1) = 1 as well as Φ̃(K̃0, L̃0) = Φ0 ⇐⇒

Φ(1, 1) = 1. Thus the level curves are

ΩG = {(B, A) ∈ R2
+

: G(B, A) = 1}

= {(B̃, Ã) ∈ R2
+

: G̃(B̃, Ã) = G0}, (14)

ΩΦ = {(K , L) ∈ R2
+

: Φ(K , L) = 1}

= {(K̃ , L̃) ∈ R2
+

: Φ̃(K̃ , L̃) = Φ0}. (15)

We also normalize the partial elasticities of the considered
functions F , G andΦ:

π0F ≡
∂ F̃

∂(B̃K̃ )
(B̃0K̃0, Ã0L̃0)

B̃0K̃0

F̃ (B̃0K̃0, Ã0L̃0)
=

f ′(1) · 1
f (1)

= f ′(1), (16)

π0G ≡
∂G̃

∂ B̃
(B̃0, Ã0)

B̃0

G̃(B̃0, Ã0)
=

g ′(1) · 1
g(1)

= g ′(1), (17)

π0Φ ≡
∂Φ̃

∂K̃
(K̃0, L̃0)

K̃0

Φ̃(K̃0, L̃0)
=
φ′(1) · 1
φ(1)

= φ′(1). (18)

In our discussion of examples, we will pay special attention to
the case π0F = π0G = π0Φ . Such coincidence cannot be guaranteed
for arbitrary functions, but it leads to particularly transparent
outcomes whenever it happens to hold.

3. Optimal technology choice

To solve the primal optimization problem for a given pair (K , L),
we set up the following Lagrangian LP :

LP (B, A) = F (BK , AL) + λ(G(B, A) − 1). (19)

We find that as long as the curvature of the local function F exceeds
the curvature of the technology menu G (i.e., there are relatively
few substitution possibilities along the local function), there exists
a unique interior solution to the problem which equalizes partial
elasticities of the local function and the technology menu. We
also find that the optimal technology choice is biased towards
the abundant factor ( ∂b

∗(k)
∂k > 0) if factors are gross substitutes

along a concave local function or if the local function is convex
(1 − πF (bk) − θF (bk) > 0, which requires that σF (bk) > 1
or σF (bk) < 0). Otherwise, optimal technology choice is biased
towards the scarce factor ( ∂b

∗(k)
∂k < 0). Then factors are gross

complements along a concave local function (σF (bk) ∈ (0, 1)). In
the intermediate, knife-edge case where the local technology is
Cobb–Douglas (σF (bk) = 1), optimal technology choice does not
depend on factor endowments, i.e., b∗(k) is constant.

9 In empirical studies, variables are often normalized around sample means
(Klump et al., 2007, 2012).

Theorem 2. Let F ,G : R2
+

→ R+ be increasing, twice continu-
ously differentiable homogeneous functions satisfying θF (b∗(k)k) >
θG(b∗(k)) for a given pair (K , L) ∈ R2

+
, and excluding the case where

both of them are Cobb–Douglas functions. Then the problem (1) allows
a unique interior maximum where

ΠF (b∗(k)k) = ΠG(b∗(k)), (20)

and

B∗(k) =
b∗(k)

g(b∗(k))
, A∗(k) =

1
g(b∗(k))

. (21)

The partial elasticity of the optimal technology choice b∗(k) equals:

∂b∗(k)
∂k

k
b∗(k)

=
1 − πF (bk) − θF (bk)
θF (bk) − θG(b)

. (22)

Proof. See Appendix. ■

Eq. (20) is equivalent to eq. (2.5) in León-Ledesma and Satchi
(2018) and eq. (7) in Jones (2005). Furthermore, the restriction that
θF (b∗(k)k) > θG(b∗(k)) is equivalent to eq. (2.10) in León-Ledesma
and Satchi (2018).

The construction of the dual problem is similar to its primal
counterpart, so the results are alike as well. Proof of the following
theorem is fully symmetric to the proof of Theorem2 and therefore
has been omitted.

Theorem 3. Let F ,Φ : R2
+

→ R+ be increasing, twice continu-
ously differentiable homogeneous functions satisfying θF (bk∗(b)) >
θΦ (k∗(b)) for a given pair (B, A) ∈ R2

+
, and excluding the case where

both of them are Cobb–Douglas functions. Then the problem (2) allows
a unique interior maximum where

ΠF (bk∗(b)) = ΠΦ (k∗(b)), (23)

and

K ∗(b) =
k∗(b)
φ(k∗(b))

, L∗(b) =
1

φ(k∗(b))
. (24)

The partial elasticity of the optimal factor choice k∗(b) equals:

∂k∗(b)
∂b

b
k∗(b)

=
1 − πF (bk) − θF (bk)
θF (bk) − θΦ (k)

. (25)

Having identified the optimal choices in the primal and dual
problem, we are now in a position to insert them into the local
function and thus to construct the appropriate envelopes.

4. The global function and the technology menu: construction,
duality, and curvature

The global function Φ is constructed as an envelope of local
functions by inserting the optimal technology choices from the
primal problem, as derived in Theorem 2, into the local function
F . Symmetrically, the technology menu G is constructed as an
envelope of local functions by inserting the optimal factor choices
from the dual problem, as derived in Theorem 3. The domains of
both envelopes include all arguments for which interior optimal
choices exist, i.e., all arguments for which the curvature of the local
function exceeds the one of the constraint. The resultant envelopes
have the following properties.

Theorem 4. Let DΦ = {(K , L) ∈ R2
+

: θF (b∗(k)k) > θG(b∗(k))}
and DG = {(B, A) ∈ R2

+
: θF (bk∗(b)) > θΦ (k∗(b))} where b∗(k)

solves (20) and k∗(b) solves (23). Then there exists a unique increasing
homogeneous global function Φ : DΦ → R+ solving problem
(1) as well as a unique increasing homogeneous technology menu
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G : DG → R+ solving problem (2). Their respective intensive forms
are given by:

φ(k) =
f (b∗(k)k)
g(b∗(k))

, g(b) =
f (bk∗(b))
φ(k∗(b))

. (26)

Proof. See Appendix. ■

Please note that while both functions g and φ are increasing in
their arguments, the optimal choices b∗(k) and k∗(b) do not have to
be monotone (and hence, bijective). Therefore the mutual duality
(‘‘F-duality’’) of the global function and the technologymenumust
be limited to the domain where b∗(k) and k∗(b) are monotone, and
thus can be inverted, so that k = k∗(b∗(k)) and b = b∗(k∗(b)), as
well as:

φ(k) =
f (b∗(k)k)
g(b∗(k))

=
f (b∗(k)k∗(b∗(k)))

g(b∗(k))
=

f (b∗(k)k∗(b∗(k)))
f (b∗(k)k∗(b∗(k)))
φ(k∗(b∗(k)))

= φ(k∗(b∗(k))), (27)

g(b) =
f (bk∗(b))
φ(k∗(b))

=
f (b∗(k∗(b))k∗(b))

φ(k∗(b))
=

f (b∗(k∗(b))k∗(b))
f (b∗(k∗(b))k∗(b))

g(b∗(k∗(b)))

= g(b∗(k∗(b))). (28)

Interestingly, however, these intervals coincide precisely with the
domain in which both inputs are either (i) gross complements
along a concave local function (with σF (bk) ∈ (0, 1) and 1 −

πF (bk)− θF (bk) < 0), or (ii) gross substitutes along a concave local
function with the additional possibility of a convex local function
(i.e., the case where 1 − πF (bk) − θF (bk) > 0, requiring that either
σF (bk) > 1 or σF (bk) < 0). Most of the production function
studies thus far concentrated on the former possibility (e.g., Ru-
binov and Glover, 1998; Jones, 2005; Growiec, 2013; Matveenko
and Matveenko, 2015) and assumed that factors are always gross
complements along the local production function. We generalize
these studies by accommodating both variants.

Theorem 5. Let Ω = {(k, b) ∈ DΦ ×DG : 1−πF (bk)−θF (bk) ̸= 0}.
Then for each connected subset of Ω , both equalities in (26) hold
simultaneously and partial elasticities of F ,G andΦ are equal:

π = πF (bk) = πG(b) = πΦ (k). (29)

For all (k, b) ∈ Ω it also holds that 1 − π − θG(b) = 0 ⇐⇒

1−π−θΦ (k) = 0 and otherwise the curvatures of the three functions
are linked10 via

1
1 − π − θF (bk)

=
1

1 − π − θG(b)
+

1
1 − π − θΦ (k)

. (30)

Proof. See Appendix. ■

Eq. (30), equivalent to eq. (2.15) in León-Ledesma and Satchi
(2018), is a precise quantitative description of the relationship
between the curvatures of the local function, the technologymenu
and the global function. It also has some very intuitive properties.
First, θF (bk) always exceeds both θG(b) and θΦ (k). Hence, factor-
specific technology choice always adds more flexibility to the
local function, thereby decreasing its curvature (and thus, under
concavity, increasing its elasticity of substitution, Growiec, 2013;
León-Ledesma and Satchi, 2018).

Second, it is instructive to evaluate the signs of both sides of
(30). If the left-hand side is negative,meaning that factors are gross
complements along the local function (by all means the usual case

10 Formore intuition, note thatΩ could also beunderstood as the set of arguments
for which F has non-unitary elasticity of substitution, σF (bk) ̸= 1. Moreover, the
statement 1 − π − θG(b) = 0 ⇐⇒ 1 − π − θΦ (k) = 0 is equivalent to
σG(b) = 1 ⇐⇒ σΦ (k) = 1, representing the case where both G and Φ have a
locally unitary elasticity of substitution.

in the production function literature), then 1 − π − θG(b) and 1 −

π − θΦ (k) must be of opposing signs. Hence, it must be that either
the technologies are gross substitutes along the technology menu
but the factors are gross complements along the global function, or
vice versa, the technologies are gross complements along the tech-
nology menu and the factors are gross substitutes along the global
function. Intuitively, if the technologies b are easily substitutedwith
one another then their choice is of relatively minor importance for
the effective input ratio bk; then the substitutability of inputs k
must remain low. Conversely, if the technologies come in almost
fixed proportions then even small changes in b will exert a major
impact on bk. In such a case, optimal technology choice is a potent
force, able to make inputs k easily substitutable along the global
function. For example, the intriguing case where factors are gross
complements in the short run but gross substitutes over the long
run (σF (bk) < 1 < σΦ (k)), deliberated by León-Ledesma and Satchi
(2018), can be straightforwardly obtained by assuming that the
technologies are gross complements along the technology menu,
1 − π − θG(b) < 0 with θF (bk) > θG(b).

The remaining possibility is that the left-hand side of (30) is
positive, so that the factors are gross substitutes already along
the local function. In such a situation, both 1 − π − θG(b) and
1 − π − θΦ (k) must be positive as well, encompassing the cases
of gross substitutability and convexity.

Additional findings follow from considering the factor-
specific technology choice problem jointly with the problem of
output/utility maximization subject to a budget constraint (see
Appendix for details). Importantly, meaningful and potentially
applicable results are obtained here also for the case of gross sub-
stitutability along the local function – which is in fact quite natural
if K and L are interpreted e.g. as skilled and unskilled labor in the
production function (Caselli and Coleman, 2006), or as two similar
consumption goods in the utility function. An interior maximum
(e.g., a competitive equilibrium) is obtained in the joint optimiza-
tion problem as long as the marginal rate of substitution crosses
the −

w
r ratio (i.e., minus the relative price of L) for some con-

figuration of factors (K , L) along the isoquant/indifference curve
of both the local and global function. This additional condition is
relatively easy to verify: for example, it is automatically verified
for all CES functions, both with gross complementarity and gross
substitutability of factors (Growiec and Mućk, 2016).

In contrast, an interiormaximumof the joint problem cannot be
sustained in the case of a convex local or global function (θF (bk) <
0 or θΦ (k) < 0): it would then be optimal to specialize completely
in only one factor. Thus the framework’s ability to deliver a convex
global function – even from a concave local function – should be
treated rather as a theoretical curiosity than a legitimate option to
be used in model building.

5. Notable special cases

Several special parametrizations of the above general setup
have been discussed in the literature. We shall now provide an
overview of these cases, thus underscoring the wide applicability
of our general theorems. Most notably, under certain assumptions
they can be used as microfoundation for global Cobb–Douglas and
CES production/utility functions.

5.1. The Cobb–Douglas function

The primal problemwith a Cobb–Douglas technologymenu has
been studied by, among others, Jones (2005) and León-Ledesma
and Satchi (2018), Lemma 1. Its variant with a Cobb–Douglas local
function has been reviewed as an example in Growiec (2008a).
The appendix to Growiec (2013) has also considered the case of
a continuum of factors. Here we reproduce these results as special
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cases of our general theory as well as elucidate certain important
problems which may arise in the primal and dual problems under
this particular parametrization.

Cobb–Douglas local function. If the local function is of the homo-
geneous, normalized Cobb–Douglas form, then:

F (BK , AL) = (BK )π0F (AL)1−π0F , f (bk) = (bk)π0F . (31)

Assuming that G is not Cobb–Douglas and that θG(b) < 1 −

π0F , from (20) we obtain that the optimal technology choice is
independent of k:

Π0F = ΠG(b) ⇒ b∗(k) ≡ b∗
= Π−1

G (Π0F ). (32)

Inserting this choice for all (K , L) ∈ R2
+
, from (26) we obtain:

φ(k) =
f (b∗k)
g(b∗)

=

(
(b∗)π0F

g(b∗)

)
kπ0F ⇒ Φ(K , L)

=

(
(b∗)π0F

g(b∗)

)
Kπ0F L1−π0F . (33)

It means that irrespective of the shape of G, the global function
must be Cobb–Douglas with the same exponent π0F as the local
function. The shape of G affects only the multiplicative constant,
i.e., total factor productivity (TFP). If, additionally, π0F = π0G then
b∗

= 1 and hence the constant becomes equal to unity, implying
Φ(K , L) = Kπ0F L1−π0F .

A fully symmetric result is obtained when solving the dual
problem with a Cobb–Douglas local function.

While intuitive, the case of Cobb–Douglas local functions is
pathological in the sense that the technology menu and the global
function cannot be viewed as dual objects because the optimal
choice is constant and thus not invertible. Indeed, trying to solve
the primal problemwhen F andG are both Cobb–Douglas functions
with the same exponent π0F , immediately leads to indeterminacy:

max
(B,A)∈R2

+

F (BK , AL) = (BK )π0F (AL)1−π0F s.t.

G(B, A) = Bπ0F A1−π0F = 1 (34)

implies maximizing Kπ0F L1−π0F which does not depend on B and
A. Indeterminacy would also follow if we tried to solve the dual
problem when F and Φ are both Cobb–Douglas with the same
exponent π0F .

This pathological outcome is a direct consequence of violation
of the curvature assumption in Theorem 2 (when solving the
primal problem while assuming that F and G are Cobb–Douglas
functions with the same exponent) or in Theorem 3 (whenmaking
this assumption for F andΦ in the dual problem).

Cobb–Douglas technology menu. Let us now consider the case
where the technology menu G is Cobb–Douglas with an exponent
π0G:

G(B, A) = Bπ0GA1−π0G , g(b) = bπ0G (35)

and the local function exhibits more curvature, θF (bk) > 1 − π0G.
In this case, the optimal technology choice is monotone and thus
duality is present again. From (20) we obtain

ΠF (b∗(k)k) = Π0G ⇒ b∗(k) =
Π−1

F (Π0G)
k

. (36)

Inserting this choice for all (K , L) ∈ R2
+
, from (26) we obtain:

φ(k) =
f (b∗(k)k)
g(b∗(k))

=

(
f (Π−1

F (Π0G))

(Π−1
F (Π0G))π0G

)
kπ0G ⇒ Φ(K , L)

=

(
f (Π−1

F (Π0G))

(Π−1
F (Π0G))π0G

)
Kπ0GL1−π0G . (37)

It means that irrespective of the shape of F , the global function
must be Cobb–Douglaswith the same exponentπ0G as the technol-
ogy menu. The shape of F affects only the multiplicative constant,
i.e., total factor productivity (TFP). If, additionally, π0F = π0G then
b∗(k) = 1/k and hence the constant becomes equal to unity,
implyingΦ(K , L) = Kπ0GL1−π0G .

Cobb–Douglas global function. The dual problem for a Cobb–
Douglas global function Φ(K , L) = Kπ0Φ L1−π0Φ is solved analo-
gously. Irrespective of the shape of F , the technologymenumust be
Cobb–Douglas with the same exponent π0Φ as the global function.
The shape of F affects only the multiplicative constant, i.e., the
overall technology level in the economy. If, additionally,π0F = π0Φ
then k∗(b) = 1/b and hence the constant becomes equal to unity,
implying G(B, A) = Bπ0ΦA1−π0Φ .

5.2. The CES function

The primal problemwith a CES local function and a CES technol-
ogy menu has been analyzed by, among others, Growiec (2008b,
2013). The former study also touched upon the dual problem,
whereas the appendix to the latter considered the more general
case of a continuum of factors.

It turns out that with a CES (or Leontief) local function, a CES
technology menu is dual to a CES global function — and vice versa.
Let us now briefly review this case as a specific application of our
general theory.

Formally, for the primal problem let us assume that

F (BK , AL) = (π0F (BK )ρ + (1 − π0F )(AL)ρ)
1
ρ ,

G(B, A) = (π0GBα + (1 − π0G)Aα)
1
α ,

(38)

with ρ ̸= 0 and α ̸= 0 as well as ρ < α which implies θF (bk) >
θG(b). From (20) we obtain:

Π0F (bk)ρ = Π0Gbα ⇒ b∗(k) =

(
Π0F

Π0G

) 1
α−ρ

k
ρ
α−ρ . (39)

Inserting this choice for all (K , L) ∈ R2
+
, from (26) we obtain:

φ(k) =
f (b∗(k)k)
g(b∗(k))

=

(
π0F (

Π0F
Π0G

)
ρ
α−ρ k

αρ
α−ρ + (1 − π0F )

) 1
ρ

(
π0G(

Π0F
Π0G

)
α
α−ρ k

αρ
α−ρ + (1 − π0G)

) 1
α

= ζ ·
(
π0Φkξ + (1 − π0Φ )

) 1
ξ , (40)

where ξ =
αρ

α−ρ
denotes the elasticity parameter of the resultant

global function (linked to its elasticity of substitution via σΦ =

1
1−ξ ), the multiplicative constant equals ζ = (1 − π0F )

1
ρ (1 −

π0G)−
1
α (1 − π0Φ )

−
1
ξ , and π0Φ is the partial elasticity of the global

function at the point of normalization which satisfies:

Π
1
ρ

0F = Π
1
α
0GΠ

1
ξ

0Φ . (41)

We also observe that in the special case where π0F = π0G = π0Φ ,
the optimal technology choice simplifies to b∗(k) = k

ρ
α−ρ with

ζ = 1. The dual problem is solved analogously.
Hence, we find that indeed the global function is CES, and

its curvature is indeed lower than that of the local function (cf.
Growiec, 2013; León-Ledesma and Satchi, 2018). In line with
eq. (30), we obtain the following relationship between the three
functions’ elasticity parameters:
1
ρ

=
1
α

+
1
ξ
. (42)

Hence, if factors are gross complements along the local function
(ρ < 0), then α and ξ must be of opposing signs, meaning that
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either the technologies are gross substitutes along the technology
menu but the factors are gross complements along the global func-
tion, or vice versa, the technologies are gross complements along
the technology menu and the factors are gross substitutes along
the global function. If, in contrast, factors are gross substitutes
along the local function (ρ > 0), then both α and ξ must be
positive as well, encompassing the cases of gross substitutability
and convexity.

5.3. The minimum and maximum functions

Mutual duality between the technology menu and the global
function subject to a minimum (Leontief) local function, along
which the factors are perfectly complementary (i.e., idempotent
duality), has been identified and thoroughly discussed by Rubinov
and Glover (1998), Matveenko (1997, 2010) and Matveenko and
Matveenko (2015). These studies have also extended this case into
n dimensions. For completeness, here we also present the case
where the technology menu or the global function is specified as a
maximum function.

Leontief local function. The case where the local function is Leon-
tief is very closely related to our Theorems 2–5 but, strictly speak-
ing, cannot be considered as their special case. The reason is that,
contrary to our assumptions, the minimum (Leontief) function:

F (BK , AL) = min{BK , AL}, f (bk) = min{bk, 1}, (43)

is not differentiable at the point where BK = AL. Nevertheless,
the results obtained here can still be conveniently characterized
as a limiting case of our setup, where the curvature of the local
function tends to infinity at the ‘‘kink’’ (i.e., at the ray from the
origin satisfying BK = AL). Second order conditions are then
automatically verified.

Assuming that the curvature of the technology menu is finite,
the first order condition for the primal problem implies bk = 1
(and thus b∗(k) = 1/k) as well as f (bk) = bk = 1. Inserting this
choice into the local function for all (K , L) ∈ R2

+
we obtain:

φ(k) =
1

g(1/k)
, (44)

which is fully in line with (26). The solution of the dual problem is
fully analogous and implies k∗(b) = 1/b and a technology menu
satisfying g(b) =

1
φ(1/b) .

Furthermore, when the local function is Leontief, a
Cobb–Douglas technology menu is dual to a Cobb–Douglas global
function (and their exponents coincide); and a CES technology
menu is also dual to a CES global function (and their elasticity
parameters are mutually inverse, α = −ξ ).

Technology menu specified as a maximum function. It is also
interesting to consider the primal problem under the extreme
assumption that the technology menu is given by a maximum
function,

G(B, A) = max{B, A}, g(b) = max{b, 1}. (45)

This function, not differentiable at b = 1, represents a case
where the overall level of technology in the economy is pinned
down by the best of the available factor-specific technologies. It
represents a technologymenu of a traditional societywhere goods,
factors, or their characteristics are always used in strictly definite
proportions. It is also the limit of a sequence of cases where the
trade-off between the quality (unit productivity) of the respective
factors, very small for highly convex technology menus, gradually
disappears.

The current case can be conveniently characterized as a limiting
case of our general setup, where the curvature of the technology

menu tends to minus infinity at the ‘‘kink’’ (i.e., the ray from the
origin where B = A). Second order conditions are then automati-
cally verified.

Assuming that the curvature of the local function is finite, the
first order condition for the primal problem implies b∗

= 1 for all k
as well as f (bk) = f (k). Inserting this choice into the local function
for all (K , L) ∈ R2

+
we obtain:

φ(k) =
f (k)
g(1)

= f (k). (46)

Global function specified as a maximum function. The solution
to the dual problem with a maximum global function is fully
analogous and implies k∗

= 1 for all b and a technology menu
satisfying g(b) =

f (b)
φ(1) = f (b).

Comments. First, the maximum function may look a bit strange
as a technology menu and very strange as a global production or
utility function. Indeed, we typically expect these functions to be
concave and themaximum function represents extreme convexity.
Therefore the economic applications of the above examples, and
especially the dual problem, are likely to be limited. They may
nevertheless be useful as ‘‘cautionary’’ examples indicating the
consequences of assuming that the global function or the tech-
nology menu have the same functional form as the local function.
Namely, the local and global functions can have the same (non-
Cobb–Douglas) form only if the technology menu is a maximum
function, i.e., there is no trade-off between the qualities of the
respective factors. Analogously, the local function can have the
same (non-Cobb–Douglas) form as the technologymenu only if the
global function is specified as a maximum function.

Second, the maximum case is pathological in the same sense as
is the case with a Cobb–Douglas local function — namely that the
technology menu and the global function are not mutually dual
because the technology choice is always constant and thus not
invertible. Indeed, trying to solve the dual problem with F = Φ ,

max
(K ,L)∈R2

+

F (BK , AL) s.t. F (K , L) = 1, (47)

leads to a first order condition of form ΠF (bk) = ΠF (k) for
any given b. This holds either if F is a Cobb–Douglas function,
or otherwise only if b = 1. The former case has been discussed
previously (and flagged as pathological), whereas the latter implies
that for b = 1 the optimal factor choice is indeterminate, and
for b ̸= 1 there is no interior stationary point. A similar problem
is encountered when solving the primal problem for F = G.
This pathological outcome is a direct consequence of violation of
the curvature assumption in Theorem 2 (when solving the primal
problem while assuming that F and G have exactly the same
functional form) or in Theorem 3 (when making this assumption
for F andΦ in the dual problem).

6. The homothetic case

As a generalization of the primal and dual optimization prob-
lems (1) and (2), we will now replace homogeneous functions F , G
andΦ with their homothetic counterparts, respectively Fh = fh ◦F ,
Gh = gh ◦G andΦh = φh ◦Φ , where fh, gh, φh : R+ → R aremono-
tone (typically increasing) and twice continuously differentiable
transformations. This additional degree of freedom is particularly
useful in the analysis of utility which is often viewed as an ordinal
rather than cardinal concept.

We find that when the local function, the technology menu and
the global function are not homogeneous but only homothetic then
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the respective solutions to (1) and (2) still exist and are still mutu-
ally dual – as long as the optimal technology choice is invertible –
but they are specified only up to a monotone transformation and
thus are no longer unique.

Optimal technology choice. Theorems 2–3 can be straightfor-
wardly generalized to the case of homothetic functions, yielding
exactly the same outcomes. Intuitively, this is due to the fact that
level curves of any function have exactly the same shape whether
or not it has been subjected to a monotone transformation.

Theorem 6. Let Fh,Gh : R2
+

→ R+ be increasing, twice continuously
differentiable homothetic functions such that Fh = fh ◦ F and Gh =

gh ◦ G where fh, gh : R+ → R are increasing, twice continuously
differentiable functions, and F and G are as in Theorem 2. Then the
problem

Φh(K , L) = max
(B,A)∈ΩG

Fh(BK , AL) s.t.

ΩG = {(B, A) ∈ R2
+

: Gh(B, A) = gh(1)}. (48)

allows a unique interior maximum satisfying (20), (21) and (22).

Proof. First, we observe that Gh(B, A) = gh(G(B, A)) = gh(1) ⇐⇒

G(B, A) = 1. Thus the technology menu is exactly the same as in
(1). We then repeat all the steps of proof of Theorem 2 and observe
that all terms related to f ′

h(·) and f ′′

h (·) cancel out in the first and
second order conditions, respectively. ■

Theorem7. Let Fh,Φh : R2
+

→ R+ be increasing, twice continuously
differentiable homothetic functions such that Fh = fh ◦ F and Φh =

φh ◦ Φ where fh, φh : R+ → R are increasing, twice continuously
differentiable functions, and F and Φ are as in Theorem 3. Then the
problem

Gh(B, A) = max
(K ,L)∈ΩΦ

Fh(BK , AL) s.t.

ΩΦ = {(K , L) ∈ R2
+

: Φh(K , L) = φh(1)}. (49)

allows a unique interior maximum satisfying (23), (24) and (25).

Proof. Fully analogous to the proof of Theorem 6. ■

Propositions analogous to Theorems 6–7 can be formulated also
for the case where some of the functions fh, gh, φh are decreasing,
with exactly the same outcomes. The only caveat is that when fh is
decreasing, maximization in (48) and (49) should be replaced with
minimization.

Construction of the envelopes. From Theorems 6 and 7 we know
thatmaxima of the primal and dual technology choice problem are
invariant undermonotone transformations. Building on this result,
we shall now extend Theorems 4–5 to homothetic functions. We
find that the flipside of allowing for arbitrary monotone transfor-
mations is that the resultant envelopes are no longer unique.

More precisely, for every homothetic function Fh = fh◦F , where
fh : R+ → R is monotone and twice continuously differentiable
and F : R2

+
→ R+ is increasing, twice continuously differentiable

and homogeneous, from (26) we obtain that

Φ̃h(K , L) = Fh(B∗(k)K , A∗(k)L) = fh(f (b∗(k)k)A∗(k)L)

= fh

(
f (b∗(k)k)
g(b∗(k))

L
)

= fh(Φ(K , L)), (50)

G̃h(B, A) = Fh(BK ∗(b), AL∗(b)) = fh(f (bk∗(b))AL∗(b))

= fh

(
f (bk∗(b))
φ(k∗(b))

A
)

= fh(G(B, A)). (51)

This leads to the construction of Φ̃h = fh ◦ Φ from problem (1)
and of G̃h = fh ◦ G from problem (2). Clearly, both functions are
homothetic. They are also dual to one another in the sense that
maximizing Fh(BK , AL) subject to gh(G(B, A)) = gh(1) leads to the
construction of Φ̃h(K , L) for any monotone function gh : R+ → R,
and maximizing Fh(BK , AL) subject to φh(Φ(K , L)) = φh(1) leads to
the construction of G̃h(B, A) for any monotone function φh : R+ →

R.
However, inclusion of gh and φh in the above formulas under-

scores that allowing formonotone transformations of the homoge-
neous functions F ,G,Φ compromises uniqueness of the resulting
functions. Indeed, the results are unchanged also when we replace
Φ̃h with Φh (i.e., fh with an arbitrary φh) or G̃h with Gh (i.e., fh with
an arbitrary gh). Therefore the slope and curvature properties of the
dual objects – the technology menu and the global function – are
best characterized when they are expressed in their homogeneous
form as in Theorems 4–5.

Example: additively separable log preferences. Extending the
Cobb–Douglas example discussed in Section 5, we shall now con-
sider a homothetic local function:

Fh(BK , AL) = ln
(
(BK )π0F (AL)1−π0F

)
= π0F ln(BK ) + (1 − π0F ) ln(AL). (52)

This monotone transformation of a Cobb–Douglas local function
is particularly often used in the modeling of consumer choices,
where it represents additively separable logarithmic preferences.
While analytically convenient, such a specification is also very
restrictive and in fact represents a pathological case where the
optimal technology choice is independent of factor endowments
and thus the technology menu and the global function are not
mutually dual.

Example: additively separable CRRA preferences. Extending the
CES example discussed in Section 5, wemay consider a homothetic
local function:

Fh(BK , AL) = π0F

(
(BK )ρ − 1

ρ

)
+ (1 − π0F )

(
(AL)ρ − 1

ρ

)
. (53)

This monotone transformation of a CES local function (which uses
the formula fh(x) =

xρ−1
ρ

) is often used in the modeling of
consumer choices, where it represents additively separable CRRA
(constant relative risk aversion) preferences.

Role of Bergson’s theorem. By Bergson’s theorem (Theorem 1),
preferences given by (52) and (53) are in fact the only specifications
which are both homothetic and additively separable with respect
to BK and AL. Yet, both homotheticity and additive separability
are often viewed as highly desirable properties of utility functions.
Homotheticity of preferences helps avoid income effects and keep
the optimization problem independent of units of measurement:
the proportion of goods chosen by the consumer is then invariant
under proportional expansions of the budget set (i.e., marginal
rates of substitution are constant along rays through the origin).
In contrast, non-homothetic preferences can be viewed as one of
the potential causes of structural change in the course of economic
development (Kongsamut et al., 2001; Boppart, 2014).

Additively separable preferences, in turn, are a cornerstone
of intertemporal utility maximization, as time separability is a
key prerequisite for the use of dynamic programming methods.
Moreover, when the utility function with consumption and leisure
is embedded in a dynamic model, its additive separability helps
avoid long-run trends in the fraction of leisure time and match
the fact that consumption is empirically less variable than hours
worked. However, in such a case the restriction of constant great



10 J. Growiec / Journal of Mathematical Economics 77 (2018) 1–14

ratios requires imposing certain (disputable) values on the in-
tertemporal elasticity of substitution. Non-separable preferences
would offer an additional degree of freedomhere, albeit potentially
compromising the long-run trends and the relative volatility of
consumption and hours.11

7. The technology menu and distributions of ideas

Let us now comment on one important economic interpretation
of the factor-specific technology choice problem. Namely, instead
of viewing the technology menu G(B, A) as a primitive concept,
several studies (Jones, 2005; Growiec, 2008a, b, 2013) have derived
it from a probabilistic model. Following this literature, in this
section we view the technology menu as a level curve of a certain
two-dimensional cumulative distribution function of (stochastic)
factor-specific ideas (i.e., unit factor productivities).

This probabilistic setup has originated from the idea that the
technologymenumay evolve over time as factor productivities are
repeatedly drawn from a distribution (Kortum, 1997; Jones, 2005).
This distribution has been, in turn, used to microfound aggregate
production functions: ‘‘the standard production function that we
write down, mapping the entire range of capital–labor ratios into
output per worker, is a reduced form. It is not a single technology,
but rather represents the substitution possibilities across differ-
ent production techniques. The elasticity of substitution for this
global production function depends on the extent to which new
techniques that are appropriate at higher capital–labor ratios have
been discovered. That is, it depends on the distribution of ideas’’.
Jones (2005, p. 518). Taking the same approach, the current section
focuses specifically on the case where the technology menu –
derived from the distribution of ideas – is homothetic, i.e., invariant
under radial expansions from the origin. This property implies
that Hicks-neutral technical change does not affect the relative
degree of factor augmentation in the optimum. In other words, if
factor supply is fixed then under homotheticity the direction of
R&Daugmenting the technologymenu coincideswith thedirection
of technical change (Caselli and Coleman, 2006; Growiec, 2008a,
Appendix D; Growiec, 2013, Appendix B).

It turns out that the class of idea distributions consistent with
the homotheticity restriction is rather narrow. In particular, if the
(homothetic) technology menu G(B, A) is constructed from inde-
pendent idea distributions, then because of Bergson’s theorem it
must be of the Cobb–Douglas or CES form, translating respectively
into a requirement of Pareto orWeibullmarginal idea distributions
(Growiec, 2008b, Proposition 3). We generalize this finding by
relaxing the independence assumption, leading to the statement
of Bergson’s theorem for copulas (Theorem 8). As its important
application, we discuss the class of Archimedean copulas.

From Sklar’s theorem for complementary cumulative distribu-
tion functions (ccdfs, see Nelsen, 1999; McNeil and Nešlehová,
2009) it follows that any bivariate distribution can be written as
a composition of marginal distributions and a copula:

F (x, y) = P(X > x, Y > y) = C(Fx(x), Fy(y)), (54)

where Fx, Fy : R+ → [0, 1] represent themarginal complementary
cumulative distribution functions (ccdfs),

Fx(x) = P(X > x), Fy(y) = P(Y > y), (55)

and C : [0, 1]2 → [0, 1] is the copula. Given this notation, the
theorem is stated as follows.

11 I am grateful to an anonymous referee for this point.

Theorem 8 (Bergson’s Theorem for Copulas). Let Fh : R2
+

→ [0, 1]
be a homothetic bivariate complementary cumulative distribution
function (ccdf) satisfying Fh(x, y) = C(Fx(x), Fy(y)), where Fx, Fy :

R → [0, 1] are differentiable marginal ccdfs and C : [0, 1]2 → [0, 1]
is a differentiable copula which can be written as additively separable
after a monotone transformation:

∃(fh : R+ → [0, 1], F : R2
+

→ R+) Fh(x, y) = fh(F (x, y)), (56)

∃(fs : R → [0, 1], Du,Dv : [0, 1] → R) C(u, v) = fs(Du(u)
+Dv(v)), (57)

where fh, fs,Du,Dv are decreasing differentiable functions, and F is
an increasing, differentiable and homogeneous function. Then F (x, y)
must be represented by

F (x, y) = c · x
α

α+β y
β
α+β or F (x, y) = (αxρ + βyρ)

1
ρ , (58)

where α > 0, β > 0; cx, cy ∈ R are arbitrary constants, c =

exp
(

cx+cy
α+β

)
, and ρ ̸= 0. Moreover, marginal distributions Fx(x) and

Fy(y) must satisfy:

D′

u(Fx(x))F
′

x(x) = αxρ−1, D′

v(Fy(y))F
′

y(y) = βyρ−1. (59)

Proof. See Appendix. ■

In plain English, Theorem 8 implies that if the ccdf of the joint
idea distribution is homothetic and the copula is additively sepa-
rable after amonotone transformation, then the ccdf – whose level
curve is the technology menu – must be of a very specific, Cobb–
Douglas or CES functional form. This form is then translated into
very specific requirements imposed on the marginal distributions
(Eq. (59)).

Theorem 8 has quite broad applicability. It covers not only
the case where both idea distributions are independent (Growiec,
2008b, Proposition 3), but also the case where they are mutually
dependent and their dependence is modeled by some representa-
tive of the broad and widely applied Archimedean class of copulas
(see Appendix for an elaboration of most important representants
of this class).

Independent marginal distributions. The independence copula
takes the form C(u, v) = uv, so it is additively separable after tak-
ing logs. Hence, in the assumptions of Theorem 8we should postu-
late fs(z) = e−z,Du(u) = − ln u,Dv(v) = − ln v. From Eq. (59) we
then obtain:

Fx(x) = e−cxx−α if ρ = 0, Fy(y) = e−cyy−β if ρ = 0, (60)

Fx(x) = e−cxe−
α
ρ x
ρ

if ρ ̸= 0, Fy(y) = e−cye−
β
ρ yρ if ρ ̸= 0. (61)

This means that if the marginal distributions are independent,
homotheticity of the technology menu implies that these distri-
butions must take either the Pareto (60) or the Weibull form ((61)
with ρ > 0). In the latter case, both marginal distributions must
have equal exponents (i.e., shape parameters).

Archimedean copulas. The bivariate Archimedean copula is de-
fined as (McNeil and Nešlehová, 2009):

C(u, v) = ψ(ψ−1(u) + ψ−1(v)), (62)

where ψ : R+ → [0, 1] is a decreasing, continuous function
satisfyingψ(0) = 1 and limx→∞ψ(x) = 0. The functionψ is called
the Archimedean generator.

Hence, it suffices to take fs = ψ and Du = Dv = ψ−1 in the
assumptions of Theorem 8 to observe that in fact all Archimedean
copulas are subject to this theorem. Thus, when we assume homo-
theticity of the joint idea distribution and model dependence of
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its marginal distributions by the means of a specific Archimedean
copula,12 the technologymenumust take the Cobb–Douglas or CES
form, implying that the shapes of the marginal distributions must
satisfy a very specific parametric condition which is unique for the
given copula.

More precisely, for Archimedean copulas we obtain from (59):
∂

∂x
(ψ−1(Fx(x))) = αxρ−1,

∂

∂y
(ψ−1(Fy(y))) = βyρ−1,

α > 0, β > 0, ρ ∈ R. (63)

Integrating, we obtain that Fx(x) and Fy(y) must necessarily follow
the formula:

Fx(x) = ψ (cx + α ln x) if ρ = 0, Fy(y) = ψ
(
cy + β ln y

)
if ρ = 0, (64)

Fx(x) = ψ

(
cx +

α

ρ
xρ
)

if ρ ̸= 0, Fy(y) = ψ

(
cy +

β

ρ
yρ
)

if ρ ̸= 0, (65)

where cx, cy are arbitrary constants of integration.
Owing to the properties of ψ , it is easily verified that Fx(x) and

Fy(y) are indeed decreasing functions. Moreover, if ρ ≥ 0 then
limx→∞Fx(x) = limy→∞Fy(y) = 0. Other properties depend on the
exact choice of the generator ψ and parameters. In particular, for
some parametrizations the supports of random variables X and Y
may be limited. In such a case, Fx or Fy should be set identically to
zero for arguments exceeding the upper bound of the support and
to unity for arguments below the lower bound of the support. Then
the technologymenu should also be defined only on this particular
limited support.

8. Conclusion

This paper has provided a detailed treatment of a static, two-
dimensional problem of factor-specific technology choice. At the
core of this problem there is a local function F , along which
the factors are multiplied by their respective unit productivities,
drawn from a certain technology menu G. We have derived the
optimal technology choices in such a setup and constructed the
global function Φ as an envelope of the local functions. We have
also solved a symmetric dual problem where Φ is given, and
G — sought.

It turns out that the properties of this optimization problem can
be characterized with the use of a generalized notion of duality
(‘‘F-duality’’). In the optimum, partial elasticities of F ,G and Φ
are all equal, and there exists a clear-cut and economically inter-
pretable relationship between their curvatures.

Our results aremarked by their generality and broad applicabil-
ity. At the same time, however, they also underscore how restric-
tive the assumptions of homogeneity (constant returns to scale)
and homotheticity can be. Crucially, by the virtue of Bergson’s
theorem (Bergson{Burk}, 1936) homotheticity, when coupledwith
additive separability, implies the Cobb–Douglas or CES functional
form. As we have demonstrated, this result has most bite when
one envisages the technology menu as a level curve of a certain
bivariate distribution of ideas (Jones, 2005; Growiec, 2008a).

The current study can be extended in a variety of directions
as well as applied in a variety of contexts. The most needed the-
oretical extensions include accommodating non-homothetic local
functions and technology menus as well as increasing the dimen-
sionality of the problem by considering more than two factors.
These tasks have already been accomplished for special cases such

12 For example, Growiec (2008a) modeled the dependence of marginal idea dis-
tributions with a Clayton copula. His study, however, did not assume homotheticity
(apart from a few special cases).

as Cobb–Douglas, CES or Leontief functions. To be addressed in
their generality, however, they require the modeler to give up
additive separability – a particular inconvenience in higher dimen-
sions – and to make certain decisions with regard to the preferred
measures of curvature in higher dimensions, which may just as
well mean an opening of Pandora’s box.

The scope for applications of the discussed framework is even
broader. Firstly, while thus far optimal factor-specific technology
choice has been studied predominantly in the context of growth
theory, it may just as well be incorporated inmodels of, e.g., indus-
trial organization, international trade, natural resources, sectoral
change, consumption patterns, or social welfare. Secondly, the
static technology choice problem studied here could be given a
dynamic edge by assuming that the technology is fixed in the short
run but not in the long run, and thus the local function represents
the short-run technology whereas the global function holds only
in the long run. León-Ledesma and Satchi (2018) are the first to
formalize this idea, constructing a model where capital and labor
are gross complements in the short run but not necessarily so
in the long run. In this way they circumvent the Steady State
Growth Theorem (Uzawa, 1961) and reconcile the long-run bal-
anced growth requirement with the mounting empirical evidence
of gross complementarity of both factors and non-neutral technical
change. Their brilliant idea can clearly be taken further,with awide
range of potential extensions and applications.

Appendix. Additional comments and proofs of theorems

Relation to the problem of output/utility maximization subject
to a budget constraint. It can be noticed that the primal factor-
specific technology choice problem (1) considered in the current
study has a similar structure to the classic problem (Shephard,
1953; Diewert, 1974; Fuss and McFadden, 1980) of output/utility
maximization subject to a budget constraint (which leads to the
construction of an envelope cost function as in (66)), whereas
our dual problem (2) resembles the classic dual problem of cost
minimization subject to a budget constraint viewed as a function
of the prices r and w, (67):

C(r, w) = max
(K ,L)∈ΩB1

Y (K , L) s.t. ΩB1 = {(K , L) ∈ R2
+

:

rK + wL = 1}, (66)

F (K , L) = min
(r,w)∈ΩB2

C(r, w) s.t. ΩB2 = {(r, w) ∈ R2
+

:

rK + wL = 1}. (67)

There are however differences between both setups: (i) the func-
tion linking quantities and prices (the budget constraint) is as-
sumed to be linear here (and not an arbitrary local function F as
in our more general setup), (ii) in line with the different economic
interpretation but without any impact on the outcomes, the ob-
jectives and the constraints have switched places, (iii) to maintain
consistency with the economic interpretation, maximization is
replaced with minimization in the dual problem.

Although mathematically similar, both problems are ‘‘orthog-
onal’’ in the sense that the factor-specific technology choice
problem abstracts from factor prices and, symmetrically, the stan-
dard output/utility maximization problem abstracts from factor
quality. This orthogonality property turns out to play a crucial
role when we merge both problems into a joint problem of si-
multaneous factor-specific technology choice and output/utility
maximization:

C(r, w) = max
(K ,L)∈ΩB1,(B,A)∈ΩG

F (BK , AL) s.t. ΩB1 = {(K , L) ∈ R2
+

:

rK + wL = 1}, (68)
ΩG = {(B, A) ∈ R2

+
:

G(B, A) = 1}.
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This is a problem where the decision maker is allowed to choose
both her favorite technology (subject to the given technology
menu) and factor quantities (subject to the given budget con-
straint) at the same time (cf. León-Ledesma and Satchi, 2018).
Inserting these optimal choices for all possible configurations of
factor prices permits to construct – instead of the global function
taking factor quantities K and L as given – the envelope cost
function which depends, in turn, only on the prices r and w.

The associated dual problem can be written as:

G(B, A) = min
(K ,L)∈ΩF ,(r,w)∈ΩC

rK + wL s.t. ΩF = {(K , L) ∈ R2
+

:

F (BK , AL) = 1}, (69)
ΩC = {(r, w) ∈ R2

+
:

C(r, w) = 1}.

First order conditions for the joint and the separated optimiza-
tion problems exactly coincide, underscoring the aforementioned
orthogonality property: factor-specific technology choice and out-
put/utility maximization, even when solved simultaneously, are
not interdependent. It follows that – as long as factor quality does
not enter the budget constraint and factor prices do not enter the
technology menu – it is instructive to study the factor-specific
technology choice problem separately as we do here. Allowing for
interdependence is left for future research.

Additional second order conditions are needed, however, to
ensure the existence of an interior solution to the joint problem
(see also León-Ledesma and Satchi, 2018, Appendix A.2). The local
function F must exhibit sufficient curvature to support an interior
maximum with respect to (K , L) in (68). This is verified if the
marginal rate of substitution is below −

w
r in the limit of L = 0

and above −
w
r in the limit of K = 0 or, in other words, if the

marginal rate of substitution (which is negative and decreasing
in K/L as long as F is increasing and concave) crosses the −

w
r

threshold for some configuration of factors (K , L) along the iso-
quant/indifference curve. For all Cobb–Douglas and CES functions
(even with gross substitutability of factors) this condition is auto-
matically verified (Growiec and Mućk, 2016).

Relation to the literature on factor-augmenting technical
change. The discussed setup is static and thus abstracts from
technical changewhich – by definition – happens over time. More-
over, the technological underpinnings of the economy are in fact
not only constant but also invisible because in the normalization
procedure, the current overall Hicks-neutral technology level of
the economy has been conveniently incorporated in F0, G0 andΦ0,
whereas the current relative productivity of both factors has been
included in πOF , π0G and π0Φ . However, the possibility of explicit
technical change can be incorporated as an extension of our setup
by conditioning at least twoof the three functions F ,GorΦ on time.
In particular, if one wants to consider factor-augmenting technical
change (which can be decomposed into Hicks-neutral technical
change and the bias in technical change, working in favor of one
of the factors),13 one has to replace either:

• F (BK , AL) with F (λKBK , λLAL) = λLF (λkBK , AL), or
• G(B, A) with G(λKB, λLA) = λLG(λkB, A), or
• Φ(K , L) withΦ(λKK , λLL) = λLΦ(λkK , L),

where the variation in λK > 0 and λL > 0 over time rep-
resents capital- and labor-augmenting technical change, respec-
tively. Equivalently, changes in λL can be said to represent Hicks-
neutral technical change, and then λk =

λK
λL

measures the capital

13 See, e.g., Acemoglu (2002, 2003), Klump et al. (2007) and León-Ledesma et al.
(2010).

bias in technical change.14 Adding a dynamic edge to the consid-
ered framework remains an important task which we leave for
further research.

Examples of Archimedean copulas.Belowwebriefly review a few
of themost common Archimedean copulas. In each case, we derive
the exact functional form that the marginal ccdfs must follow in
order to be consistent with homotheticity of the technologymenu.

Clayton copula. Clayton copula takes the form C(u, v) = (max{0,
uδ +vδ −1})

1
δ , with δ ≤ 1 and δ ̸= 0. Hence, in the assumptions of

Theorem 8we should postulate fs(z) = ψ(z) = (1−δz)
1
δ as well as

Du(u) = ψ−1(u) = −
1
δ

(
uδ − 1

)
,Dv(v) = ψ−1(v) = −

1
δ

(
vδ − 1

)
.

We then obtain:

Fx(x) = (cx − αδ ln x)
1
δ if ρ = 0, Fy(y) =

(
cy − βδ ln y

) 1
δ

if ρ = 0, (70)

Fx(x) =

(
cx −

αδ

ρ
xρ
) 1
δ

if ρ ̸= 0, Fy(y) =

(
cy −

βδ

ρ
yρ
) 1
δ

if ρ ̸= 0. (71)

Of particular interest is the case (71) with cx = cy = 0 as well
as δρ < 0. It implies that x and y are Pareto distributed with equal
exponents (shape parameters) ρ

δ
(Growiec, 2008a).

Gumbel copula. Gumbel copula takes the form
C(u, v) = exp

(
−((− ln u)δ + (− ln v)δ)

1
δ

)
, with δ ≥ 1. Hence, in

the assumptions of Theorem 8 we should postulate fs(z) = ψ(z) =

e−z
1
δ as well as Du(u) = ψ−1(u) = (− ln u)δ,Dv(v) = ψ−1(v) =

(− ln v)δ . We then obtain:

Fx(x) = e−(cx+α ln x)
1
δ if ρ = 0, Fy(y) = e−(cy+β ln y)

1
δ

if ρ = 0, (72)

Fx(x) = e−

(
cx+ α

ρ x
ρ
) 1
δ

if ρ ̸= 0, Fy(y) = e−

(
cy+

β
ρ yρ

) 1
δ

if ρ ̸= 0. (73)

Of particular interest is the case (73) with cx = cy = 0 as well as
δρ > 0. It implies that x and y are Weibull distributed with equal
exponents (shape parameters) ρ

δ
.

Ali–Mikhail–Haq copula. Ali–Mikhail–Haq copula takes the form
C(u, v) =

uv
1−δ(1−u)(1−v) , with δ ∈ [−1, 1). Hence, in the assump-

tions of Theorem 8 we should postulate fs(z) = ψ(z) =
1−δ
ez−δ

as well as Du(u) = ψ−1(u) = ln
( 1−δ(1−u)

u

)
,Dv(v) = ψ−1(v) =

ln
( 1−δ(1−v)

v

)
. We then obtain:

Fx(x) =
1 − δ

xαecx − δ
if ρ = 0, Fy(y) =

1 − δ

yβecy − δ

if ρ = 0, (74)

Fx(x) =
1 − δ

e
α
ρ x
ρ

ecx − δ
if ρ ̸= 0, Fy(y) =

1 − δ

e
β
ρ yρ ecy − δ

if ρ ̸= 0. (75)

14 Growiec (2008a) studies factor-specific technology choice in a dynamic frame-
work with Hicks-neutral technical change. Growiec (2013) allows for biased tech-
nical change and discusses the emerging possibility of a difference between the
direction of R&D (which only affects the shape of the technology menu G) and the
direction of technical change (which also incorporates firms’ optimal technology
choices). Biased technical change is also allowed within factor-specific technology
choice frameworks studied by León-Ledesma and Satchi (2018), an estimated
business-cycle model with a short-run CES technology which circumvents the
Steady State Growth Theorem (Uzawa, 1961) and reconciles the long-run balanced
growth requirement with gross complementarity of both factors and non-neutral
technical change; and Growiec et al. (2018), a calibrated model of medium-to-long
run swings of the labor share and other macroeconomic variables.
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Proof of Theorem 2. Eq. (20) is obtained directly from the two
first order conditions for the Lagrangian by eliminating λ. Eq. (21)
follows from the fact that along the technology menu, G(B, A) =

g(b)A = 1.
To ascertain that the found solution is indeed a maximum, we

compute the second order conditions, which imply that:

∂2LP

∂B2 =
K
A

(
f ′′(bk)k −

f ′(bk)
g ′(b)

g ′′(b)
)
, (76)

∂2LP

∂A2 =
b2K
A

(
f ′′(bk)k −

f ′(bk)
g ′(b)

g ′′(b)
)
, (77)

∂2LP

∂B∂A
= −

bK
A

(
f ′′(bk)k −

f ′(bk)
g ′(b)

g ′′(b)
)
, (78)

and thus ∂2LP
∂K2 < 0 and ∂2LP

∂L2
< 0 if and only if θF (b∗(k)k) >

θG(b∗(k)). Though the Hessian is equal to zero because F and G are
homogeneous functions (Moysan and Senouci, 2016), concavity is
guaranteed along the tangent to the constraint, i.e., along the line{[

h1
h2

]
∈ R2

: [g ′(b) g(b) − bg ′(b)]
[
h1
h2

]
= 0

}
. (79)

Indeed, for all h1 ̸= 0 we obtain:

[
h1 −

ΠG

b
h1

]⎡⎢⎢⎣
∂2LP

∂B2

∂2LP

∂B∂A
∂2LP

∂B∂A
∂2LP

∂A2

⎤⎥⎥⎦
[

h1

−
ΠG

b
h1

]

= h2
1
K
A

(
f ′′(bk)k −

f ′(bk)
g ′(b)

g ′′(b)
)
(1 +Π2

G ) < 0. (80)

Let us also rewrite (20) as:

XP (b, k) = ΠF (bk) −ΠG(b) = 0. (81)

Using the implicit function theoremand the equalityπ = πF (bk) =

πG(b) (which follows from (20)), we obtain:

∂b∗(k)
∂k

= −

∂XP
∂k
∂XP
∂b

=

∂ΠF
∂(bk)b

∂ΠG
∂b −

∂ΠF
∂(bk)k

=

f ′(bk)b
f (bk)

1−πF (bk)−θF (bk)
(1−πF (bk))2

g ′(b)
g(b)

1−πG(b)−θG(b)
(1−πG(bk))2

−
f ′(bk)k
f (bk)

1−πF (bk)−θF (bk)
(1−πF (bk))2

=
b
k

(
1 − π − θF (bk)
θF (bk) − θG(b)

)
, (82)

or (22). Uniqueness of the optimum b∗(k) follows from the fact that
(unless ∂ΠG

∂b =
∂ΠF
∂(bk) = 0 which happens only in the excluded case

where F and G are Cobb–Douglas functions) the denominator in
(82) is positive. ■

Proof of Theorem 4. Existence and uniqueness of Φ solving
problem (1) follows from Theorem 2. It also follows that

φ(k) =
Φ(K , L)

L
=

F (B∗(k)K , A∗(k)L)
L

= f (b∗(k)k)A∗(k)

=
f (b∗(k)k)
g(b∗(k))

. (83)

Existence and uniqueness of G solving problem (2) follows from
Theorem 3. It also follows that

g(b) =
G(B, A)

A
=

F (BK ∗(B, A), AL∗(B, A))
A

= f (bk∗(b))L∗(b)

=
f (bk∗(b))
φ(k∗(b))

. (84)

Both functions are homogeneous by construction. Computingφ′(k)
and g ′(b) from (26), using (20), (22), (23), (25) and rearranging we
obtain:
φ′(k)
φ(k)

=
f ′(bk)
f (bk)

(
∂b∗(k)
∂k

k + b∗(k)
)

−
g ′(b)
g(b)

∂b∗(k)
∂k

=
π

k
> 0, (85)

g ′(b)
g(b)

=
f ′(bk)
f (bk)

(
b
∂k∗(b)
∂b

+ k∗(b)
)

−
φ′(k)
φ(k)

∂k∗(b)
∂b

=
π

b
> 0, (86)

where in each case the positivity of π follows from assumption
that the other two functions are increasing. Thus Φ and G are
increasing. ■

Proof of Theorem 5. Eq. (29) follows from (20) and (23) in the
case where both of them hold at the same time. Moreover, when
1 − πF (bk) − θF (bk) ̸= 0, we can insert (25) into (22), use (29) and
obtain:
1 − π − θF (bk)
θF (bk) − θG(b)

=
θF (bk) − θΦ (k)
1 − π − θF (bk)

, (87)

and hence,

(1 − π − θG(b))(1 − π − θΦ (k)) = (1 − π − θF (bk))
× (1 − π − θG(b)) + (1 − π − θF (bk))(1 − π − θΦ (k)). (88)

It follows that 1 − π − θG(b) = 0 ⇐⇒ 1 − π − θΦ (k) = 0 and if
both terms are nonzero, then we can divide both sides of Eq. (88)
by (1 − πF (bk) − θF (bk))(1 − π − θG(b))(1 − π − θΦ (k)), yielding
(30). ■

Proof of Theorem 8. We begin by writing down the marginal rate
of substitution of the function Fh. On the one hand we have:

MRS = −

∂Fh
∂y
∂Fh
∂x

= −

∂F
∂y
∂F
∂x

≡ −H
(
x
y

)
. (89)

The function H depends on the x/y ratio only due to the ho-
mogeneity of F . On the other hand, however, using the copula
representation,

MRS = −

∂Fh
∂y
∂Fh
∂x

= −

∂C
∂v

F ′
y(y)

∂C
∂u F

′
x(x)

= −
D′
v(Fy(y))F

′
y(y)

D′
u(Fx(x))F ′

x(x)
≡ −

Hy(y)
Hx(x)

. (90)

Therefore H( xy ) =
Hy(y)
Hx(x)

for all x, y ∈ R+. Differentiating both sides
of this functional equality with respect to x and y and eliminating
H ′( xy ), we obtain:

H ′
x(x)x
Hx(x)

=
H ′

y(y)y

Hy(y)
, for all x, y ∈ R. (91)

Therefore both sides of (91) must be constant. We denote this
constant ρ − 1. Integrating, we obtain:

Hx(x) = αxρ−1, Hy(y) = βyρ−1, (92)

for some α, β ∈ R. Substituting for Hx(x) and Hy(y) and observing
the signs of respective derivatives yields (59).

This also implies that H( xy ) =
β

α

(
x
y

)1−ρ
, and thus the homoge-

neous function F (x, y) must take either the Cobb–Douglas or the
CES form (58) (cf., Arrow et al., 1961). ■
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