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1 A microfoundation for the Cobb–Douglas aggre-

gate production function

The “endogeneous technology choice” framework presented in Section 2 of the main text

can also be used to derive the aggregate Cobb–Douglas production function (cf. Jones,

2005). The key change in assumptions that is required to produce such a result relates

to the distribution of capital- and labor-augmenting ideas – which ought to be inde-

pendently Pareto-distributed – and thus the shape of the technology menu; everything

else is preserved. In Section 3 of the main text we have argued this to be empirically

problematic, so that the aggregate CES production function (with gross complementar-

ity of inputs) should in fact be considered a more plausible alternative. Nevertheless,

the Cobb–Douglas case remains a useful benchmark for comparisons because it is so

frequently used in the literature. Let us address it in the current section of the online

appendix.
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1.1 Modification of the framework

Let us now replace Assumption 2 from the main text with the following one:

Assumption 1 (modification of Assumption 2) The technology menu, defined in

the (a, b) space, is given by the equality:

H(a, b) =

(
a

λa

)ϕL
(

b

λb

)ϕK

= N, ϕK , ϕL > 0. (1)

The shape of the technology menu given by equation (1) is consistent with the as-

sumption that ã and b̃ are independently Pareto-distributed, with shape parameters ϕL

and ϕK , respectively:

P (ã > a) =

(
λa

a

)ϕL

, P (b̃ > b) =

(
λb

b

)ϕK

, (2)

for a > λa and b > λb. In such a case, N = 1
P (ã>a,b̃>b)

> 1. Just like in the main text, we

assume N to be fixed, and allow λa and λb to rise over time thanks to directed R&D.

The same functional form of the technology menu was assumed by Jones (2005), but

with the unnecessary restriction of proportional (Hicks–neutral) augmentation of the

technology menu, which is now relaxed.

1.2 The aggregation result

As in the CES case, deriving optimal technology choices from the firms’ optimization

problem is straightforward. Inserting these optimal choices into the LPF, we obtain the

following aggregation result.

Proposition 1 If Assumption 1 above as well as Assumptions 1 and 3 from the main

text hold, then the aggregate production function takes the normalized Cobb–Douglas

form:

Y = Y0

(
λa

λa0

) ϕL
ϕL+ϕK

(
λb

λb0

) ϕK
ϕL+ϕK

(
K

K0

) ϕK
ϕL+ϕK

(
L

L0

) ϕL
ϕL+ϕK

. (3)

Proof (and generalization to n inputs): see Section 3 of this online appendix. �
The interpretation of the parameters of the aggregate Cobb–Douglas production

function is the following:
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• the distribution parameter of the aggregate Cobb–Douglas production function,

equal to the capital’s partial elasticity and the (constant) capital income share,

takes the value π0 =
r0K0

Y0
= ϕK

ϕL+ϕK
,

• partial elasticities of capital and labor in the aggregate production function are

proportional to the shape parameters of the Pareto distributions of their respective

factor-augmenting technologies and sum up to one (guaranteeing constant returns

to scale),

• the multiplicative constant term is Y0. Thanks to normalization, it is thus exactly

equal to the multiplicative constant term of the LPF,

• the constant parameter N does not appear in the aggregate production function,1

• the capital-and labor-augmenting parameters of the technology menu, λb and λa

respectively, enter the aggregate production function multiplicatively, taken to

their respective powers ϕK and ϕL. Growth in aggregate output is thus invariant

to the direction of R&D.

1.3 Direction of technical change vs. direction of R&D

It is also easily verified that under endogeneous technology choice, the Cobb–Douglas

case provides very specific implications for the direction of technical change. Log-

differentiating firms’ optimal technology choices with respect to time and comparing

terms we obtain:

â = ŷ =
ϕL

ϕL + ϕK

λ̂a +
ϕK

ϕL + ϕK

λ̂b +
ϕK

ϕL + ϕK

k̂, (4)

b̂ = ŷ − k̂ =
ϕL

ϕL + ϕK

λ̂a +
ϕK

ϕL + ϕK

λ̂b −
ϕL

ϕL + ϕK

k̂. (5)

Hence, it follows that in the Cobb–Douglas case, no matter what the direction of

R&D is, i.e., irrespective of the values of λ̂a and λ̂b, firms will always adjust the

labor-augmenting technology on one-to-one basis to changes in output per worker y,

1Again, one could easily reparametrize the technology menu, fixing either λa or λb and allowing N

to vary across time. In such case, the ratio N/N0 (which now drops out) would appear in equation (3).
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and capital-augmenting technology will be, accordingly, always adjusted one-to-one to

changes in output per unit of capital y/k. Hence, as shown by Jones (2005), technologi-

cal change must be purely labor-augmenting along the balanced growth path, where the

output–capital ratio y/k is constant.

Assuming that factors of production are remunerated according to their marginal

products, the capital income share is now fixed at π0 = ϕK

ϕL+ϕK
, and the labor income

share is fixed at 1− π0 =
ϕL

ϕL+ϕK
, for all times t.

2 A microfoundation for Pareto UFP distributions

As discussed in the main text, the robustness of the result of Weibull-distributed UFPs

stems from the fact that the Weibull distribution is, under very general conditions, the

limiting distribution for sample minima. The Pareto distribution cannot be derived

that way. The latter distribution is, on the other hand, closely related to the limiting

distribution of exceedances of random variables above a given threshold – the so-called

Generalized Pareto distribution. Thus, after some reparametrization, the Pareto distri-

bution can also be derived as a robust limiting distribution; this requires a substantial

modification of the assumptions on the underlying R&D process, though.

To develop this argument, we shall return to the original Jones’s (2005) view that

the technology menu is a convex hull of a number of simple ideas (consisting of a single

component only), distributed according to some underlying distribution F . (We shall

tentatively ignore all the arguments against such standpoint which we put forward in

Section 3 of the main text.) Furthermore, we shall reconcile this view with Assumption

5, assuming that za and zb are sufficiently small. As it turns out, taking these two

premises together leads – by the force of extreme value theory – to a surprisingly robust

conclusion: it is found that in such case the individual UFPs – modeled as distributions

of exceedances over a sufficiently high threshold – must follow the Generalized Pareto

distribution. This distribution has a cdf equal to 1 − (1 + ξx)−1/ξ and simplifies to

the Pareto distribution after appropriate reparametrization. Hence, the Jones’ view of

the technology choice process, dwelling on substitutability between researchers and an

increasing quality threshold for new ideas, rather than complementarity across compo-
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nents of ideas and their ever increasing complexity, is consistent with the Cobb–Douglas

aggregate production function. However, this view contradicts the empirical findings

of increasing technological complexity of new inventions, skill-biased technical change,

mounting burden of knowledge, and increasing R&D collaboration.

More formally, we make the following assumption:

Assumption 2 (modification of Assumption 4) The (capital- or labor-augmenting)

R&D sector consists of an infinity of researchers located along the unit interval I = [0, 1].

At each instant t, every researcher i ∈ I determines the quality of her innovation (b̃i or

ãi, respectively) by taking a single independent draw from the elementary idea distribu-

tion F . The distribution F has positive density on [w,+∞), and zero density otherwise,

and satisfies the condition of a regularly varying upper tail:

lim
p→+∞

1−F(w + px)

1−F(w + p)
= x− 1

ξ (6)

for all x > 0 and a certain ξ > 0.

We are interested in the distribution of UFPs b̃i and ãi conditional on exceeding a

sufficiently high threshold, b̄ or ā, respectively. To economize on space, let us concentrate

on the case of capital-augmenting ideas b for the rest of this section, as the results

regarding labor-augmenting ideas a are entirely symmetric.

We shall make Assumption 5 once again, and consistently denote the fraction of

researchers whose UFP draws have exceeded the given threshold b̄ as zb̄ = P (b̃ > b̄).

The distribution of exceedances of b̃ with cdf F over the threshold b̄ > w (captured by

the probability P (b̃ > b|b̃ > b̄) as a function of b) is then determined by the form of the

particular cdf F as well as the value of b̄ (or equivalently zb̄). In the limit where b̄ → ∞,

or equivalently zb̄ → 0, however, the following limit result obtains:

Proposition 2 If Assumption 2 holds, then there exists a positive measurable function

β : R → R satisfying

lim
x→∞

β(x)

x
= ξ, (7)

such that as zb̄ → 0 (and thus b̄ → ∞), the distribution of any sequence of random

variables X defined via

P (X > x) = P (b̃ > b|b̃ > b̄) (8)
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converges in distribution to the Generalized Pareto distribution with the shape parameter

ξ > 0:
1−F

(
b̄+ xβ(b̄)

)
1−F(b̄)

d−→ (1 + ξx)−1/ξ . (9)

Proof. The proposition follows directly from the Pickands–Balkema–de Haan extreme

value theorem (Balkema and de Haan, 1974; Pickands, 1975), applied to the distribution

F which has a regularly varying upper tail with ξ > 0. �
Hence, for sufficiently small zb̄, the distribution of exceedances of b̃ over the given

threshold b̄ can be arbitrarily well approximated by the Generalized Pareto distribution

regardless of the underlying distribution F . Moreover, a specific change of variables

given by b̆ = λb(1 + ξX) can be used to redirect our analysis to the case of pure Pareto

distributions:

Proposition 3 If the (non-negative) random variable X has a Generalized Pareto dis-

tribution with the parameter ξ > 0, then we can define b̆ = λb(1 + ξX), with values

b̆ > λb, such that b̆ has a Pareto distribution with the slope parameter 1/ξ.

Proof.

P (b̆ > b) = P (λb(1 + ξX) > b) = P

(
X >

b− λb

ξλb

)
=

(
1 + ξ

b− λb

ξλb

)−1/ξ

=

(
λb

b

)1/ξ

.�

Thus, having computed the value of ξ from the underlying distribution F according

to equation (6), and assuming independence of b̆ and ă, we can construct the technology

menu as a product of contour lines of two Pareto distributions, getting us directly to

Assumption 1 above. As a side remark, please note the identity 1/ξ = ϕK , signifying

that the capital share of the aggregate production function is fundamentally determined

by the tail properties of the underlying idea distribution F .

3 Generalization of the aggregation procedure to n

inputs

As announced in the main text, all our results go through in the general case of n-input

production functions as well. Let us now discuss this case.
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3.1 The normalized CES case

First, let us show that if ideas (UFPs), augmenting each of the n production inputs,

are independently Weibull-distributed (and the LPFs are normalized CES or Leontief

functions), then the resultant aggregate production is normalized CES as well. To this

end, we shall use the following generalized assumptions. By xi, i = 1, 2, ..., n we shall

denote the inputs, and by ai, i = 1, 2, ..., n – unit factor productivities.

Assumption 3 The n-input local production function (LPF) takes either the normalized

CES or the normalized Leontief form:

Y =


Y0

(∑n
i=1 π0i

(
aixi

a0ix0i

)θ) 1
θ

, if σLPF ∈ (0, 1),

Y0 mini=1,...,n

{(
aixi

a0ix0i

)}
, if σLPF = 0,

(10)

where θ ∈ [−∞, 0) is the substitutability parameter, related to the elasticity of substi-

tution along the LPF via σLPF = 1
1−θ

. The Leontief LPF, with σLPF = 0, is obtained

as a special case of the more general normalized CES class of LPFs by taking the limit

θ → −∞ (we denote this case as θ = −∞ for simplicity). π0i is the income share of

i-th factor at t0. Factor income shares sum up to unity:

n∑
i=1

π0i = 1, (11)

and the LPF exhibits constant returns to scale.

Assumption 4 The technology menu, specified in the (a1, ..., an) space, is given by the

equality:

H(a1, ..., an) =
n∑

i=1

(
ai
λai

)α

= N, λa1, ..., λan, α,N > 0. (12)

The technology menu is understood as a contour line of the cumulative distribution

function of the joint n-variate distribution of factor-augmenting ideas ãi, i = 1, ..., n.

Under independence of the n dimensions (so that marginal distributions are multiplied

by one another), equation (12) obtains if and only if the marginal distributions are

Weibull with the same shape parameter α > 0 (Growiec, 2008b):

P (ãi > ai) = e
−
(

ai
λai

)α

, i = 1, 2, ..., n, (13)
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where all ai > 0. Under such a parametrization, we have

P (ã1 > a1, ..., ãn > an) = e
−

∑n
i=1

(
ai
λai

)α

, (14)

and thus the parameter N in equation (12) is interpreted as N = − lnP (ã1 > a1, ..., ãn >

an) > 0.

The case where ãi, i = 1, ..., n are independently Pareto-distributed leads to a differ-

ent specification of the technology menu and will be considered separately in the next

subsection. If they are Weibull-distributed but dependent, or independent but following

some other distribution than Pareto or Weibull, the resultant aggregate production does

not belong to the CES class and will not be considered here.

Assumption 5 Firms choose the technology n-tuple (a1, ..., an) optimally, subject to the

current technology menu, such that their profit is maximized:

max
a,b

Y0

(
n∑

i=1

π0i

(
aixi

a0ix0i

)θ
) 1

θ

 s.t.

n∑
i=1

(
ai
λai

)α

= N. (15)

Factor remuneration, taken into account in the firms’ profit maximization problem,

does not depend on the chosen technology so it can be safely omitted from the above

optimization problem.2

Finally, second order conditions require us to assume that α > θ, so that the interior

stationary point of the above optimization problem is a maximum. For the resultant

aggregate production function to be concave with respect to xi, i = 1, ..., n, we need to

assume furthermore that α−θ−αθ > 0. All these conditions are satisfied automatically

in the case α > 0 > θ, on which we concentrate here. The inputs are gross complements

along the aggregate production function.

The framework provides direct results on the firm’s optimal technology choice. First,

at time t0, when Y = Y0 and xi = x0i, λai = λa0i is assumed for all i = 1, ..., n, the

optimal technology choice satisfies:

a∗0i = (Nπ0i)
1
α λa0i, i = 1, ..., n, (16)

2In the case of Leontief LPFs, optimization implies aixi

a0ix0i
=

ajxj

a0jx0j
for all i, j = 1, ..., n.
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where λa0i is the value of λai at time t0. Values of a
∗
0i will be used as a0i in the normal-

ization at the local level in all subsequent derivations.

For any other moment in time t ̸= t0, the optimal technology choices are:(
aj
a0j

)∗

=
λaj

λa0j

(
n∑

i=1

π0i

(
λai

λaj

λa0j

λa0i

xix0j

x0ixj

) αθ
α−θ

)− 1
α

, (17)

for all j = 1, ..., n, where αθ
α−θ

is substituted with −α in the case of Leontief LPFs

(θ = −∞).

Inserting these optimal technology choices into the LPF, we obtain the following

aggregation result.

Proposition 4 If Assumptions 3-5 hold, then the aggregate production function takes

the normalized CES form:

Y = Y0

(
n∑

i=1

π0i

(
λai

λa0i

xi

x0i

) αθ
α−θ

)α−θ
αθ

. (18)

Again, αθ
α−θ

is substituted with −α in the case of Leontief LPFs. Hence, the normalized

CES result obtains both in the case of CES and Leontief LPFs.

Proof. First, in the case of CES LPFs, we form the Lagrangean:

L = Y0

(
n∑

i=1

π0i

(
aixi

a0ix0i

)θ
) 1

θ

+ Λ ·

{
n∑

i=1

(
ai
λai

)α

−N

}
. (19)

Differentiating it with respect to ai, i = 1, ..., n, and substituting for Λ yields:(
ai
aj

)α−θ

=
π0i

π0j

(
λai

λaj

)α(
xi

xj

a0jx0j

a0ix0i

)θ

, (20)

for all i, j = 1, ..., n. Considering first the reference point of time t0, when xi = x0i, λai =

λa0i, ai = a0i for all i = 1, ..., n, we obtain:

a0i
a0j

=

(
π0i

π0j

) 1
α λa0i

λa0j

. (21)

Using the specification of the technology menu (12) as well as the assumption that∑n
i=1 π0i = 1, we obtain:

a∗0i = (Nπ0i)
1
α λa0i, i = 1, ..., n. (22)
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For t ̸= t0, by plugging (22) into (20), using (12) again and rearranging, we obtain

that: (
aj
a0j

)∗

=
λaj

λa0j

(
n∑

i=1

π0i

(
λai

λaj

λa0j

λa0i

xix0j

x0ixj

) αθ
α−θ

)− 1
α

, (23)

for all j = 1, ..., n.

Plugging this into the LPF (10) and rearranging, we obtain the final result.

Given our parametric assumptions, second-order conditions for the maximization

of the Lagrangean hold. To demonstrate this, it is useful to note that maximizing

L is equivalent to minimizing the following transformed Lagrangean Lmin (where the

maximand function is taken to the power θ < 0 for simplicity):

Lmin = Y θ
0

n∑
i=1

π0i

(
aixi

a0ix0i

)θ

+ Λmin ·

{
n∑

i=1

(
ai
λai

)α

−N

}
. (24)

We obtain the following second-order derivatives of Lmin (after inserting the first order

condition to get rid of Λmin):

∂2Lmin

∂a2i
= θ(θ − α)Y θ

0 π0i

(
aixi

a0ix0i

)θ
1

a2i
> 0, (25)

∂2Lmin

∂ai∂aj
= 0, (26)

and thus Lmin is minimized.

In the case of Leontief LPFs, instead of forming the Lagrangean, one should use the

equality aixi

a0ix0i
=

ajxj

a0jx0j
for all i, j = 1, ..., n – which must hold because of the assumption

that the representative firm maximizes profits. Since equations (12) and (22) still hold,

plugging these equalities into the LPF yields

Y = Y0
a1x1

a01x01

= Y0

(
n∑

i=1

π0i

(
λai

λa0i

xi

x0i

)−α
)− 1

α

. (27)

Please note that the same result is obtained by taking the case of CES LPFs and con-

sidering the limit θ → −∞. �
The corollary on factor income shares goes through in the n-dimensional case as well:
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Corollary 1 Assuming that factors are priced at their marginal product, the factor in-

come shares are equal to:

πi =
π0i

(
λai

λa0i

xi

x0i

) αθ
α−θ

∑n
i=1 π0i

(
λai

λa0i

xi

x0i

) αθ
α−θ

, i = 1, ..., n. (28)

3.2 The Cobb–Douglas case

Let us now replace Assumption 4 with the following one:

Assumption 6 (modification of Assumption 4) The technology menu, specified in

the (a1, ..., an) space, is given by the equality:

H(a1, ..., an) =
n∏

i=1

(
ai
λai

)ϕi

= N, ϕi > 0, i = 1, ..., n. (29)

The current shape of the technology menu is consistent with the assumption that

ãi’s are independently Pareto-distributed, with respective shape parameters ϕi. In such

case, N = 1
P (ã1>a1,...,ãn>an)

> 1.

At t0, when Y = Y0 and xi = x0i, λai = λa0i is assumed for i = 1, ..., n, the optimal

choice is indeterminate, provided that

π0i =
ϕi∑n
i=1 ϕi

, i = 1, ..., n. (30)

This restriction means that the factor income shares should be equal to ϕi∑n
i=1 ϕi

. Thus,

π02, ..., π0n cease to be free parameters, and a02, ..., a0n become free parameters instead

(the remaining technology choice a01 is then calculated according to the technology

menu).

At any other moment in time t ̸= t0, and given a0i, i = 1, ..., n, the optimal technology

choices are: (
ai
a0i

)∗

=
x0i

xi

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

, i = 1, ..., n. (31)

Inserting these optimal technology choices into the LPF, we obtain the following

result.
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Proposition 5 If Assumptions 7, 9, and 10 hold, then the aggregate production function

takes the normalized Cobb–Douglas form:

Y = Y0

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

. (32)

Proof. We form the Lagrangean:

L = Y0

(
n∑

i=1

π0i

(
aixi

a0ix0i

)θ
) 1

θ

+ Λ ·

{
n∏

i=1

(
ai
λai

)ϕi

−N

}
. (33)

Differentiating it with respect to ai, i = 1, ..., n, and substituting for Λ yields:(
aixi

ajxj

a0jx0j

a0ix0i

)θ
π0i

π0j

ϕj

ϕi

= 1, (34)

for all i, j = 1, ..., n. Considering first the reference point of time t0, when xi = x0i, λai =

λa0i, ai = a0i for all i = 1, ..., n, we obtain:

π0i

π0j

=
ϕi

ϕj

. (35)

Using the assumption that
∑n

i=1 π0i = 1, we obtain that at t0, optimal technology choice

is indeterminate provided that:

π0i =
ϕi∑n
i=1 ϕi

, i = 1, ..., n. (36)

For t ̸= t0, by plugging (35) into (34), using (29) and rearranging, we obtain that:(
ai
a0i

)∗

=
x0i

xi

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

, i = 1, ..., n. (37)

for all j = 1, ..., n.

Plugging this into the LPF (10) and rearranging, we obtain the final result.

Given our parametric assumptions, second-order conditions for the maximization of

the Lagrangean hold. To prove this, it is useful to note that maximizing L is equivalent

to minimizing the following transformed Lagrangean Lmin (where, for simplicity, the

maximand function is taken to the power θ < 0 and a log-transformation is applied to

the restriction):

Lmin = Y θ
0

n∑
i=1

π0i

(
aixi

a0ix0i

)θ

+ Λmin ·

{
n∑

i=1

ϕi(ln ai − lnλai)− lnN

}
. (38)
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We obtain the following second-order derivatives of Lmin (after inserting the first order

condition to get rid of Λmin):

∂2Lmin

∂a2i
= θ2Y θ

0 π0i

(
aixi

a0ix0i

)θ
1

a2i
> 0, (39)

∂2Lmin

∂ai∂aj
= 0, (40)

and thus Lmin is minimized.

In the case of Leontief LPFs, instead of forming the Lagrangean, one should use the

equality aixi

a0ix0i
=

ajxj

a0jx0j
for all i, j = 1, ..., n – which must hold because of the assumption

that the representative firm maximizes profits. Since equation (29) still holds, plugging

these equalities into the LPF yields

Y = Y0
a1x1

a01x01

= Y0

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

.� (41)

4 A reinterpretation of the Cobb–Douglas case in

terms of technology adoption costs

As apparent from the related contribution of León-Ledesma and Satchi (2011), the vari-

ant of the current “endogeneous technology choice” framework which leads to the Cobb–

Douglas result (presented in this appendix), could also be reinterpreted in terms of

(Hicks-neutral) technology adoption costs. Namely, as posited by these authors, one

could assume that the LPF takes the following specific unnormalized CES form (see also

Growiec, 2008a):

Y = Γf(η)
(
η (λbK)θ + (1− η) (λaL)

θ
) 1

θ
, θ < 0,Γ > 0, η ∈ [0, 1], (42)

where the assumption θ < 0 mirrors gross complementarity of inputs along the LPF.

The inclusion of the Hicks-neutral term f(η) in the local production function is meant

to capture adoption costs in the production process. As reflected by the posited in-

verse U-shape of f(η), this specification implies that highly labor- or capital-intensive

technologies are costly, whereas “intermediate” technologies, using both factors in mod-

eration, are relatively cheap. All technology adoption costs are borne in the form of

Hicks-neutral technical inefficiency.
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Furthermore, assuming unit invariance of the LPF – that is, requiring that the

functional form f(η) does not change with the units of labor measurement (e.g., hours

worked, number of full-time equivalent employees, etc.) – León-Ledesma and Satchi

(2011) obtain that

f(η) = (ηγ(1− η)1−γ)−
1
θ . (43)

Upon maximization of eq. (42) with respect to η ∈ [0, 1], it is obtained that the optimal

choice of η satisfies:
1− η

η
=

1− γ

γ

(
λbK

λaL

)θ

. (44)

Inserting this optimal choice into (42), the aggregate production function is derived as:

Y = Γ
(
γγ(1− γ)1−γ

)− 1
θ (λbK)γ (λaL)

1−γ . (45)

Hence, the aggregate production function is Cobb–Douglas, just like in Proposition 1.

In consequence, it follows that the assumption of Hicks-neutral technology adoption

costs, coupled with unit invariance, is equivalent to assuming that the technology menu

takes the form (1), consistent with the assumption that UFPs are independently Pareto-

distributed.

Two caveats remain when discussing this analogy, though. First, the adoption cost

mechanism proposed by León-Ledesma and Satchi (2011), despite its analytical simplic-

ity and intuitive appeal, does not take normalization of CES functions into account.

Under normalization, however, the CES production function is itself invariant to the

choice of units of measurement of capital and labor, and thus imposing unit invariance

on top of that does not place any further restrictions on the functional form of f(η), ren-

dering the analytical assumption (43) unmotivated. This implication could potentially

generate a wider variety of aggregate production functions that could be derived using

the current “adoption costs” framework once the restriction (43) is relaxed. Second,

the assumption that technology adoption costs are borne in the form of Hicks-neutral

technical ineffiency is very likely to play a role in generating the multiplicative (Cobb–

Douglas) form of the aggregate production function, too. If these costs were borne, for

instance, in the form of factor-specific UFP losses, then the Cobb–Douglas result would

likely fail, just as it fails in our current setup if the technology menu takes a different

form than the one required by Assumption 1 above.
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