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a b s t r a c t

The study considers a stochastic R&D process where the invented production technologies consist of
a large number n of complementary components. The degree of complementarity is captured by the
elasticity of substitution of the CES aggregator function. Drawing from the Central Limit Theorem and
the Extreme Value Theory we find, under very general assumptions, that the cross-sectional distribu-
tions of technological productivity are well-approximated either by the lognormal, Weibull, or a novel
‘‘CES/Normal’’ distribution, depending on the underlying elasticity of substitution between technology
components. We find the tail of the ‘‘CES/Normal’’ distribution to be fatter than theWeibull tail but qual-
itatively thinner than the Pareto (power law) one. We also numerically assess the rate of convergence of
the true technological productivity distribution to the theoretical limit with n as fast in the body but slow
in the tail.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most technologies used nowadays are complex in the sense that
the production processes (and products themselves) consist of a
large number of components whichmight interact with each other
in complementary ways (e.g. Kremer, 1993; Blanchard and Kre-
mer, 1997; Jones, 2011). Based on this insight, the current paper
assumes that the total productivity of any given technology is func-
tionally dependent on the individual productivities of its n com-
ponents as well as the elasticity of substitution between them, σ .
This functional relationship is captured by the CES aggregator func-
tion. The stochastic R&D process which invents new complex tech-
nologies is in turn assumed to consist in drawing productivities of
the components from certain predefined probability distributions
(Jones, 2005; Growiec, 2008a,b, 2013).

Based on this set of assumptions, we obtain surprisingly
general results regarding the implied cross-sectional distributions
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of technological productivity. Namely, drawing from the Central
Limit Theorem and the Extreme Value Theory, we find that if the
number of components of a technology, n, is sufficiently large,
these distributions should be well approximated either by:

(i) the lognormal distribution — in the case of unitary elasticity
of substitution between the components (σ = 1 as in Kremer,
1993);

(ii) the Weibull distribution — in the case of perfect complemen-
tarity between the components (the ‘‘weakest link’’ assump-
tion, σ = 0 as in Growiec, 2013),

(iii) the Gaussian distribution — in the (empirically very unlikely)
case of perfect substitutability between the components
(σ → ∞),

(iv) a novel ‘‘CES/Normal’’ distribution — in any intermediate CES
case, parametrized by the elasticity of substitution between
the components (σ > 0, σ ≠ 1).

We proceed to investigate the properties of the right tail of
the ‘‘CES/Normal’’ distribution. Computing its Pareto as well as
Weibull tail index confirms that, if technology components are
gross complements but are not perfectly complementary (σ ∈

(0, 1)), the tail of this distribution decays faster than the tail of any
Pareto distribution (i.e., it does not follow a power law) but slower
than the tail of any Weibull distribution.

This tail result is interesting because although the preva-
lence of fat-tailed distributions has been documented and thor-
oughly discussed for firm sizes, along with a wide array of other
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phenomena in economics and finance,1 clearly most economic
variables do not have this property.2 The distribution of technolog-
ical productivity, with which we deal here and which has not (to
our knowledge) been studied in the empirical literature so far, is in
turn one of the important primitives for the firm size distribution.
Hence our finding that, from the theoretical point of view, techno-
logical productivity distributions should not be expected to be fat-
tailed, indicates that the apparent emergence of power law tails
in firm size distributions3 must be driven by other phenomena,
such as, e.g., endogenous technology choice (Jones, 2005; Growiec,
2008a,b), resource misallocation (Hsieh and Klenow, 2009; Jones,
2011), or aggregation across multi-product firms (Fu et al., 2005;
Growiec et al., 2008).

Our aforementioned theoretical contribution to the literature is
supplemented with a series of numerical simulations, allowing us
to approximate the rate of convergence of the true technological
productivity distribution to the theoretical limit with n. We
identify this rate to be fast in the body of the distribution but slow
in the tails which capture rare events. We also numerically assess
the dependence of the limiting ‘‘CES/Normal’’ distribution on the
degree of complementarity between the technology components,
σ .

Potential empirical applications of the theoretical result,
reaching beyond the scope of the current paper, include providing
answers to the following research questions:

• Does the ‘‘CES/Normal’’ distribution derived here (Eq. (15)) fit
the data on firm sizes, sales, R&D spending, etc.? What is the
implied value of σ?

• Do industries differ in terms of their technology complexity as
captured by n?

• Do industries differ in terms of the complementarity of technol-
ogy components as captured by σ?

• Howdo firms’ optimal technology choices and production func-
tion aggregation enter the picture? What are the implications
for the shape of the aggregate production function?

The remainder of this paper is structured as follows. Section 2
sets up the model and provides the principal analytical results.
Section 3 presents the numerical results. Section 4 concludes.

2. The model

2.1. Distributions of complex technologies

The point of departure of the current model is the assumption
that technologies, invented within the R&D process, are inherently
complex and consist of a large number of complementary
components. Formally, this can be written down in the following
way.

Assumption 1. The R&D process determines the productivity of
any newly invented technology Y as a constant elasticity of
substitution (CES) aggregate over n ∈ N independent draws Xi, i =

1 Including firm sales, firms’ R&D spending, asset returns, and city sizes (Sutton,
1998; Gabaix, 1999; Axtell, 2001; Eeckhout, 2004; Clauset et al., 2009; Gabaix,
2009).
2 In linewith the ubiquitous assumption of Gaussian error terms in econometrics.
3 The existence of power-law tails in empirical distributions has also been

contested by some authors, see e.g. Stanley et al. (1995) or Bee et al. (2013).
1, . . . , n, from the elementary idea distribution F :

Y =



min{Xi}
n
i=1, θ = −∞,

1
n

n
i=1

Xθi

1/θ

, θ ∈ (−∞, 0) ∪ (0, 1],

n
i=1

X1/n
i , θ = 0.

(1)

The elementary distribution F is assumed to have a positive
density on [w, v] and zero density otherwise (where w ≥ 0 and
v > w can be infinite). For the case θ = −∞, it is also assumed to
satisfy the condition of a regularly varying lower tail (Leadbetter
et al., 1983):

lim
p→0+

F (w + px)
F (w + p)

= xα (2)

for all x > 0 and a certainα > 0. For the cases θ ∈ (−∞, 0)∪(0, 1],
it is assumed that EXθi < ∞ and D2(Xθi ) < ∞. For the case θ = 0,
it is assumed that E ln Xi < ∞ and D2(ln Xi) < ∞.

The parameter n in the above assumption captures the number
of constituent components of any given (composite) technology,
and thus measures the complexity of any state-of-the-art technol-
ogy. The substitutability parameter θ is related to the elasticity of
substitution σ via θ =

σ−1
σ

, or σ =
1

1−θ . The case θ < 0 captures
the case where the components of technologies are gross comple-
ments (σ ∈ [0, 1)), whereas θ ∈ (0, 1] implies that they are gross
substitutes (σ > 1).

It should be noted at this point that, as argued repeatedly
by Kremer (1993), Jones (2011) and Growiec (2013), the gross
complementarity case is much more likely to provide an adequate
description of real-world production processes than the gross
subsitutability case. The example of the explosion of the space
shuttle Challenger due to a failure of an inexpensive O-ring, put
forward by Kremer (1993), is perhaps the best possible illustration
of the potentially complementary character of components of
complex technologies.

More precisely, the minimum case (a Leontief function) reflects
the extreme case where technology components are perfectly
complementary, and thus the actual productivity of a complex
idea is determined by the productivity of its ‘‘weakest link’’ (or
‘‘bottleneck’’). This case was assumed in the related contribution
by Growiec (2013). Although likely, this case need not hold exactly
in reality, since certain deficiencies of design can often be covered
by advantages in different respects. The more general CES case
captures exactly this possibility (see also Klump et al., 2012).

The limiting Cobb–Douglas case (θ = 0) is the threshold case
delineating gross complementarity from gross substitutability. As
shown by Kremer (1993), this case is already quite illustrative of
effects of complementarity between components of technologies.

Although technical in nature, restriction (2) imposed on
elementary probability distributions F can also be interpreted
in economic terms. First, the support of the distribution must
be bounded from below by w, which means researchers are not
allowed to draw infinitely ‘‘bad’’ technologies (zero is a natural
lower bound). This rules out distributions defined on the whole
R such as the Gaussian. Second, the pdf of the distribution F
cannot increase smoothly from zero at w; there must be a jump.
This means that the probability of getting a draw which is ‘‘as
bad as it gets’’ cannot be negligible, and this rules out a few more
candidate distributions such as the lognormal or the Fréchet. Third,
the lowest possible value of the random variable cannot be an
isolated atom, which rules out all discrete distributions such as
the two-point distribution, the binomial, negative binomial, and
Poisson. Yet, the set of distributions satisfying (2) is still reasonably
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large. It includes, among others, the frequently assumed Pareto,
uniform, truncated Gaussian, and Weibull distributions (Growiec,
2013).

2.2. Normalized productivity

Based on the aforementioned setup, our objective is to derive
the limiting distribution of Y when the number of technology com-
ponents n → ∞. For analytical convenience, we denoteµθ = EXθi
and σθ =


D2(Xθi ) =


EX2θ

i − (EXθi )2, for any θ ∈ (−∞, 0) ∪

(0, 1]. For the limiting case of θ = 0, we define µ0 = E(ln Xi) and
σ0 = E(ln Xi)

2
− (E ln Xi)

2.
The first observation is that by the Law of Large Numbers, Y

itself will almost surely converge to a degenerate distribution with
n → ∞. Indeed, it is straightforward to see that in the perfect
complementarity case (θ = −∞),min{Xi}

n
i=1

a.s.
−→ w where w is

the lower bound of the underlying distribution F . Accordingly, in
the CES case (θ ∈ (−∞, 0) ∪ (0, 1]),

 1
n

n
i=1 X

θ
i

1/θ a.s.
−→ µ

1/θ
θ .

Finally, in the multiplicative case (θ = 0),
n

i=1 X
1/n
i

a.s.
−→ eµ0 .

Hence, to obtain meaningful results related to productivity
distributions, more subtlety is needed. One ought to normalize the
distributions with finite n appropriately in order to make use of
the Central Limit Theorem as well as Extreme Value Theory. In
this regard, we shall base our considerations upon the following
definition:

Definition 1. The normalized productivity of any technology Y of
complexity n ∈ N and component complementarity θ = −∞ or
θ = 0 is given by Ỹ (n):

Ỹ (n) =


min


Xi − w

F −1
 1
n


− w

n

i=1

, θ = −∞,
n

i=1

Xi

eµ0

 1
σ0

√
n

, θ = 0.

(3)

In the case θ ∈ (−∞, 0) ∪ (0, 1] we define the shifted normalized
productivity as

Ỹ (n, ω) =


1

√
n

n
i=1


Xθi − µθ

σθ


+ ω

1/θ

, (4)

where ω > 0 is a shift parameter. The normalized productivity
Ỹ (n) is defined as

Ỹ (n) = lim
ω→∞

Ỹ (n, ω)− EỸ (n, ω)

DỸ (n, ω)
. (5)

The shift parameter ω > 0 does not play any role in the economic
interpretation of our results, but considering it ‘‘sufficiently large’’
will be a useful tool in the proofs of our propositions.

Note that this normalization procedure, while necessary in
the subsequent derivations, does not have a direct economic
interpretation because the underlying stochastic R&D process is
assumed to consist in inventing technologies with a fixed number
of components n.

2.3. Limiting productivity distributions

Letting the technology complexity n be arbitrarily large, we
obtain the following results:
Proposition 1. If Assumption 1 holds with θ = −∞ (σ = 0), then
as n → ∞, Ỹ (n) converges in distribution to the standard Weibull
distribution with the shape parameter α:

P(Ỹ (n) ≥ x) = [1 − F (xpn + w)]n
d

−→ e−xα , (6)

wherew = inf{x ∈ R : F (x) > 0} and pn = F −1
 1
n


− w.

Proposition 2. If Assumption 1 holds with θ = 0 (σ = 1), then as
n → ∞, Ỹ (n) converges in distribution to the standard lognormal
distribution:

P(Ỹ (n) ≥ x)
d

−→ 1 − Φ(ln x). (7)

Proposition 3. If Assumption 1 holds with θ ∈ (−∞, 0) ∪ (0, 1]
(σ ∈ (0, 1) ∪ (1,+∞]), then as n → ∞, Ỹ (n, ω) converges
in distribution to the ‘‘CES/Normal’’ distribution with complementary
cdf:

P(Ỹ (n, ω) ≥ x)
d

−→ Φ(xθ − ω), θ ∈ (−∞, 0), (8)

P(Ỹ (n, ω) ≥ x)
d

−→ 1 − Φ(xθ − ω), θ ∈ (0, 1], (9)

and thus the following pdf:

g(x;ω) =
|θ |

√
2π

xθ−1e−
(xθ−ω)2

2 , x > 0. (10)

Hence, the class of ‘‘CES/Normal’’ distributions encompasses the
Gaussian distribution for the limiting case θ = 1where the technology
components are perfectly substitutable.

Proof of Propositions 1–3. For the case θ = −∞ the proposition
follows directly from the Fisher–Tippett–Gnedenko extreme value
theorem applied to the distribution F (Theorem 1.1.3 in de Haan
and Ferreira, 2006), rephrased so that it captures the minimum
instead of maximum). From the theorem specifying the domain
of attraction of the Weibull distribution (Theorem 1.2.1 in de
Haan and Ferreira, 2006; Section 1.3 in Kotz and Nadarajah,
2000), we obtain the necessary and sufficient conditions for the
complementarity mechanism to work. The implied parameter α is
found to be unitary for a wide range of distributions F (Growiec,
2013), including the Pareto, uniform, and truncated Gaussian
distribution.

With θ = 0, by the Central Limit Theorem the distribution
of Ỹ (n) converges in distribution with n → ∞ to the lognormal
distribution:

ln Ỹ (n) =
√
n


1
n

n
i=1

ln Xi − µ0

σ0

 d
−→ N(0, 1) (11)

and hence

Ỹ (n) =


n

i=1

Xi

eµ0

 1
σ0

√
n

d
−→ logN(0, 1). (12)

For the case θ ∈ (−∞, 0)∪(0, 1], wemay use the Central Limit
Theorem again, obtaining:

1
√
n

n
i=1


Xθi − µθ

σθ


+ ω


d

−→ N(ω, 1). (13)
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Note that by assumption, all Xi ≥ 0 and thus 1
√
n

n
i=1


Xθi −µθ

σθ


≥ −

√
nµθ
σθ

for every finite n. There does not exist any ω > 0 such

that 1
√
n

n
i=1


Xθi −µθ

σθ


≥ −ω uniformly for all n ∈ N, though.4

The limiting distribution takes the following form. For y > 0
and with θ < 0, Ỹ (n, ω) converges in distribution to Ȳ (ω) with
cdf:

G(y;ω) = lim
n→∞

P(Ỹ (n, ω) ≤ y) = 1 − Φ̄(yθ − ω), (14)

where the cdf of the truncated normal distribution Φ̄(yθ − ω) =

Φ(yθ−ω)−Φ(−ω)
1−Φ(−ω) ≈ Φ(yθ − ω) if ω is sufficiently large and thus the

truncation hurts a negligible part of the distribution.
Upon differentiation, we obtain the following pdf of the limiting

‘‘CES/Normal’’ distribution, parametrized by θ < 0, µθ > 0 and
σθ > 0:

g(y;ω) =
−θ

√
2π

yθ−1

1 − Φ(−ω)
e−

(yθ−ω)2
2 ≈

−θ
√
2π

yθ−1e−
(yθ−ω)2

2 . (15)

The final approximation becomes arbitrarily good for sufficiently
large ω.

Conversely, for y > 0 and with θ ∈ (0, 1], Ỹ (n, ω) converges in
distribution to Ȳ (ω)with cdf:

G(y;ω) = lim
n→∞

P(Ỹ (n, ω) ≤ y) = Φ̄(yθ − ω) ≈ Φ(yθ − ω). (16)

Upon differentiation, we obtain the following pdf of the limiting
‘‘CES/Normal’’ distribution, parametrized by θ ∈ (0, 1], µθ > 0
and σθ > 0:

g(y;ω) =
θ

√
2π

yθ−1

1 − Φ(−ω)
e−

(yθ−ω)2
2 ≈

θ
√
2π

yθ−1e−
(yθ−ω)2

2 . (17)

Taking the limit of ω → ∞, we obtain the ‘‘CES/Normal distribu-
tion’’ of normalized technological productivity:

Ỹ = lim
ω→∞

Ȳ (ω)− EȲ (ω)
DȲ (ω)

. � (18)

2.4. Tail properties

To assess the right tail properties of the distributions obtained
above, we shall compare their tail decay to the Pareto andWeibull
distributions. Such comparisons will allow us to understand if,
under any parameterization, the ‘‘CES/Normal’’ distribution allows
for approximately power-law decay (Pareto distribution; fat tails),
or Weibull-type exponential decay (thin tails).

Formally, the Pareto tail index ξ (capturing power law decay) is
defined according to the following formula:

lim
x→+∞

1 − F (λx)
1 − F (x)

= λ
−

1
ξ , λ > 0. (19)

4 In the unlikely case where the latter inequality fails, we replace
1

√
n

n
i=1


Xθi −µθ

σθ


= 1 to keep our results in the space of real numbers. Ob-

serve, however, that if ω is sufficiently large, (a) the probability of such failure is
very low for all n because Xi ≥ 0 are independently drawn from a distribution
which has positive density over a non-degenerate interval, and (b) for any n ∈ N,
this probability tends to 0 as ω → ∞. Hence such a replacement does not affect
the subsequently derived shape of the limiting distribution.
Table 1
Tail index of the technological productivity distribution.
Source: Own computations.

Case Pareto ξ Weibull ψ

Weibull (θ = −∞) 0 1/α
CES/Normal (gross complements, θ < 0) 0 +∞

Lognormal (θ = 0) 0 +∞

CES/Normal (gross substitutes, θ ∈ (0, 1]) 0 1/2θ

Pareto(φ) 1/φ +∞

By construction, for any Pareto(φ) distribution, the tail index is
equal to ξ = 1/φ. In particular, for the celebrated Zipf’s law
(e.g. Gabaix, 1999; Axtell, 2001), φ = 1 and thus ξ = 1.

The Weibull tail index ψ (capturing exponential decay), on the
other hand, is obtained as follows:

lim
x→+∞

ln(1 − F (λx))
ln(1 − F (x))

= λ
1
ψ , λ > 0. (20)

Again by construction, for any Weibull(α) distribution, this tail
index is equal to ψ = 1/α. In particular, the exponential
distribution has α = 1 and thus ψ = 1.

We find that for θ ∈ (0, 1] (when components of technologies
are gross substitutes) the ‘‘CES/Normal’’ distribution decays
asymptotically to the thin-tailedWeibull distribution, whereas for
θ < 0 (when these components are gross complements), it decays
faster than the Weibull distribution but slower than a power law
(see Table 1).5

Please note that, regarding both tail indexes, a zero result
indicates that a given distribution decays faster (has a thinner tail)
than any Pareto or Weibull distribution, respectively. Conversely,
an infinite limit implies that a given distribution decays slower. For
example, since the Pareto(φ) decays slower than the Weibull, the
Weibull distribution has a zero Pareto tail index and the Pareto
distribution has an infinite Weibull tail index. The lognormal
distribution decays faster than the Pareto but slower than the
Weibull.

For the novel ‘‘CES/Normal’’ distributionwe find that gross com-
plementarity of components of technologies gives rise to relatively
fatter tails than gross substitutability, but these tails are neverthe-
less never sufficiently fat to generate a power law.Moreover, in the
empirically less likely case of gross substitutability of technologi-
cal components, the tail of the resulting distribution is just as thin
as the Weibull one.

Hence, if technologies are sufficiently complex (n → ∞),
technological productivity distributions should not be expected to
be fat-tailed. This implies that fat tails in firm size distributions are
not inherited from the underlying distributions of technological
productivity and their apparent emergence must be due to other
reasons.

3. Numerical results

The most important advantage of above analytical results
is that they provide theoretical limits for the distributions of
complex technologies, regardless of the underlying distribution of
technology components F . Unfortunately, these limits are exactly
correct only if the technologies are infinitely complex, though. It is
therefore of great importance to assess the pace of convergence of

5 Curiously, for any finite truncation point ω with θ < 0, the sheer presence of
truncation generates power lawdecay of the limiting distribution,with an exponent
−1/θ . The mechanism driving this result is akin to the ‘‘reflective lower bound’’
model of power laws, cf. Gabaix (1999). Since the truncation is an artifact of the
method of proof and not the underlying economic model, we set this case aside.
Details are available upon request.
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Fig. 1. Histograms of simulated Ỹ (n).
Notes. Parameter values used to produce this figure: n = 1000, a = 0.5, b = 2. When computing Eq. (5), the shift parameter ω was set at ω = 8 · µθ .
Source: Own computations.
true distributions of technological productivity to the limiting ones
with the number of components, n, and to estimate the magnitude
of departures from the theoretical limit which could be expected
if n is in fact finite. To this end, we have carried out a series of
numerical computations.

At this point, observe that not only the number of components
n but also the assumed shape of the sampling distribution F has
an impact of the shape of the resultant aggregate technological
productivity. Moreover, assumptions on F can also affect the pace
of convergence of the resulting distribution to its theoretical limit
with n. Assessing these impacts quantitatively is left for further
research.

Another interesting issue to be handled here is the dependence
of the limiting ‘‘CES/Normal’’ distribution on the complementarity
parameter θ (or equivalently, the elasticity of substitution, σ ). This
will be assessed numerically as well. The current section will first
describe our numerical framework and thenmove on to an outline
of the results.

3.1. Generating the distribution of Y

The preliminary step of our numerical exercises consists in
generating a sample of nunits, randomly and independently drawn
from the sampling distribution F . For the sake of simplicity, we
assume it to be a uniform distribution defined on an interval in the
positive domain (which is a particular instance of a distribution
satisfying Assumption 1):

Xi ∼ U[a, b], b > a > 0, i = 1, 2, . . . , n. (21)

Next, we compute the normalized CES aggregate of these random
draws according to Eq. (3) if θ = 0 or θ = −∞, and Eq. (5)
otherwise. Apart from the two aforementioned limiting cases, we
consider four arbitrary values of the complementarity parameter θ .
For a fixed sample size of n, we repeat this procedure m = 10000
times and plot the empirical histogram of Ỹ (n). The histograms of
the generated variables are presented in Fig. 1. These histograms
(with B = 100 bins) are then transformed into empirical pdfs.

Fig. 1 does not yet confirm the trend of increasing skewness of
the empirical distribution when θ declines towards −∞, a result
which can be inferred from looking at the pdf of the limiting
‘‘CES/Normal’’ distribution. This is because the pace of convergence
of the tail of the distribution with n to the asymptotical limit tends
to fall as θ declines towards −∞.

3.2. The lognormal and Weibull limits

The second step of our numerical exercise consists in assessing
the convergence to the theoretical lognormal limit for the case
θ = 0 as well as the theoretical Weibull limit obtained when
θ = −∞. We see that the theoretical distributions indeed align
with the simulated data almost perfectly when n = 1000.6 These
results are contained in Figs. 2–3.

3.3. The ‘‘CES/Normal’’ limit

Having sorted out the two limiting cases, we shall now
address the pace of convergence to the theoretical formula for the
limiting ‘‘CES/Normal’’ distribution under intermediate values of
the complementarity parameter, θ ∈ (−∞, 0)∪(0, 1]. As it can be
seen on Fig. 4, the theoretical ‘‘CES/Normal’’ limit is almost entirely
converged upon if n = 1000; it is clear that none of the seemingly
similar (and more generously parametrized) distributions can be
fitted to the simulated data equally well.

This numerical exercise confirms that (a) the Weibull distribu-
tionmisses the shape of the pdf completelywhen θ is finite, and (b)
all other considered distributions tend to underestimate the proba-
bilities of tail events. In fact, the actual limiting distribution ismuch
more skewed than the estimated pdfs.

Regarding Fig. 4, please note the following difference between
the ‘‘CES/Normal’’ distribution and the ‘‘CES/Normal Free’’ case. The
first one takes the (known) theoretical values ofmean and variance
(µθ , σθ ) as well as θ itself as given, whereas the latter takes them

6 Nonlinear least squares fit of the Generalized Gamma distribution (a three-
parameter class of distributions whose parametric form is somewhat similar to
the ‘‘CES/Normal’’ distribution) is included for comparison. Clearly, the fit of
this distribution to our simulated data is quite good, but not as good as of the
theoretically derived ‘‘CES/Normal’’ distribution.
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Fig. 2. Simulated pdf of Ỹ (n) vs. the lognormal limit for n → ∞. The right panel zooms on the right tail in log–log coordinates.
Note. Parameter values used to produce this figure: n = 1000, a = 0.5, b = 2.
Source: Own computations.
Fig. 3. Simulated pdf of Ỹ (n) vs. the Weibull limit for n → ∞. The right panel zooms on the right tail in log–log coordinates.
Note. Parameter values used to produce this figure: n = 1000, a = 0.5, b = 2.
Source: Own computations.
as free parameters to be estimated from the (simulated) data by
nonlinear least squares. We see that improving the fit in the body
of the distribution of the finite CES aggregate (n = 1000 < ∞)
heavily compromises the quality of fit in the right tail.

3.4. Pace of convergence as n → ∞

The next step consists in repeating the numerical experiment
for a fixed value of θ ∈ (−∞, 0) ∪ (0, 1] but various sample sizes
n to assess the pace of convergence of the resultant distribution to
the theoretical ‘‘CES/Normal’’ limiting distribution (Eq. (15)).

In Fig. 5 we observe that as n increases, the resulting distribu-
tion gradually evolves from the assumed uniform distribution F
of Xi to the limiting ‘‘CES/Normal’’ distribution, derived in the pre-
vious section of the current study. In the body of the distribution,
convergence is fast and is largely done already for n = 16. The tails
of the distribution are however much thinner for small n than in
the limiting distribution. Even for n = 2000, although the fit in the
body is already perfect, no observations have been found for tail
events exceeding 6.7 This mirrors the known fact that tails of a dis-
tribution need much more time to take their final shape, because
they are by definition capturing rare events. Therefore as long as
the tails of the distributionF do not exactly coincide with the lim-
iting distribution, convergence will be much faster in the body of
the distribution than in its tails.

3.5. Dependence of the ‘‘CES/Normal’’ distribution on θ

The final step of the numerical exercise is to illustrate the
dependence of the limiting ‘‘CES/Normal’’ distribution on the
complementarity parameter θ , with special reference to the right
tail. As illustrated by Fig. 6 which concentrates on the case where
technology components are gross complements (θ < 0), we find
that the greater is the degree of complementarity (lower θ ), the

7 Note that the support of the underlying distribution F is bounded in this
numerical exercise.
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Fig. 4. Simulated pdf of Ỹ (n) vs. the ‘‘CES/Normal’’ limit (Eq. (15)) for n → ∞. The right panel zooms on the right tail in log–log coordinates.
Note. Parameter values used to produce this figure: n = 1000, a = 0.5, b = 2, θ = −4.
Source: Own computations.
Fig. 5. Convergence of Ỹ (n) to the CES/Normal limit (Eq. (15)) for different values of n. Assumed parameter values: a = 0.5, b = 2, θ = −4.
Note. Parameter values used to produce this figure: a = 0.5, b = 2, θ = −4.
Source: Own computations.
fatter the tail of the limiting distribution.8 Yet, in line with our
theoretical results, power-law decay is generally ruled out. None
of the lines in the right panel of Fig. 6 is asymptotic to a straight
line.

8 Please note that the tail of the distribution with greatest complementarity is
probably misspecified due to numerical error, likely to bias the results particularly
strongly when we take numbers to so large negative powers as −100.
4. Conclusion

The objective of the current paper has been to identify the
shape of cross-sectional distributions of technological productivity
in a world where technologies are complex and consist of a large
number of complementary components. Drawing from the Central
Limit Theorem and Extreme Value Theory, we find that if the
number of components of a technology, n, is sufficiently large,
these distributions should be well approximated either by:



8 J. Growiec / Journal of Mathematical Economics 60 (2015) 1–8
Fig. 6. Convergence of Ỹ (n) to the CES/Normal limit (Eq. (15)) for different values of θ . The right panel zooms on the right tail in log–log coordinates.
Note. Parameter values used to produce this figure: a = 0.5, b = 2.
Source: Own computations.
(i) the lognormal distribution — in the case of unitary elasticity
of substitution between the components (σ = 1, θ = 0);

(ii) the Weibull distribution — in the case of perfect complemen-
tarity between the components (the ‘‘weakest link’’ assump-
tion, σ = 0, θ = −∞),

(iii) the Gaussian distribution — in the (empirically very unlikely)
case of perfect substitutability between the components (σ =

+∞, θ = 1),
(iv) a novel ‘‘CES/Normal’’ distribution — in any intermediate CES

case, parametrized by the elasticity of substitution between
the components (σ > 0, σ ≠ 1 or equivalently θ < 1, θ ≠ 0).

We also find that, as long as technology components are gross
complements but not perfectly complementary (σ ∈ (0, 1)),
the ‘‘CES/Normal’’ distribution has a tail which is fatter than the
Weibull one but is still not a fat tail: it decays unambiguously
faster than the power law. This implies that fat tails in firm size
distributions are not inherited from the underlying distributions
of technological productivity and their apparent emergence must
be due to other reasons.

Our theoretical contribution to the literature has been supple-
mented with a series of numerical simulations, allowing us to ap-
proximate the rate of convergence of the true distribution to the
theoretical limit with n. We have also numerically assessed the
dependence of the limiting ‘‘CES/Normal’’ distribution on the de-
gree of complementarity between the technology components, σ
(or equivalently, θ ).

What could still be done as an extension to the current study, is
to:

• discuss the implied moments of the limiting distributions and
check if there is convergence in distribution when θ → 0 or
θ → −∞,

• provide approximate theoretical results on the pace of conver-
gence of n-unit technologies to the ‘‘CES/Normal’’, Weibull or
lognormal limit, and most importantly to

• verify the empirical relevance of ‘‘CES/Normal’’ distributions.
Do we find it in data on firm sizes, sales, R&D spending, etc.?
What is the implied degree of complementarity between the
technology components, σ?

We leave these interesting questions for further research.
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