
Economics Letters 101 (2008) 87–90

Contents lists available at ScienceDirect

Economics Letters

j ourna l homepage: www.e lsev ie r.com/ locate /econbase
Production functions and distributions of unit factor productivities: Uncovering
the link

Jakub Growiec ⁎,1

Warsaw School of Economics, Institute of Econometrics, Poland
⁎ Instytut Ekonometrii, Szkoła Główna Handlowa, A
Warszawa, Poland. Tel.: +48 22 564 9256; fax: +48 22 5

E-mail address: jakub.growiec@sgh.waw.pl.
1 I thank an anonymous referee for helpful comm

support from the Foundation for Polish Science. All erro

0165-1765/$ – see front matter © 2008 Elsevier B.V. Al
doi:10.1016/j.econlet.2008.06.009
a b s t r a c t
a r t i c l e i n f o
Article history:
 We derive a reversible “end

Received 9 October 2006
Received in revised form 25 June 2008
Accepted 30 June 2008
Available online 4 July 2008

Keywords:
Production function
Distribution
Unit factor productivity
Technology frontier

JEL classification:
E23
O30
O40
ogenous technology choice transform,” according to which firm-level production
functions and distributions of unit factor productivities are two sides of the same coin. The Cobb–Douglas
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1. Introduction
This paper accepts Jones' (2005) view that the production function,
commonly assumed by macroeconomists to be a primitive, is in fact
only a reduced formwhich should be derived frommicrofoundations.
The firm-level production function is considered to be an assembly of a
multiplicity of production techniques, particularmethods of producing
the final good: each method is characterized by an n-tuple of unit
factor productivities (UFPs hereafter), one per factor of production.We
allowsuch an n-tuple to be chosen optimally by thefirm from the set of
all available andnon-dominated n-tupleswhichwe call the technology
frontier.

It is known that the Cobb–Douglas production function can be
derived as an assembly (convex hull) of production techniques if unit
factor productivities are drawn from independent Pareto distributions
(Kortum, 1997; Jones, 2005). In a paper complementary to this one
(Growiec, in press), we have shown that allowing for dependence
between these Pareto distributions enables one to obtain awide range
of possible production functions, including the CES.
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In this paper, we extend the findings of these papers in the
following way. First, we show that, under certain assumptions, the
reasoning developed in Jones (2005) and Growiec (in press) can be
reversed: one can also derive UFP distributions from firm-level
production functions. Second, we apply our reasoning to Cobb–
Douglas and CES functions, deriving their bilateral link to Pareto and
Weibull distributions, respectively. In the course of our derivations, we
stick to the Jones' (2005) assumption that marginal UFP distributions
be independent. This assumption simplifies the subsequent analysis;
relaxing it poses an interesting question for further research.

For simplicity, we also limit our setup to two production factors
only (denoted K and L to make the reader think of capital and labor,
respectively), but our results may be straightforwardly generalized to
n factors of production. The proofs of propositions have been relegated
to the Appendix A.

2. The transform

Our “endogenous technology choice transform” which links
constant-returns-to-scale production functionswith UFP distributions
is valid under the following assumptions.

Assumption 1. Unit factor productivities of L andK, respectively ã and b̃,
are independent and their distributions have tail probabilities P(ã N a) =
Fa(a) and P(b̃ N b) = Fb(b). Thus, the joint distribution of UFPs follows:

Pða~ N a; b
~
N bÞ ¼ Fa að ÞFb bð Þ: ð1Þ
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Assumption 2. The technology frontier is a curve in the (a,b) space,
such that the probability P (ãN a,b̃N b) is constant along this curve. At
each given moment in time, the firm faces a unique technology
frontier Fa (a)Fb(b) = N, where N∈(0,1) is a constant.2

Assumption 3. Each particular production technique Ỹ is given by a
constant-returns-to-scale CES function

Y
~
K; L; a; bð Þ ¼ A~ ψ bKð Þθþ 1−ψð Þ aLð Þθ

� �1
θ
; ð2Þ

where Ã N 0, θ b 1, θ ≠ 0, and ψ∈(0,1). The most instructive case is the
limit case θ→ − ∞which delivers a Leontief function.We denote k≡ K/L .
We also assume that θ is low enough to guarantee that the curvature of
Ỹ with respect to (a,b) is everywhere greater than the curvature of the
technology frontier (cf. Growiec, in press).

Assumption 4. The firm operates in a competitive environment and
chooses a technology (a,b) which is best in terms of attained profit.
The set of available technologies is the technology frontier. Given
Assumptions 1–3, this implies that for each (K,L) the firm seeks to:

max
a;b

A
~

ψ bKð Þθþ 1−ψð Þ aLð Þθ
� �1

θ

� �
s:t: Fa að ÞFb bð Þ ¼ N: ð3Þ

Assumption 4 indicates the way the endogenous technology choice
transform is going to be derived. The outcome of the firm's maximiza-
tionproblem– theproduction functionY (K,L)– is going to be the convex
hull of production techniques, whose shape depends upon the shape of
the technology frontier. If one knows the shape of the technology
frontier (tail probabilities Fa and Fb), then deriving the production
function given CES production techniques is just a textbook application
of the Lagrangemultipliermethod.Much less appreciated is the fact that
the argument may be twisted around: knowing the shape of the
production function Y, one may, in certain cases, derive the technology
frontier and thus individual UFP distributions (given their indepen-
dence). The following propositions hold.

Proposition 1. The forward transform. Let the tail probabilities Fa,Fb be
given. Denote their elasticities by: ηau

AFa
Aa

a
Fa

and ηbu
AFb
Ab

b
Fb
, respectively.

The forward transform is effected in two steps:

i. from the system of equations

ψ
1−ψ

b
a

� �θ

kθ ¼ ηb bð Þ
ηa að Þ ;

Fa að ÞFb bð Þ ¼ N;

8<
: ð4Þ

derive a(k) and b(k);
ii. insert a(k) and b(k) into Ỹ (defined as in Eq. (2)) to get the

constant-returns-to-scale production function Y(K,L).

Proposition 2. The inverse transform. Let the production function Y be
given. Denote its elasticities by: eKu AY

AK
K
Y and eLu AY

AL
L
Y, respectively. By

constant returns to scale, εL = 1−εK. The inverse transform is effected in
three steps:

i. from the equation

ψ
1−ψ

b
a

� �θ

kθ ¼ eK kð Þ
1−eK kð Þ ; ð5Þ

derive k(b/a);
2 This “assumption” can actually be derived from a model of research and presented
as a proposition. We refer to Growiec (in press) for such a derivation.
ii. insert k(b/a) into the equation

ψ
1−ψ

b
a

� �θ

kθ ¼ ηb bð Þ
ηa að Þ ð6Þ

to get first-order ordinary differential equations for Fa and Fb;
iii. solve these ODEs to get the shapes of the UFP distributions.

The inverse transform seems to be a powerful analytical tool.
Unfortunately, its applicability is limited, as is apparent from the
following proposition:

Proposition 3. The inverse transform can be effected only if the
production function Y belongs to the CES family.

The facts behind this finding are that (i) the constant-returns-to-
scale propertyof particular production techniqueswith respect to (a,b) is
necessarily inherited by the derived technology frontier3; at the same
time, (ii) the inverse of the optimal technology choice function, k(b/a)
derived from Eq. (5), must be factorizable into functions of a only and b
only because otherwise, the assumption of independence of UFP
distributions would be violated. Consequently, as we show formally in
the Appendix A, these two restrictions taken together imply that
multiple functional forms must be ruled out of the analysis, and
only for CES production functions will both conditions be satisfied
simultaneously.

One possible way to get rid of this unwelcome feature of the
inverse transform is to relax the assumption that the production
techniques follow CES functions. We leave this for further work.

Apart from this negative result, we also get some interesting
positive ones: Cobb–Douglas implies Pareto and vice versa, while CES
implies Weibull and vice versa. These results may be obtained by
applying the two transforms specified above. The following proposi-
tions hold.

Proposition 4. The Cobb–Douglas production function is associated
with Pareto distributions of UFPs:

Y K; Lð Þ ¼ AKαL1−αf Fa að Þ ¼ caaγ

Fb bð Þ ¼ cbb
γα
1−α:

�

The ratio of exponents (shape parameters) of Pareto distributions is
thus equal to α

1−α, but γ itself can be arbitrary. The parameters A,ca,cb N 0
and γ b 0 are also required to satisfy an additional equality restriction
(see Appendix A).

Proposition 5. The CES production function is associated with Weibull
distributions of UFPs, with the same exponent α for Fa and Fb. The exponent
α is related to the exponent ξ of the CES production function4 and the
exponent θ of individual production techniques via the equality α ¼ nθ

n−θ,
which reduces to α = − ξ for the case θ → − ∞ of Leontief production
techniques.

For some arbitrary ζ∈(0,1) and ξ∈(− ∞,0)∪(0,1) satisfying the
condition that either θ b ξ b 0 or 0 b θ b ξ, we have:

Y K; Lð Þ ¼ A fKn þ 1−fð ÞLn� 	1=nf
Fa að Þ ¼ exp −

ca n−θð Þ
nθ

a

nθ
n−θ

0
B@

1
CA

Fb bð Þ ¼ exp −
cb n−θð Þ

nθ
b

nθ
n−θ

0
B@

1
CA

;

8>>>>>>>><
>>>>>>>>:
3 There exists a range of cases for which the forward transform is applicable while
the inverse transform is not. In such cases, the technology frontier does not have the
constant-returns-to-scale property.

4 The constant elasticity of substitution σ is related to ξ via σ=1/(1-ξ).
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where ca,cb,ζ,A N 0 satisfy two additional equality restrictions (see
Appendix A).

It must be emphasized that the exponents of Pareto distributions Fa
and Fb need not be equal in order to yield the Cobb–Douglas, while the
exponents of Weibull distributions must be equal to yield the CES. If
they are not equal, the resultant production function belongs to the
wider “Clayton–Pareto” family defined and described in Growiec (in
press).

3. Endogenous technology choice vs. aggregation

The results obtained herein might resemble the ones presented by
Houthakker (1955–56) and Levhari (1968). There is one crucial
difference between the two approaches, though: while we compute
the firm-level production function as a convex hull of particular
production techniques, characterized by UFPs picked from a given
technology frontier endogenously by the representative firm, in
Houthakker and Levhari, the economy-wide production function is
calculated by aggregating inputs and outputs in an economy where
heterogenous firms are characterized by Leontief technologies and
unequal (but fixed) efficiency levels, distributed according to some
distribution φ.

The original result of Houthakker was that if φ is Pareto then the
aggregate production function is Cobb–Douglas. Levhari (1968) found
that the reverse implication also holds and went on to show what
distribution φ could be associated with the CES production function.
His finding was that, using our notation, φ must have the density
(Levhari, 1968):

g xð Þ ¼ f−1= n 1−nð Þð Þ

1−nð Þ 1−fð Þ1=n
x−

2−n
1−n

xn= n−1ð Þ

f1= 1−nð Þ −1
� �− 1þn

n

: ð7Þ

This is not a Weibull distribution. The apparent difference in results
follows from an important difference between the two modeling
approaches. The function g(x) in Eq. (7) is the density of firms which
require exactly x units of K for a unit of L to produce a single unit of
output (x is thus firm-specific and is not a UFP of any productive factor).
In Levhari (1968), firms cannot choose their preferred technologies as
theycan in the currentpaper; theyareonlyallowed to stopproducing (at
no cost) if their profits become negative.

Mathematically, the difference is that our “aggregate” production
function is a convex hull while Levhari's (and Houthakker's) is a
definite integral.

Appendix A. Mathematical appendix

Proof of Proposition 1. From the FOCs of Eq. (3) with respect to a and
b, we obtain

A~
θ
Y~
1−θ

ψbθ−1Kθ ¼ λF Vb Fa; ðA:1Þ

A
~θ

Y
~1−θ

1−ψð Þaθ−1Lθ ¼ λFbF Va : ðA:2Þ

Dividing sidewise to get rid of the Lagrange multiplier λ, inserting
appropriate formulas for Fa and Fb, and rewriting the technology
frontier gives the system (4) in (i). Second order conditions of this
problem are guaranteed to hold given Assumption 3 (this has been
discussed in Growiec, in press). Assuming that a solution to the system
(4) exists, we can insert a(k) and b(k) into Y to get Y(K,L) = Ly(k) as the
production function (being the convex hull of particular production
techniques) in (ii). 5

Proof of Proposition 2. Themarginal productivities with respect to K
and L of the production function and of particular production
techniques must be equal since the production function is the convex
hull of production techniques. We have:

A~
θ
Y
~1−θ

ψbθKθ−1 ¼ λ
AY
AK

; ðA:3Þ

A~
θ
Y~
1−θ

1−ψð ÞaθLθ−1 ¼ λ
AY
AL

: ðA:4Þ

Dividing sidewise and rearranging yields Eq. (5) in (i). This is an
equation in two variables, k and b/a. For the values for which the
implicit function k(b/a) exists, it can be inserted into Eq. (6), derived
just above. Assuming that the left-hand side of Eq. (6) can be
factorized into functions of a only and b only, we get two first-order
ordinary differential equations: one for Fa(a) and one for Fb(b), as
stated in (ii). Solving them and rearranging in away that they describe
tail probabilities of randomvariables gives (iii). 5

Proof of Proposition 3. From Eq. (6), it follows that if one wants to
carry out step (ii) of the inverse transform, k(b/a) must be factorizable
into functions of a only and b only. This means that k(b/a) = g(a)h(b)
for all a,b and some functions g,h. Differentiating both sides of this
equation with respect to a and b yields:

k V
b
a

� �
1
a
¼ g að Þh V bð Þ; ðA:5Þ

−k V
b
a

� �
b
a2

¼ g V að Þh bð Þ: ðA:6Þ

Putting this together and rearranging, we get that

bh V bð Þ
h bð Þ ¼ −

ag V að Þ
g að Þ ; 8a; b: ðA:7Þ

Since the left-hand side is a function of b only, and the right-hand
side is a function of a only, Eq. (A.7) can be satisfied only if both
expressions are constant. This implies that k(b/a) = c(b/a)γ for some
constants c and γ. Inserting this into Eq. (5) and using the theorem
due to Arrow et al. (1961) implies that the production function must
be CES. 5

Proof of Proposition 4. ⇒: proofs in Jones (2005) and Growiec (in
press).⇐: assume Y(K,L) = AK α L1 − α, withα∈(0,1). From Eq. (5), we have

ψ
1−ψ

b
a

� �θ

kθ ¼ α
1−α

: ðA:8Þ

For second order conditions of optimization in Eq. (3) to be satisfied,
it must be the case that θ b 0 (Growiec, in press). It follows that
ηb
ηa
¼ α

1−α, so ηb and ηa are constant. This means that Fa(a) = caa
γ and

Fb bð Þ ¼ cbb
γα
1−α for some arbitrary γ b 0 and ca,cb N 0 related to A N 0 via

the equality:

A ¼ A
~ N

cacb

� �1−α
γ

ψα 1−ψð Þ1−α α
1−α

� �1−α
þ 1−α

α

� �α� �� �1
θ

; ðA:9Þ

which simplifies to A ¼ A~ N
cacb

� �1−α
γ
in the limit case of θ → − ∞. Hence,

UPFs are Pareto-distributed. Eq. (A.9) can be easily derived by
applying the forward transform (Growiec, in press). 5

Proof of Proposition 5. ⇒: The technology frontier is given by
e−γa

α−bα

= Ñ which is easily transformed to γaα + bα = N̄̄ . The proof for
this case uses the theoremdue to Arrowet al. (1961) and can be found in
Growiec (in press).

⇐: assume Y(K,L) = A (ζ Kξ + (1 − ζ)Lξ)1/ξ, with ζ∈(0,1) and ξ b 1, ξ ≠ 0.
For second order conditions of optimization in Eq. (3) to be satisfied, it
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must be the case that θ b ξ (Growiec, in press). From Eq. (5), we have
ψ

1−ψ
b
a

� 	θ
kθ ¼ f

1−f k
n Rearranging this yields: k b=að Þ ¼ ψ

1−ψ
1−f
f

b
a

� 	θh i 1
n−θ. Denoting

cu ψ
1−ψ

� � n
n−θ 1−f

f

� � θ
n−θ, we get in step (ii) that ηb bð Þ

ηa að Þ ¼ c b
a

� 	 nθ
n−θ. Let us assume ca,cb N 0

to be some arbitrary constants satisfying cb = cac. Solving the resultant

differential equations F Vb bð Þb ¼ −Fb bð Þcbb
nθ
n−θ, F Va að Þa ¼ −Fa að Þcaa nθ

n−θ and

imposing that Fa,Fb be equal to 1 at 0 yields:

Fa að Þ ¼ exp
−ca n−θð Þ

nθ
a

nθ
n−θ

� �
; ðA:10Þ

Fb bð Þ ¼ exp
−cb n−θð Þ

nθ
b

nθ
n−θ

� �
; ðA:11Þ

Thus, UPFs are Weibull-distributed. Apart from cb = cac, the
following equality restriction must also hold, relating cb,ζ and A:

A ¼ A
~ − lnN

cb

� �n−θ
nθ

ψ
1
θf−

1
n : ðA:12Þ
Eq. (A.12) simplifies to A ¼ A~ − ln N
cb

� f
� �−1n

in the limit case of θ→ − ∞
and it can be easily derived by applying the forward transform
(Growiec, in press).

It must also be noted that in the case where ξ N 0 and θ b 0, second
order conditions hold but Fa and Fb cannot describe tail probabilities:
lima→∞Fa(a) N 0, limb→∞Fb(b) N 0. Hence, such case must also be ruled
out from our considerations. 5
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