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Econometrics: a reminder

Why econometrics?

investigation of relationships
finding parameter values in economic models (e.g. elasticities)
confronting economic theories with data
forecasting
simulating policy scenarios
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Econometrics: a reminder

Example (1/4)

Student satisfaction survey
Master students of Applied Econometrics at Warsaw School of Economics in
Winter semester 2016/2017 were asked about their satisfaction from studying
to be evaluated from 0 to 100. In addition, their average note from previous
studies and their sex were registered.

1 What kind of data is this? Cross-section, time series, panel?
Frequency? Micro- or macroeconomic?

2 How can we quickly visualise a hypothesised causality from average
note to satisfaction from studying?

3 Does such a relationship seem to be there?
4 How can sex of the respondent potentially affect the satisfaction from

studies or the relationship in question? How can we visualise this?
5 Bottom line, what is the right specification of the linear regression

model?
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Introduction OLS

Point estimation

Linear regression model

yi = β0 + β1x1,i + β2x2,i + . . .+ βkxk,i + εi =

[
1 x1,i x2,i . . . xk,i

]


β0
β1
β2
...
βk

+ εi = xiβ + εi

Vector of parameters
[
β0 β1 β2 . . . βk

]T is unknown.
Minimize the dispersion of εi around zero, as measured e.g. by
n∑

t=1
ε2
i .
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Introduction OLS

Point estimation

Ordinary Least Squares (OLS)

S =
n∑

i=1
ε2
i =

n∑
i=1

(yi − β0 − β1x1,i − β2x2,i − . . .− βkxk,i )
2 → min

β0,β1,...

FOC: ∂S
∂β = 0

Denote: y =


y1

y2
...
yn

, X =


1 x1,1 x2,1 . . . xk,1
1 x1,2 x2,2 . . . xk,2
...

...
... . . .

...
1 x1,n x2,n . . . xk,n

, β =


β0

β1

β2
...
βk


and obtain:

β =
(
XTX

)−1 XT y
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Introduction OLS

Point estimation

Proof

S =
n∑

i=1
ε2
i = εTε = (y − Xβ)T (y − Xβ) =

= yT y − βTXT y − yTXβ + βTXTXβ =

= yT y − 2yTXβ + βTXTXβ
(2. and 3. component were transposed scalars, so they were equal)
∂S
∂β = 0 ⇐⇒ ∂yT y

∂β − 2yTXβ
∂β + βTXTXβ

∂β = 0
According to the rules of matrix calculus:
−2yTX + βT

(
2XTX

)
= 0 99K βT

(
XTX

)
= yTX 99K

(
XTX

)
β =

XT y
β =

(
XTX

)−1 XT y
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Introduction OLS

Point estimation

Example (2/4)

Student satisfaction survey
1 Run the regression model with an automated command in R.
2 Write the equation and try to interpret the parameters. Be

careful – it’s tricky! (Why?)
3 Manually replicate the parameter estimates.

Andrzej Torój SGH Warsaw School of Economics – Institute of Econometrics

(1) OLS 11 / 32



Introduction OLS

Measuring precision

Estimator as a random variable

β̂ is an estimator of the true parameter value β (function of
the random sample choice)
samples, and hence the values of β̂, can be different
estimator as a (vector) random variable has its
variance(-covariance matrix)

β̂ =



β̂0
β̂1
β̂2
.
.
.
β̂k

 Var
(
β̂
)

=



var
(
β̂0

)
cov

(
β̂0, β̂1

)
cov

(
β̂0, β̂2

)
· · ·

cov
(
β̂0, β̂1

)
var

(
β̂1

)
cov

(
β̂1, β̂2

)
· · ·

cov
(
β̂0, β̂2

)
cov

(
β̂1, β̂2

)
var

(
β̂2

)
· · ·

.

.

.
.
.
.

.

.

.
. . .

var
(
β̂k

)


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Introduction OLS

Measuring precision

Variance-covariance matrix of a random vector

Definition:
Var (β) = E

{
[β − E (β)] [β − E (β)]T

}
For a centered variable, i.e. E (ε) = 0, this definition simplifies:
Var (ε) = E

(
εεT

)
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Introduction OLS

Measuring precision

OLS estimator: properties

β̂ =
(
XTX

)−1 XT y is an estimator (function of the sample) of the
“true”, unknown values β (population / data generating process).
Under certain conditions (i.a. E (XTε) = 0 E (εεT ) = σ2I ), the
OLS estimator is:

unbiased: E
(
β̂
)
= β

consistent: β̂ converges to β with growing n

efficient: least possible estimator variance (i.e. highest
precision)
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Measuring precision

Variance of the error term (1)

1. Variance of the error term (scalar): σ̂2 = 1
n−(k+1)

n∑
i=1

ε2
i

Why such a formula if the general formula is

Var(X ) = 1
n−1

n∑
i=1

(xi − x̄)2?

First of all note that ε̄ = 0 (prove it on your own).
Second, we need to know why 1 turned into (k + 1) in the
denominator.
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Introduction OLS

Measuring precision

Variance of the error term (2)

By Your intuition, what is the standard deviation in the
following dataset of 3 observation?

Without a correction in denominator:
√
Var =

√
1
3

[
(3 − 2)2 + (2 − 2)2 + (1 − 2)2

]
=

√
2
3 ̸= 1
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Introduction OLS

Measuring precision

Variance of the error term (3)

The intuition behind the standard deviation of 1 is build upon
an implicit, graphical calibration of mean based on the data
sample.

With an adequate correction for thatin denominator:
√
Var =

√
1

3−1

[
(3 − 2)2 + (2 − 2)2 + (1 − 2)2

]
=

√
2
2 = 1
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Introduction OLS

Measuring precision

Variance of the error term (4)

When X is directly observed, the terms like (xi − x̄) consume
one degree of freedom (there is one x̄ estimated before).
When ε is not observed, the terms
εi = yi − β̂0 − β̂1x1i − ...− β̂kxki consume k + 1) degrees of
freedom (there are k + 1 elements in vector β̂ estimated
before).
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Measuring precision

Variance-covariance matrix of the estimator

Var
(
β̂
)

= E

[(
β̂ − β

)(
β̂ − β

)T
]
=

= E

{[(
XTX

)−1 XT y − β
]
·
[(

XTX
)−1 XT y − β

]T}
=

= E

{[(
XTX

)−1 XT (Xβ + ε)− β
]
·
[(

XTX
)−1 XT (Xβ + ε)− β

]T}
=

= E
[(

XTX
)−1 XTε · εTX

(
XTX

)−1
]
=

=
(
XTX

)−1 XTE
(
εεT

)
X
(
XTX

)−1
=

=
(
XTX

)−1 XTσ2IX
(
XTX

)−1
=

= σ2 (XTX
)−1 XTX

(
XTX

)−1
=

= σ2 (XTX
)−1

Empirical counterpart: Var
(
β̂
)
= σ̂2 (XTX

)−1 ≡ [di,j ](k+1)×(k+1)

Andrzej Torój SGH Warsaw School of Economics – Institute of Econometrics

(1) OLS 19 / 32



Introduction OLS

Measuring precision

Standard errors of estimation

Standard errors of estimation (vector – for each parameter):
s
(
β̂0

)
=

√
d1,1 s

(
β̂1

)
=

√
d2,2 s

(
β̂2

)
=

√
d3,3 . . .

Calculating S.E.
1. estimate parameters, 2. compute the empirical error terms, 3.
estimate their variance, 4. compute the variance-covariance matrix
of the OLS estimator, 5. compute the SE as a square root of its
diagonal elements.
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Measuring precision

t-tests for variable significance

t-Student test
H0 : βi = 0, i.e. i-th explanatory variable does not significantly
influence y
H1 : βi ̸= 0, i.e. i-th explanatory variable does not significantly
influence y
Test statistic: t = β̂i

s(β̂1)
is distributed as t (n − k − 1).

p-value<α∗ – reject H0
p-value>α∗ – do not reject H0
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Measuring precision

Example (3/4)

Student satisfaction survey
1 Compute the fitted values and the error terms.
2 Use this result to estimate the variance of the error term.
3 Estimate the variance-covariance matrix of the β̂ estimates.
4 Derive the standard errors from this matrix.
5 Replicate and interpret the t statistics and the p-values.
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Model quality diagnostics under OLS

R-squared (1)
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Model quality diagnostics under OLS

R-squared (2)
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Model quality diagnostics under OLS

R-squared (3)
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Model quality diagnostics under OLS

R-squared (4)
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Model quality diagnostics under OLS

R-squared (5)
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Model quality diagnostics under OLS

R-squared (6)
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Model quality diagnostics under OLS

R-squared (7)

R2 ∈ [0; 1] is a share of yt volatility explained by the model in
total yt volatility:

T∑
t=1

(yt − ȳ)2 =
T∑
t=1

(ŷt − ȳ)2 +
T∑
t=1

(yt − ŷt)
2 R2 =

T∑
t=1

(ŷt−ȳ)2

T∑
t=1

(yt−ȳ)2

Standard goodness-of-fit measure in OLS regressions with a
constant.
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Model quality diagnostics under OLS

Wald test statistic

Wald test
H0 : β1 = β2 = . . . = βk = 0, i.e. no explanatory variable
influences y
H1 : ∃i βi ̸= 0, at least 1 explanatory variable influences y
Test statistic: F = R2/k

(1−R2)/(T−k−1) distributed as F (k, T − k − 1).
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Model quality diagnostics under OLS

Adjusted R-squared

R̄2 = R2︸︷︷︸
fit

− k

T − (k + 1)
(
1 − R2)︸ ︷︷ ︸

penalty for overparametrization
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Model quality diagnostics under OLS

Example (4/4)

Student satisfaction survey
1 Interpret the F-test result.
2 Replicate the F statistic and its p-value manually.
3 Interpret the R-squared.
4 Replicate the R-squared and adjusted R-squared manually.
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