GMM estimator 0 00000000

Lecture 10: Generalised Method of Moments

Econometric Methods

Andrzej Torój

SGH Warsaw School of Economics - Institute of Econometrics

Andrzej Torój (10) GMM GH Warsaw School of Economics – Institute of Econometrics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

	GMM estimator	Example: Gali&Gertler (1999)
0 000	0 00000000	0000

Outline

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Andrzej Torój	
(10) GMM	

・ロト ・回ト ・ヨト ・ヨト

3

Introduction	GMM estimator	Example: Gali&Gertler (1999)
000	0 00000000	0 000

Outline

2 GMM estimator

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

	< ⊡ ►	< ≣ ►	- (三)	 $\mathcal{O}\mathcal{O}$

Andrzej Torój	
(10) GMM	3/19

Introduction	
0	
000	
Introduction	

Example: Gali&Gertler (1999) 0 000

Instrumental variables: general idea

- OLS estimaton based on the general underlying assumption that $E\left(\mathbf{X}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}\right) = \mathbf{0}_{k \times 1}$ (by Gauss-Markov).
- It may be broken i.a. for the following reasons:
 - just by construction of the economic model;
 - two-way causality between y_t and a subset of x_t ;
 - non-random sample selection.
- Solution: find variables that are truly orthogonal to $\varepsilon_{T \times 1}$ ("instrumental variables").

4/19

And	rzej	Torój
(10)	GN	1M

・ロト ・回ト ・ヨト ・ヨト

Introduction
○ ●○○
Introduction

Example: Gali&Gertler (1999) 0 000

Instrumental variables: general idea

- OLS estimaton based on the general underlying assumption that $E\left(\mathbf{X}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}\right) = \mathbf{0}_{k \times 1}$ (by Gauss-Markov).
- It may be broken i.a. for the following reasons:
 - just by construction of the economic model;
 - two-way causality between y_t and a subset of x_t ;
 - non-random sample selection.
- Solution: find variables that are truly orthogonal to ε_{T×1} ("instrumental variables").

And	rzej	lorój
(10)	GM	М

SGH Warsaw School of Economics – Institute of Econometrics

・ロト ・回ト ・ヨト ・ヨト

ntroduction	
000	
ntroduction	

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Instrumental variables: general idea

- OLS estimaton based on the general underlying assumption that $E\left(\mathbf{X}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}\right) = \mathbf{0}_{k \times 1}$ (by Gauss-Markov).
- It may be broken i.a. for the following reasons:
 - just by construction of the economic model;
 - two-way causality between y_t and a subset of x_t ;
 - non-random sample selection.
- Solution: find variables that are truly orthogonal to $\varepsilon_{T \times 1}$ ("instrumental variables").

Introduction	GMM estimator	Example: Gali&Gertler (1999)
o o●o		
Introduction		

OLS and IV: alternative approach

• OLS: residuals uncorrelated with regressors, $E(\mathbf{X}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}) = \mathbf{0}_{k \times 1}$

• these are k "moment conditions" from which we infer the estimates • $\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{X}^{\mathsf{T}}\varepsilon}_{\mathbf{0}} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

• IV: residuals uncorrelated with instruments, $E\left(\mathbf{Z}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}\right) = \mathbf{0}_{k \times 1}$

- these are k "moment conditions" from which we infer the estimates
 Z^Ty = Z^TXβ + Z^T ∉ ⇒ β^{OLS} = (Z^TX)⁻¹ Z^Ty
- what if we get more than l (> k) "moment conditions", i.e. more than we actually need? Z^T_{T×l}ε_{T×1} = 0_{l×1}
 - there are *l* (> *k*) "moment conditions", so not all of them can be fulfilled by modifying β (only *k* parameters)

•
$$Z^T y = Z^T X \beta + \underbrace{Z^T \varepsilon}_{0} \Rightarrow$$
 but we won't invert $Z^T X$ (not a square matrix this time!)

5/19

SGH Warsaw School of Economics – Institute of Econometri

イロト イポト イヨト イヨト

Andrzej Torój (10) GMM

Introduction	GMM estimator	Example: Gali&Gertler (1999)
o o●o		
Introduction		

OLS and IV: alternative approach

Andrzej Torój (10) GMM

• OLS: residuals uncorrelated with regressors, $E(\mathbf{X}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}) = \mathbf{0}_{k \times 1}$

- these are k "moment conditions" from which we infer the estimates • $\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{X}^{\mathsf{T}}\varepsilon}_{\mathbf{0}} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- IV: residuals uncorrelated with instruments, $E\left(\mathbf{Z}_{T\times k}^{T}\boldsymbol{\varepsilon}_{T\times 1}\right) = \mathbf{0}_{k\times 1}$
 - these are k "moment conditions" from which we infer the estimates
 Z^Ty = Z^TXβ + Z^T e ⇒ β^{OLS} = (Z^TX)⁻¹ Z^Ty
- what if we get more than l (> k) "moment conditions", i.e. more than we actually need? Z^T_{T×l}ε_{T×1} = 0_{l×1}
 - there are *l* (> *k*) "moment conditions", so not all of them can be fulfilled by modifying β (only *k* parameters)

•
$$Z^T y = Z^T X \beta + \underbrace{Z^T \varepsilon}_{0} \Rightarrow$$
 but we won't invert $Z^T X$ (not a square matrix this time!)

SGH Warsaw School of Economics – Institute of Econometric

イロト 不得 トイヨト イヨト 二日

Introduction	GMM estimator	Example: Gali&Gertler (1999)
o o●o		
Introduction		

OLS and IV: alternative approach

• OLS: residuals uncorrelated with regressors, $E(\mathbf{X}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}) = \mathbf{0}_{k \times 1}$

- these are k "moment conditions" from which we infer the estimates • $\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{X}^{\mathsf{T}}\varepsilon}_{\mathbf{0}} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- IV: residuals uncorrelated with instruments, $E\left(\mathbf{Z}_{T\times k}^{T}\boldsymbol{\varepsilon}_{T\times 1}\right) = \mathbf{0}_{k\times 1}$
 - these are k "moment conditions" from which we infer the estimates • $\mathbf{Z}^{\mathsf{T}}\mathbf{y} = \mathbf{Z}^{\mathsf{T}}\mathbf{X}\beta + \underbrace{\mathbf{Z}^{\mathsf{T}}\varepsilon}_{\mathbf{0}} \Rightarrow \hat{\beta}^{OLS} = (\mathbf{Z}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$
- what if we get more than *l* (> *k*) "moment conditions", i.e. more than we actually need? Z^T_{T×l}ε_{T×1} = 0_{l×1}
 - there are *l*(> *k*) "moment conditions", so not all of them can be fulfilled by modifying β (only *k* parameters)

•
$$\mathbf{Z}^{\mathsf{T}}\mathbf{y} = \mathbf{Z}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{Z}^{\mathsf{T}}\boldsymbol{\varepsilon}}_{0} \Rightarrow$$
 but we won't invert $\mathbf{Z}^{\mathsf{T}}\mathbf{X}$ (not a square matrix this time!)

Andrzej Torój (10) GMM

Introduction	GMM estimator	Example: Gali&Gertler (1999)
0 000		
Introduction		

Limitations of IV estimation

•
$$\boldsymbol{\beta}^{\prime \prime \prime} = \left(\mathbf{Z}^{T} \mathbf{X} \right)^{-1} \mathbf{Z}^{T} \mathbf{y}$$

- Z must have the same number of columns as X for this operation to be feasible
- in IV, there must be as many instrumental variables as regressors (some of which can instrumentalise themselves)
- what are Z?
 - uncorrelated with ε , correlated with X
 - no reason to assume that there is a limited number of such variables

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Andrzej Torój	
(10) GMM	6 / 19

Introduction	GMM estimator	Example: Gali&Gertler (1999)
0		
000	0000000	000
Introduction		

Limitations of IV estimation

•
$$\boldsymbol{\beta}^{\prime \prime \prime} = \left(\mathbf{Z}^{T} \mathbf{X} \right)^{-1} \mathbf{Z}^{T} \mathbf{y}$$

- Z must have the same number of columns as X for this operation to be feasible
- in IV, there must be as many instrumental variables as regressors (some of which can instrumentalise themselves)
- what are Z?
 - uncorrelated with ε , correlated with X
 - no reason to assume that there is a limited number of such variables

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅつ

Andrzej Torój	
(10) GMM	6 / 19

Introduction	GMM estimator	Example: Gali&Gertler (1999)
0		
Introduction	0000000	000

Limitations of IV estimation

•
$$\boldsymbol{\beta}^{\prime \prime \prime} = \left(\mathbf{Z}^{T} \mathbf{X} \right)^{-1} \mathbf{Z}^{T} \mathbf{y}$$

- Z must have the same number of columns as X for this operation to be feasible
- in IV, there must be as many instrumental variables as regressors (some of which can instrumentalise themselves)
- what are Z?
 - uncorrelated with ${m arepsilon}$, correlated with ${f X}$
 - no reason to assume that there is a limited number of such variables

And	rzej	Torój
(10)) GN	1M

イロト 不得下 イヨト イヨト 二日

GMM estimator	Example: Gali&Gertler (1999)
0000000	

Outline

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Andr	zej	Torój
(10)	G№	1M

	GMM estimator	Example: Gali&Gertler (1999)
	 ●0000000	
CNAM		

Andrzej Torój (10) GMM

So let's take yet another perspective...

- OLS minimises the quadratic form [X^Tε (β)]^T [X^Tε (β)]
 wrt. β_{k×1} (down to zero!)
- IV minimises the quadratic form [Z^Tε (β)]^T [Z^Tε (β)]
 wrt. β_{k×1} with Z_{k×T} (down to zero!)
- IV cannot minimise the quadratic form $(\mathbf{Z}^{T}\varepsilon)^{T}(\mathbf{Z}^{T}\varepsilon)$
 - wrt. $\beta_{k \times 1}$ with $\mathbf{Z}_{l \times T}$ down to zero, i.e. it is impossible to perfectly fulfil all the moment conditions
 - cannot solve l equations (moment conditions) for k < l unknowns

• ...so take quadratic form $(\mathbf{Z}^T \varepsilon)^T \mathbf{W} (\mathbf{Z}^T \varepsilon)$ instead!: $\mathbf{W}_{I \times I}$

• weigh the squared differences between left-hand and right-hand side and minimise the sum!

6GH Warsaw School of Economics – Institute of Econometric

	GMM estimator	Example: Gali&Gertler (1999)
	 ●0000000	
CNANA		

Andrzej Torój (10) GMM

So let's take yet another perspective...

- OLS minimises the quadratic form $\left[\mathbf{X}^{T} \varepsilon \left(\beta\right)\right]^{T} \left[\mathbf{X}^{T} \varepsilon \left(\beta\right)\right]$
 - wrt. $\boldsymbol{\beta}_{k imes 1}$ (down to zero!)
- IV minimises the quadratic form [Z^Tε(β)]^T [Z^Tε(β)]
 wrt. β_{k×1} with Z_{k×T} (down to zero!)
- IV cannot minimise the quadratic form $(\mathbf{Z}^{T} \boldsymbol{\varepsilon})^{T} (\mathbf{Z}^{T} \boldsymbol{\varepsilon})$
 - wrt. $\beta_{k \times 1}$ with $\mathbf{Z}_{l \times T}$ down to zero, i.e. it is impossible to perfectly fulfil all the moment conditions
 - cannot solve l equations (moment conditions) for k < l unknowns
- ...so take quadratic form $(\mathbf{Z}^T \varepsilon)^T \mathbf{W} (\mathbf{Z}^T \varepsilon)$ instead!: $\mathbf{W}_{I \times I}$
 - weigh the squared differences between left-hand and right-hand
 side and minimise the sum!

6GH Warsaw School of Economics – Institute of Econometric

	GMM estimator	Example: Gali&Gertler (1999)
	0 ●0000000	
CMM		

Andrzej Torój (10) GMM

So let's take yet another perspective...

- OLS minimises the quadratic form [X^Tε (β)]^T [X^Tε (β)]
 wrt. β_{k×1} (down to zero!)
- IV minimises the quadratic form [Z^Tε(β)]^T [Z^Tε(β)]
 wrt. β_{k×1} with Z_{k×T} (down to zero!)
- IV cannot minimise the quadratic form $\left(\mathbf{Z}^{T}\varepsilon\right)^{T}\left(\mathbf{Z}^{T}\varepsilon\right)$
 - wrt. $\beta_{k \times 1}$ with $\mathbf{Z}_{l \times T}$ down to zero, i.e. it is impossible to perfectly fulfil all the moment conditions
 - cannot solve l equations (moment conditions) for k < l unknowns

• ...so take quadratic form $(\mathbf{Z}^{T} \boldsymbol{\varepsilon})^{T} \mathbf{W} (\mathbf{Z}^{T} \boldsymbol{\varepsilon})$ instead!: $\mathbf{W}_{I \times I}$

weigh the squared differences between left-hand and right-hand
 side and minimise the sum!

iGH Warsaw School of Economics – Institute of Econometric

	GMM estimator	Example: Gali&Gertler (1999)
	0 ●0000000	
CMM		

So let's take yet another perspective...

- OLS minimises the quadratic form [X^Tε (β)]^T [X^Tε (β)]
 wrt. β_{k×1} (down to zero!)
- IV minimises the quadratic form [Z^Tε(β)]^T [Z^Tε(β)]
 wrt. β_{k×1} with Z_{k×T} (down to zero!)
- IV cannot minimise the quadratic form $\left(\mathbf{Z}^{T}\varepsilon\right)^{T}\left(\mathbf{Z}^{T}\varepsilon\right)$
 - wrt. $\beta_{k \times 1}$ with $\mathbf{Z}_{l \times T}$ down to zero, i.e. it is impossible to perfectly fulfil all the moment conditions
 - cannot solve l equations (moment conditions) for k < l unknowns
- ...so take quadratic form $(\mathbf{Z}^{T} \boldsymbol{\varepsilon})^{T} \mathbf{W} (\mathbf{Z}^{T} \boldsymbol{\varepsilon})$ instead!: $\mathbf{W}_{I \times I}$
 - weigh the squared differences between left-hand and right-hand side and minimise the sum!

	GMM estimator ○ ●●○○○○○○	Example: Gali&Gertler (1999) o ooo
GMM		

How to obtain W?

- in general: any symmetric, positive-definite matrix sized $I \times I$
- according to *Hansen (1982)*, you should assign the lowest weights to the moment conditions with lowest precision of estimation, which implies

$$V = \frac{1}{T} Z^T \Omega Z$$

- with Ω variance-covariance matrix of the estimator
 - under white noise: $\hat{\boldsymbol{\Omega}} = \hat{\sigma}^2 \boldsymbol{I}$
 - under non-spherical disturbances White or Newey-West versions (see: serial correlation / heteroskedasticity lectures)

Andrzej Tor	ój
(10) GMM	

イロト イポト イヨト イヨト

	GMM estimator	Example: Gali&Gertler (1999)
	 00●00000	0 000
CMM		

GMM as iterative procedure

- - estimate under the assumption of white noise
 - 2 calculate the residuals
 - 🗿 update Ŵ
- various implementations of this algorithm in the software (i.a. as a two-step or iterative estimator cf. GLS)

And	rzej	Torój
(10)	G№	1M

イロン イロン イヨン イヨン

	GMM estimator	Example: Gali&Gertler (1999)
	 000●0000	
GMM		

Let us minimise the quadratic form with respect to β :

$$\begin{aligned} \varepsilon^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} \varepsilon &= (\mathsf{y} - \beta \mathsf{X})^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} (\mathsf{y} - \beta \mathsf{X}) = \\ &= \mathsf{y}^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} \mathsf{y} - \mathsf{y}^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} \mathsf{X} \beta \\ &- \beta^{\mathsf{T}} \mathsf{X}^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} \mathsf{y} + \beta^{\mathsf{T}} \mathsf{X}^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} \mathsf{X} \beta \\ &\to \min \end{aligned}$$

From matrix calculus:

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^{\mathsf{T}} \left(\mathbf{A}^{\mathsf{T}} + \mathbf{A} \right)$$
$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}^{\mathsf{T}}$$

Andrzej Torój	
(10) GMM	11/19

	GMM estimator	Example: Gali&Gertler (1999)
0 000	0 0000●000	
61.41.4		

•
$$-\mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} - \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = 0$$

• $\beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}$
• $(\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) \beta = \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$

•
$$\hat{\boldsymbol{\beta}}^{GMM} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{y}$$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model;

- it is advisable to write the moment conditions "as close to linear as possible".

- * ロ * * 御 * * 目 * * 目 * * の < ?

SGH Warsaw School of Economics – Institute of Econometrics

Andrzej Torój (10) GMM

	GMM estimator	Example: Gali&Gertler (1999)
	 0000●000	
CLANA		

•
$$-\mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} - \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = 0$$

•
$$\boldsymbol{\beta}^{\mathsf{T}} \left(\mathsf{X}^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} \mathsf{X} \right) = \mathsf{y}^{\mathsf{T}} \mathsf{Z} \mathsf{W} \mathsf{Z}^{\mathsf{T}} \mathsf{X}$$

•
$$(\mathbf{X}^{\mathsf{T}}\mathbf{Z}\mathbf{W}\mathbf{Z}^{\mathsf{T}}\mathbf{X})\beta = \mathbf{X}^{\mathsf{T}}\mathbf{Z}\mathbf{W}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

•
$$\hat{\boldsymbol{\beta}}^{GMM} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{y}$$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model;

- it is advisable to write the moment conditions "as close to linear as possible".

・ ▲ ロ > ▲ 画 > ▲ 画 > ▲ 画 > ろんの

SGH Warsaw School of Economics – Institute of Econometrics

Andrzej Torój (10) GMM

	GMM estimator	Example: Gali&Gertler (1999)
	o 0000●000	
CLANA		

•
$$-\mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} - \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = 0$$

• $\beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}$
• $(\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) \beta = \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$
• $\hat{\beta}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model;

- it is advisable to write the moment conditions "as close to linear as possible".

・ キロマ キョマ キョマ キョン いってん

SGH Warsaw School of Economics – Institute of Econometrics

Andrzej Torój (10) GMM

	GMM estimator	Example: Gali&Gertler (1999)
	o 0000●000	
CLANA		

•
$$-\mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} - \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = 0$$

• $\beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}$
• $(\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) \beta = \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$
• $\hat{\beta}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model;

- it is advisable to write the moment conditions "as close to linear as possible".

・ ▲ ロ > ▲ 目 > ▲ 目 > ▲ 目 > うへぐ

5GH Warsaw School of Economics – Institute of Econometrics

Andrzej Torój (10) GMM

	GMM estimator	Example: Gali&Gertler (1999)
	0 0000●000	
CLANA		

•
$$-\mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} - \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X} + \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = 0$$

• $\beta^T (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) = \mathbf{y}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}$
• $(\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) \beta = \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$
• $\hat{\beta}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model;

- it is advisable to write the moment conditions "as close to linear as possible".

Andrzej Torój	SGH Warsaw School of Economics - Institute of Econometrics
(10) GMM	12/19

	GMM estimator	Example: Gali&Gertler (1999)
	0 00000●00	
GMM		

GMM: special cases

•
$$\mathbf{Z}_{T \times k}, \mathbf{X}_{T \times k}$$

 $\hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y} =$
 $(\mathbf{Z}^T \mathbf{X})^{-1} \mathbf{W}^{-1} (\mathbf{X}^T \mathbf{Z})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y} = (\mathbf{Z}^T \mathbf{X})^{-1} \mathbf{Z}^T \mathbf{y} = \hat{\boldsymbol{\beta}}^{IV}$
• $\mathbf{Z} = \mathbf{X}$
 $\hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{y} =$
 $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{W}^{-1} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} =$
 $\hat{\boldsymbol{\beta}}^{OLS}$

SGH Warsaw School of Economics – Institute of Econometric

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Andrzej Torój (10) GMM

	GMM estimator	Example: Gali&Gertler (1999)
	0 00000●00	
GMM		

GMM: special cases

$$\begin{aligned} \mathbf{Z}_{T\times k}, \mathbf{X}_{T\times k} \\ \hat{\boldsymbol{\beta}}^{GMM} &= (\mathbf{X}^{T} \mathbf{Z} \mathbf{W} \mathbf{Z}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{Z} \mathbf{W} \mathbf{Z}^{T} \mathbf{y} = \\ (\mathbf{Z}^{T} \mathbf{X})^{-1} \mathbf{W}^{-1} (\mathbf{X}^{T} \mathbf{Z})^{-1} \mathbf{X}^{T} \mathbf{Z} \mathbf{W} \mathbf{Z}^{T} \mathbf{y} = (\mathbf{Z}^{T} \mathbf{X})^{-1} \mathbf{Z}^{T} \mathbf{y} = \hat{\boldsymbol{\beta}}^{IV} \end{aligned}$$
$$\begin{aligned} \mathbf{Z} &= \mathbf{X} \\ \hat{\boldsymbol{\beta}}^{GMM} &= (\mathbf{X}^{T} \mathbf{X} \mathbf{W} \mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{X} \mathbf{W} \mathbf{X}^{T} \mathbf{y} = \\ (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{W}^{-1} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{X} \mathbf{W} \mathbf{X}^{T} \mathbf{y} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y} \end{aligned}$$

SGH Warsaw School of Economics – Institute of Econometric

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Andrzej Torój (10) GMM

	GMM estimator	Example: Gali&Gertler (1999)
		0
	00000000	000
GMM		

Variance-covariance of GMM estimator

- GMM estimator: consistent, asymptotically normally distributed
- asymptotic variance-covariance estimator in a linear model:

$$Var\left(\beta^{GMM}\right) = \frac{1}{T} \left[\frac{1}{T} \left(\mathbf{X}^{T} \mathbf{Z}\right) \mathbf{W}^{-1} \frac{1}{T} \left(\mathbf{Z}^{T} \mathbf{X}\right)\right]^{-1}$$

Andrzej Torój (10) GMM SGH Warsaw School of Economics – Institute of Econometrics

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

	GMM estimator	Example: Gali&Gertler (1999) o ooo
GMM		

J statistic

- the non-zero value of the minimised quadratic form is interpretable
 - how far are we from fulfilling the (excessive) orthogonality conditions?
 - the lower the value, the lower the "distance" to perfect fulfilment of excessive conditions
- divided by T, it is χ^2 -distributed with degrees of freedom equal to l k (instruments in excess of parameters)

J-test of orthogonality

$$J\left(\hat{eta}, \mathbf{\hat{\Omega}}^{-1}
ight) = rac{1}{ au} arepsilon \left(\hat{eta}
ight)^{ au} \mathsf{Z} \mathbf{\hat{\Omega}}^{-1} \mathsf{Z}^{ au} arepsilon \left(\hat{eta}
ight)$$

 H_0 : all orthogonality conditions fulfilled

 H_1 : some orthogonality conditions not fulfilled

Andrzej Torój (10) GMM

GMM estimator	Example: Gali&Gertler (1999)
	• •

Outline

3 Application: Gali&Gertler's hybrid Phillips curve (1999)

16/19

Andrzej Torój	
(10) GMM	

・ロト ・回ト ・ヨト ・ヨト э

	GMM estimator 0 00000000	Example: Gali&Gertler (1999) ○ ●○○
Gali&Gertler (1999)		

Hybrid Phillips curve

• Gali, Gertler (1999):

 $\pi_t = \gamma_b \pi_{t-1} + \gamma_f E_t \pi_{t+1} + \lambda mc_t + \varepsilon_t$ where π_t - inflation rate, mc_t - real marginal cost, ε_t - error term.

- Why GMM?
 - there is an unobservable variable on the right-hand side, $E_t \pi_{t+1}$
 - we can just replace it with observable $\pi_{t+1} = E_t \pi_{t+1} + v_{t+1}$, where v_t – expectations error

 $\pi_t = \gamma_b \pi_{t-1} + \gamma_f \pi_{t+1} \left(v_{t+1} \right) + \lambda m c_t + \varepsilon_t$

• but v_{t+1} clearly not independent from ε_t – inconsistency!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣んで

And	zej	Torój
(10)	G№	1M

	GMM estimator 0 00000000	Example: Gali&Gertler (1999) ○ ●○○
Gali&Gertler (1999)		

Hybrid Phillips curve

• Gali, Gertler (1999):

 $\pi_t = \gamma_b \pi_{t-1} + \gamma_f E_t \pi_{t+1} + \lambda mc_t + \varepsilon_t$ where π_t - inflation rate, mc_t - real marginal cost, ε_t - error term.

- Why GMM?
 - there is an unobservable variable on the right-hand side, $E_t \pi_{t+1}$
 - we can just replace it with observable $\pi_{t+1} = E_t \pi_{t+1} + v_{t+1}$, where v_t - expectations error

$$\pi_t = \gamma_b \pi_{t-1} + \gamma_f \pi_{t+1} \left(\mathbf{v}_{t+1} \right) + \lambda m c_t + \varepsilon_t$$

• but v_{t+1} clearly not independent from ε_t – inconsistency!

And	rzej	Torój	
(10)) GN	им	

(ロ) (同) (ヨ) (ヨ) (ヨ) (つ)

	GMM estimator	Example: Gali&Gertler (1999)
		0 0 0 0
Gali&Gertler (1999)		

Orthogonality conditions

•
$$E_t [\varepsilon_t \mathbf{z}_t] = E_t [(\pi_t - \gamma_b \pi_{t-1} - \gamma_f E_t \pi_{t+1} - \lambda mc_t) \mathbf{z}_t] = E_t [(\pi_t - \gamma_b \pi_{t-1} - \gamma_f \pi_{t+1} - \lambda mc_t) \mathbf{z}_t] = \mathbf{0}$$

- the expected value on the orthogonality condition allows to drop the expected value on π_{t+1}

- in this context, we interpret the instrument set Z as variables that allow to forecast inflation one period ahead without systematic errors
- there should be more than 3 instruments to use GMM here

(ロ) (同) (ヨ) (ヨ) (ヨ) (つ)

Andr	zej	Torój
(10)	G№	1M

	GMM estimator o oooooooo	Example: Gali&Gertler (1999) ○ ○○●
Gali&Gertler (1999)		

Example

And

(Imperfect) replication of Gali-Gertler results:

- Read the paper by Gali and Gertler.
- Consider the following set of variables as linear one-period-ahead predictors:
 - inflation (4 lags), log real ULC (1 lag), output gap (1 lag), short- vs long-term interest rate spread (1 lag), log-differences of wage index (1 lag), log-differences of commodity price index (1 lag)
- Define the instruments and the initial weight matrix W.
- Estimate the model. Discuss the results. Do they confirm Your intuition? If not, look for the (economic) solution in the article.

イロト イボト イヨト イヨト 二日

drzej Torój	
) GMM	19/19